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Abstract-In most predictive models for two-lane road traffic. it is assumed that platoons have no physical 
dimensions. thus restricting their applicability to light traffic where a platoon cannot be lone enough to block the 
progression of the next one. 

In this paper a model that can be used for heavy traffic is presented. A queueing theory approach in which vehicles 
are allowed to have physical dimensions yields the platoon length distribution, the delays to fast vehicles. the 
headway process and the flow density diagram for both the space and time processes. Unlike in other models. the 
passing rate is determined from the sight distance characteristics of the road and the opposing traffic flow with an 
auoroach similar to the one used for vehicular delavs at unsipnalized intersections; this improves the predictive 
&pabilities of the model. 

1. IYrRODUCTION 

Since the headway process of a traffic stream on a 
two-lane road is a main input into such problems as 
pedestrian delay and vehicle crossing capacity, it is 
clearly of capital importance to have adequate models to 
describe this process appropriately. Not to be neglected 
are such other important characteristics of traffic as 
speeds, delay, and platoon length which also affect the 
performance of a, roadway and its side roads. 

It is the purpose of this paper to present a model for 
traffic description that can predict the headway process, 
bunching, speeds. etc., on two-lane roads as a function of 
demand and road conditions. 

The problem of predicting bunching and delays on a 
two-lane road is one of the most classical applications of 
the theory of stochastic processes to traffic problems. The 
topic has been widely studied; Newell (1955) introduced 
the first integral equation as an approach to this problem. 
Erlander (1967) used Gustavsson’s (1967) results for 
passing and established an integral equation following 
Carlesson’s (1957) approach. Newell (1966) considered 
interactions between two vehicles only. All of the above 
mentioned models assume that each vehicle has its own 
desired speed and is delayed by slower vehicles. 
However. they do not include queueing effects, and 
consequently, their results, when available. may be used 
for very light traffic only. 

To avoid this unrealistic feature Andrews (1970) 
attempted to introduce interactions between three cars 
but the derivations became very involved. 

Miller (1969) and Gordon and Newell (1964) included 
queueing in their models. and made similar assumptions 
regarding the passing behavior and the platoon formation 
mechanism: the only difference being that Miller consi- 
dered a continuous range of desired speeds while Gordon 
and Newell considered the discrete case. Their formula- 
tions seem to be realistic but the equations derived are 
intractable except for the case of two speeds. 

Using the same type of model. with two speeds only. 
Brill (1972) looked at the structure of the headway 

process, and Galin and Epstein (1974) considered a 
peculiar passing mechanism. 

So far. models restricting speeds to two possible values 
have been the only ones to yield fairly simple solutions. 
However, even these models neglect the physical 
distances between vehicles in a platoon and hence do not 
apply for medium and heavy traffic because the possibility 
of a platoon being so long that it obstructs the progress of 
the next one displacing it backwards is ignored. 

Both Oiiver (1961) and Tanner (l%la) took intoaccount 
the physical dimensions of the vehicles, and obtained the 
platoon length distribution. However, all vehicles were 
restricted to travel at the same speed. 

In this paper we follow the approach of Gordon and 
Newell with two vehicle types, for light traffic, and 
generalize the results of both; Oliver-Tanner and 
Gordon-Newell for the case of heavy traffic by allowing 
the vehicles to have physical dimensions and two different 
desired speeds. 

2. THE LIGHT TRAFFIC MODEL 

We consider one lane of a homogeneous, infinitely long 
road with traffic consisting of two vehicle types with 
different desired speeds. The fast vehicles catch up with 
the slower ones and are forced to queue behind them until 
both a gap of sufficient size appears in the opposing 
stream and sight distance conditions are favorable. It is 
also assumed that only one of the vehicles in a moving 
queue is ready to pass, although that vehicle may not be 
the first one to have arrived. Using queueing theory 
terminology, a slow vehicle in the traffic stream performs 
the function of a single server and a fast one that of a 
customer but the queue discipline is not necessarily first 
come, first served. 

