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A Nonsimple Conjoint Measurement Model 

LILY C. HUANG* 

The University of Michigan, Ann Arbor, Michigan 

The nonsimple conjoint measurement model examined in this paper maps each 

(a, 9 4 > a3) in A, x A, x A, into wr(aJ $r(az) + o,(ar) &,(~a), where each of w1 , w2 , 
& , and $, is a real-valued function, so as to preserve a binary relation > on Al x A2 x A, 
by > in the numerical system. 

The principle structure of the present model is similar to the structure of the simple 
models. But in the nonsimple model, we define two different identity elements of A, 
for its different multiplicative effects on the other two components A, and A3 , whereas 
in the simple model, one identity element for each component is defined. 

INTRODUCTION 

The development of simple conjoint measurement models (Krantz, Lute, Suppes, 
and Tversky, 1971) makes real-valued scales for psychological measurement possible 
under certain conditions and offers a measurement-free technique in testing hypotheses 
about such composition rules. Some models hypothesized in psychology are not 
simple composition rules so the development of axiom systems for nonsimple models 
will offer measurement-free techniques for testing such theories. 

An axiom system for a familiar but nonsimple model will be presented. Hopefully, 
the principle of these axiom systems can be extended to construct more psychological 
models. 

The nonsimple conjoint measurement model examined in this paper maps each 
(aI , a2 , +J in Al x 4 x 4 into 44 h4~J + 44 