It is assumed that the service times are negative 
exponentially distributed random variables with mean 
(I*-‘) and that the service mechanisms of all servers are 
identical and independent. These assumptions are essen- 
tial to the derivation of results and appear reasonable. 

Most other investigations consider the passing rate, p, 
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as an input to the model that has to be exogenously 
determined [see for example Gordon and Newell (1964), 
Brill(1972), Morse and Yaffe (1971)]. Attempts to express 
it as a function of the opposing traffic and passing sight 
distance conditions have had limited success. yielding 
approximate solutions for light traffic only, Gustavsson 
(1967). 

In Appendix 1 the passing rate, p, is determined as a 
function of the opposing flow and the passing sight 
distance, with an approach used in the study of vehicular 
delay at unsignalized intersections [see Yeo and Weesakul 
(1964)]. This method takes into account the fact over- 
looked by others that passing occurs in bunches, when 
several followers take advantage of the same gap, and 
results are easily obtained for all levels of flow. 

The following nomenclature is used in this paper: 

Time process 

Space process 

Leader 

Follower 

fi 
4 
k 
u 

V 

The vehicle arrival process observed by a 
stationary observer (headway). 

The process observed by an infinitely fast 
observer (spacing). 
A vehicle that is traveling unobstructed 
by others and at its desired speed. 
A non-leader vehicle. 
Average passing rate. 
Flow (vehicleslhr.). 
Density (vehicles/mile). 
Speed of the slow vehicles. 
Desired speed of the fast vehicles. 

The subindices fl, f and s stand for unconstrained 
fast, fast, and slow, respectively, e.g., qrr is the flow of 
unconstrained fast vehicles. 

2.1 Platoon lengfh 
If traffic is very light, one can neglect the physical 

dimensions of the platoons (vehicles are considered 
mathematical points). Then to an observer moving about 
the stream with speed u, the system would look like a 
series of M/M/l queues with infinite capacity where the 
slow vehicles are the servers and the fast ones the 
customers. 

The arrival rate, A, to a moving queue, will be: 

v-v 
h=kj,(V-c)=q,, v ( 1 . 

Jackson (1957) has shown that the queue lengths will be 
mutually independent geometrically distributed random 
variables with parameter p = A/p. If we then let z, be the 
number of vehicles in a platoon headed by a slow vehicle 
(including it) we have: 

Pr[z = i] = (1 - p)p’-‘; ial (2) 
E(Z) = (I- P)_’ 

v-v 
where p=A/p=qqlf-= 

VCr 
q1rA. 

t =wz-1) 1 
I 

--_=-= 
A P-A [ 

p_4nv-c -’ 
-1 v 

In most practical situations one would know q, q. (the 
demand of slow vehicles), D, V and only qff or kff would 
need to be known in order to determine the bunch size 
probabilities. 

We obtain qff by writing the flow of fast vehicles as the 
sum of the ffow of constrained and unconstrained fast 
vehicles. 

qr= qrr f q,E(= - 1) 

(3) 

This is a quadratic equation in qff yielding: 

1 + Aq 
4ff = , 

-v/(1 f Aq)* - 4Aqf 
2A 

(4) 

It is easy to check that p is always less than one and that 
therefore a stationary solution to the idealized process 
always exists. 

Gordon and Newell (1964) obtained ke in terms of the 
space process (k and k,), but a solution in terms of 
demand (flow) seems more useful. 

We now let w, be the number of vehicles in a platoon 
where the unconstrained fast vehicles are regarded as 
one-car platoons. 

The probability distribution for w is written by taking 
into account the relative flows of unconstrained fast 
vehicles and slow vehicles. For the time process we get: 

Pr[w = I]=&+ 
qs + 4ff 

A_(1 -p) 
43 + 4f/ 

Pr[w = i] = A(1 -p)p’_‘; i 32 
43 + 4ff 

(5) 

E(w)=-JL.; qs(l -p)F’ q =- 
41 +er 4. + 4ff 4s f4ff’ 

(6) 

The same formulas with the q’s replaced by k’s apply for 
the space process. It must be noted that although : is 
identically distributed for both the time and space 
processes, w is not because a larger fraction of the 
unconstrained fast vehicles is observed in the time 
process. Formulas (5) and (6) and their counterparts for 
the space process are easy to use and yield the desired 
platoon length information. Dunne, Rothery and Potts 
(1968) tested a similar distribution as a descriptor of 
platoon length and obtained good fits with observed data. 

2.2 Delays 
It is now easy to obtain the time averaged speed of a 

fast vehicle. 
The time going fast between queues is on the average: 

f, = [k,( v - cl]-’ = [q,(q)]-‘. 

The time going slow trailing in a queue is on the 
average: 

The total distance traveled during ff + t, is: 

d = vrf + ct,. 
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The average speed of fast vehicles is then: 

d fi, = - 
f, + t; 

which after some manipulations using expression (3) 
reduces to: 

a, = 
c 

1-4s v-c. 
( > 

(7 

41 v 

Had we used the space process we would have obtained 
Gordon and Newell’s (1964) result: 

k,f ti,=$V-c)+c. (8) 

It is interesting to compare (7) with Erlander’s (1967) 
results. If one lets V -) 2, then we would have obtained: 

l& = US + vtj_ 1: +_ 1 
L t,k, 

=t+ 1 
k,E (waiting time)’ 

This result is also obtained with Erlander’s approach, but 
there the expected waiting time doesn’t include queueing. 

2.3 The space mean speed and the fundamental diagram 
With this model one can also predict the space mean 

speed, ii,, and the traffic flow density, k. 
From the definition of space mean speed: 

ii, = 
k,“V + (k - k,,)L. 

k 
=a++(V-v). (9) 

But (9) can also be expressed as a function of flows: 

and solving for ti,: 

&=c’ 
c 

1 ev-0 -’ 
> 4v. 

(10) 

The traflic density can also be obtained from (10) by use 
of q = kP,: 

k=b 
[ 

V-a 
4-W- 

3 V 
(11) 

It would now be possible to predict the shape of the 
fundamental diagram of traffic without actual observa- 
tions. 

2.4 The headway process 
We will now state two theorems, whose proofs can be 

found in Daganzo (1975), regarding the structure of the 
headway process. 

Theorem 1. If we let: X. = 0 if the n th vehicle is a 
slow-leader; X. = 1 if the nth vehicle is a fast-follower; 
X. = 2 if the n th vehicle is a fast-leader; and denote by Y, 
the headway in front of the nth vehicle, then [X. : Y, ] is a 
Markov-Renewal process with S-M matrix: 

[ 

O-PJP P (I-PM-P) 

P(t) = !I--P)P P 

P 0 
(l,;!;;“) 

I 

1 - e-‘%+w 0 0 
0 F(t) 0 

X 0 0 1 _ e-(4,+P# 1 

where 

and F(t) represents the c.d.f. of the headway in front of a 
follower which, in this section, because of neglectable 
headways, is given by the Heavyside unit step function. 

An analogous result is true for the space process. 
Theorem 2. If we now redefine X. by letting: X. = 0 if 

the n th vehicle is a leader: X, = 1 if the n th vehicle is a 
follower; then [X. : Y,] is also a M-R process with S-M 
matrix given by: 

] - pp 
A(t)= I_p 

[ 

pp 

I[ 

] - e-‘qs’4d’ 0 

p 0 F(t) I 
with p, p and F(t) defined as in Theorem 1. This is a very 
important result because it can be used for pedestrian 
delay problems, Weiss and Maradudin (1962); and with 
some more research for vehicular delays too. The 
Markovian structure of the sequence [leader-fo!lower] 
has been empirically validated by Dunne, Rothery and 
Potts (1968). 

Brill(l971) has shown that defining X. in the following 
way: 

X. = 0 if n th vehicle is a slow or a constrained fast. 
X. = 1 if nth vehicle is an unconstrained fast. 

the [X.; Y,] process is also M-R, but the S-M matrix 
given is incorrect (Daganzo 1975). 

3.THJZ MEDIUM ANDHEAVY TRAFFIC MODEL 

The results for light traffic were based on the two 
following assumptions: (i) One can observe an uncon- 
strained fast vehicle even if a platoon is passing. This 
assumption is correct if gaps between platoons are very 
large but becomes inaccurate when flows increase. (ii) 
The probability of a queue being so long that it stands in 
the way of the next one is negligible. This assumption is 
the one that in the case of a unique vehicle type leads to 
the Bore]-Tanner probabilities for platoon size, Oliver 
(1961) Tanner (1961a). 

These two assumptions will now be relaxed and the 
results for light traffic generalized. For the rest of the 
paper we will use the following terminology: 

Platoon A bunch of one or more vehicles 
traveling together. 
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Blocking 

Platoon interference 

Single platoon 

Composite platoon 

The phenomenon, associated with 
assumption (ii). consisting of a 
platoon being displaced backwards 
due to the spatial requirements of 
the previous one. 
The phenomenon, associated with 
assumption (i), that makes platoons 
longer in order to absorb the 
fraction of unconstrained fast vehi- 
cles that cannot be observed. 
A platoon consisting of a slow 
vehicle and some, if any, followers. 
A platoon consisting of one or 
more single platoons running to- 
gether due to the blocking 
phenomenon. 

3.1 Bunching 
We will first drop assumption (i) and then assumption 

(ii). We will also begin differentiating between the time 
and space processes. 

Theorem 3. If we let z. be the length of a single platoon 

after dropping assumption (i) and we let F be the average 
headway in front of a follower we have: 

and 

for the space and time processes respectively. 
It must be noted now that. unlike in Section 2, single 

platoons are longer in the time process because they 
include the vehicles that joined them while passing in front 
of the observer. 

Proof. For the space process we can write: * 

k = k,, + k,E(z) = k.wa + k,E(z.) (13) 

where kffO is the density of unconstrained fast vehicles in 
the gaps between platoons. It is given by: 

k,ro = kf, 
gap length-single platoon length 

gap length 

= k,ks-’ - FuEs(za) 
k,-’ 

= k,,[l-qsFE,(za)l. 

Substituting into (13) and solving we obtain expression 

(12), for the space process. 
The proof for the time process is omitted because it 

requires more elaboration (see Daganzo 1975). 
We now relax assumption (ii). The assumption is made 

that if blocking occurs, the blocked platoon is displaced 
backwards by the blocking platoon. It is also assumed that 
the passing maneuvers in the blocked platoons are 

Following arguments very closely re!ated to those 
leading to the Borel-Tanner distribution, the number of 
vehicles in a composite platoon is shown to be equivalent 
to the number of customers served in a busy period of a 
queueing system with service times given by the 
distribution for spacings, arrivals being compound Pois- 
son with rate, k, and bunch size given by the number of 
vehicles in a single platoon. 

This leads to a main result of the paper: 
Theorem 4. Letting z, be number of vehicles in a 

composite platoon, and denoting by N(t). its probability 
generating function: then, for the space process, N(l) is 
given by the nontrivial solution to: 

c-F*[%(l - N(5Nl 
N(5)=E,(z,)-~[E,(z,)-l]F*[q,(l-N(~))] 

(14) 

where F*(.) is the Laplace transform of F(t), the c.d.f. 
for the headway in front of a follower. (No longer a 
Heavyside unit step function). 

A few algebraic manipulations then yield: 

ET(;)=% with p, = q,FE,(z,) < 1. (15) 
I 

The solution exists iff ps < 1, which puts a capacity 
bound on the amount of traffic the road can serve. It is 
interesting to note that Miller (1963) used a multiplier, 
l/(1 - x) similar to the l/(1 - pl) to correct the average 
platoon length and that is now theoretically justified. 

If we let & = [var,(zc)j/[E~(zc)] expression (14) also 
yields: 

2 =Pr+ 
y”’ 1 -ps 

E, (1. ) - 1 + (YFPI 1’ 
E, (t )t I - ps 1 

(16) 

where y: is the coefficient of variation of F(f). 
Similar formulae exist for the time process. 
This result generalizes and brings together two different 

classical formulations of the probIem, one of Oliver (1961) 
and Tanner (!%la), and that of Gordon and Newel! (1964). 
The results of Gordon and Newell for light traffic are 
obtained by neglecting the physical dimensions of the 
vehicles (F =O; F*(s)= 1). In that case, eqn (14) 
becomes: 

N(S)=E,(~,)-~[E,(Z.)-ll 

but from (12) we see that E,(r.) = E(z) and hence: 

I-p 
N(‘)=E(;)-[&)-l]~=*l-p~ 

which is the generating function of the probabilities in (2). 
The Bore!-Tanner probabilities are also obtained as an 

extreme case of Theorem 4. If qf = 0 and the headways 
are deterministic (F*(s) = e-‘F) eqn (14) becomes: 

unaffected. N(t) = 5 exp [-kFo(1 - IV([))] 
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which is the equation yielding the Bore]-Tanner prob- lag-one autocorrelations of an observed headway stream 
abilities. and the results matched fairly well with the observed 

correlations (Daganzo 1975). 
3.2 Platoon length distributions : 

Equation (14) cannot be inverted but a good approxima- 
tion to the composite platoon distribution with the same 4. AN EXAMPLE 

mean and variance is given by the following mixture of For illustrative purposes, we will derive the fundamen- 
geometric distributions: tal diagram and the platoon length distribution for a 

hypothetical case where: 

V=60MPH; u -3OMPH; qs =O.lq VPH. 

with We will also assume that the passing rate pis given by: 

1 1 
P’=l-E,(;,)+E,(z, I- J 

2E,(z<) 
I + E,(z,)(l+ y’.,) 

w = 637 exp -& (passings per hour). 
( J 

1 p?+l-- 2E,(z,) 
Assuming that the traffic in the other direction is 

E,(z) E,(L) J l- 1 + E,(z,)(l + y’.,)’ 
approximately equal to the traffic in our direction, the 
above exemplifies how F diminishes with increasing 9, 

Analogous formulas have been derived for the time 
according to Appendix 1. 

process. We now want to determine the platoon length 
It has been mentioned that expression (10) is good for 

distribution (including unconstrained fast vehicles). 
all ranges of q as long as p$ < 1. Hence: 

Letting w, be the number of vehicles in a platoon and 
following the same argument that led to expression (5): P, = 

]_& Iv_0 with 

Pr[w, = I] = &+&Pr[z, = II 
( 1 q v 

1 ‘Aq - J(1 +Aq)2-4Aq, 

Pr[w, = i] =& 
q/J = 

Pr[z, = i]; i 2 2. (18) 2A 
I n 

and 

For the mean and variance of w, we obtain: A-V-c 
VP 

E(H’ )=k,,+k,E,(&) 
c 

k,, + k, 
(19) Direct substitution of our data with different values of 4 

k, - Var(wC)=kS+kn k,+kfl [ 
-+E,(z,)- I]:+ y:.E’(z,)]. 

yields the results displayed in Fig. 1. 

(20) Note the sudden drop in the space mean speed when the 
flow reaches about 300 VPH. This sudden drop or “phase 

Similar expressions hold for the time process. 
change” was also reported by Morse and Yaffe (1971’1 and 
is typical of two-lane roads. 

3.3 Delays and the fundamental diagram 
We will now derive the platoon length distribution for 

It can be shown, Daganzo (1975), that as long as p$ < 1, 
the space process for a flow level of 800 VPH and 

the formulas derived in Sections 2.2 and 2.3 still hold after 
assuming that F = 2.5 sets., and y: = 0. 

dropping assumptions (i) and (ii). Hence it is valid to 
We will make use of formulas (18) and (17) to determine 

determine the fundamental diagram and evaluate delays 
the distribution. These formulas require the use of 

with the formulas for light traffic. 
expressions (16), (15), (12). (4) and (2). 

From the data: qj= 720 VPH 

3.4 The headway and spacing process 
r=2.5PPM-0 

After the blocking phenomenon is introduced, we must 
give up the Markov-Renewal property of the spacing 

expression (4) yields qa = 4.5 = 0 and from (2), E(z) = 10. 

process. However, if we are ready to accept formula (17) 
We now take into account the blocking phenomenon.by 

for the number of vehicles in a composite platoon, a 
computing E,(G) and ya, using (15) (16): 

4-state Markov-Renewal structure can be justified. The 
S-M matrix can be found in Daganzo (1975). 

E,(z,) = 22.5 

It is of interest to note that the headway process follows yi, = 3.28. 
the same behavior as the spacing process and that a 
coarser approximation by a 2-state M-R process can also Note that now that the light traffic hypotheses have been 
be made in both cases. dropped, platoons are notably longer and more unpredict- 

This coarser approximation was used to predict the able. 



344 C. F. DAGANZO 

) SPACE YEAN SPEED is 

24 -- 

16 -- 

8 -. 

FLOW 
100 200 500 1000 

1800 
? 

Fig. 1. A flow-speed diagram. 

The composite platoon length is given by (17) with: 

pl = 0.988; pz = 0.923. 

Substitution into (18) would yield the sought prob- 
abilities. The method is easy for both manual and 
automatic computation and the results obtained should be 
no worse than the geometric or the Borel-Tanner 
distributions, since the model generalizes both. (see 
Daganzo 1975). 

5. THE NO-PASSING CASE 

In Fig. 1 we see that except for very light traffic, passing 
is impossible and because of that, the space mean speed 
drops toward the minimum value very rapidly. 

In many practical situations, the levels of flow will be 
above the critical level and no great mistake will be made 
by considering no-passing conditions. 

The no-passing assumption simplifies all the results of 
the paper and they are summarized below: 

5.1 Platoon length 
Taking limits on (4) as A -+a 

p=q,,A=: and q#=O. 

From expressions (12), (6) and (2): 

E,(~,)=E.(~.)=E(I)=E(~)=~=~. 
I 

The blocking phenomenon will yield using expression 
(15): 

and 
p, = qF 

Es(z<) = E,(L) = 4 
r 
(1 4 qF). 

The coefficient of variation is: 

y;, = y;, = qF + e/q + (YF@?* 
I-qF . (26) 

5.2 The headway process 
The S-M matrix given is theorem 2 becomes: 

which corresponds to a degenerated M-R process. The 
process is renewal, as assumed in the classical theory of 
traffic, with headway distribution given by: 

Pr[Y,st]=$[qrF(t)+q,[l-e-q~r]]. (27 

The renewal property of the headway (spacing) process 
is only approximate for the heavy trtic case, but a 
formula similar to (27) has also been derived (Daganzo 
1975). 

6. DISCWSION 

A predictive model for traffic in a two-lane bi- 
directional road has been presented. Similar models in the 
literature always assume that vehicles have no physical 
dimensions and that a platoon cannot be long enough to 
“block” the progression of the next one and this severely 
restricts their applicability to light traffic and decreases 
their usefulness. By allowing vehicles to have physical 
dimensions and travel at two possible speeds, a hybrid 
model of Oliver-Tanner and Gordon-Newell has been 
developed. 

The passing rate, CL, is derived in the Appendix 
following an approach similar to Yeo and Weesakul’s 
vehicular delay at unsignalized intersections which adds 
to the realism of the model. 

Dunne et al. (1968) validated the Markovian structure of 
the [leader-follower] process and Daganzo (1975) showed 
that the presented method significantly improves the 
platoon length predictions of Oliver-Tanner’s and 
Gordon-Newell’s 

Since the model also yields information on capacity, 
delays and the fundamental diagram, it can be a valuable 
tool to evaluate the effects of such things as: banning 
trucks and slow vehicles on certain occasions, improv- 
ing sight distance conditions, lowering speed limits, and 
estimating delays to crossing streams of pedestrians and 
vehicles. 
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The model could also be used to predict the level of 
head-on collisions on a section of the road and to compare 
different situations before the accidents do happen. The 
measure of performance could be the number of passings 
per unit time in that section of the road times the opposing 
flow [q,qr& V - cMVa)L). (For the example of Section 
3. the critical flow is q = 350 VPH; smaller flows have less 
conflicts, and larger flows provide less opportunities to 
pass). 

The author feels that the constant above described is 
strongly correlated with the accident liability of different 
locations and situations. Once enough data is available, an 
econometric model might be developed to predict the 
absolute number of head-on collisions in two lane roads. 

Further work related to the topic presented in the paper 
should focus in developing methods for the estimation of 
parameters [see Daganzo (1975) for an ad-hoc method, 
and some recommendations in this respect], and eventu- 
ally integrate it into studies of pedestrian delay and 
vehicular delay by developing tables and/or a set of 
computer programs. 
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APPENDIX t 

The passing constant as a function of flow and passing 

conditions 

In all the derivations of the paper, it has been assumed 
that the passing rate, CL. is known and possibly exogen- 
ously determined. It is very convenient to express such a 
constant as a function of the opposing flow and the 
passing conditions of the roadway because, then, the 
predictive capabilities of the model are greatly improved. 
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non-queueing customer, except for a reaction time F,, will Taking expectations on eqn (29) and substituting, we 

be on the average approximately: get: 

t, = 
e*‘s~~q3T - 2(q, + qo)T - 1 ‘14,*4”Jr 

?(q, + 40) 
(28) ;, = (1 _ e-qf,)$z (, - e~zi~<-u,+L___ 

2cq, + 40) 
(30) 

as given by the asynchronous pedestrian delay, Tanner as the average service time for those vehicles that have to 

(l%lb). queue. 
The service time of a queueing customer will be derived With the type of queueing system considered here, the 

subsequently: average number of followers in one queue, E(z - 1), is 
With probability e-2’q~-qdF~ nobody arrives in the given by: 

opposite lane during the move-up time, Ff, and the service __ 
time is equal to the move-up time. With probability. 
1 -e- X4,+s@, , during its move-up time some vehicle 

E!z-I)=+$+ ATz+(Atz)*-(ht,)’ 
l_ht +At (31) 

I 
arrives in the opposite lane and the service time will be 
longer than T so that in total: - _ v-s 

where tt = to + F, and A = qrtv 

where t0 is the synchronous or asynchronous pedestrian 
delay in Poisson traffic, and T f Y is the time until the first 
arrival in the opposite land that we know happens in the 
interval [T, T + Ff] hence: 0 s Y < F,. 

Momentarily let: 

q = 2(q, + 40) 

then 

(for simplicity we assume that to and t, have unit 
coefficients of variation). 

Following the same arguments of the text, we rewrite 
eqn (3): 

qr = q/r i- qsE(z - 1) 

which, combined with (31) allows us to get qff and E(r) 
iteratively. 

The equivalent passing rate for negative exponential 
service times is obtained by setting: 

= 0; otherwise 

and with the values obtained above. 
This method of computing qff, E(z) and p is very easily 

programmable and was used for the field testing of the 
model. 


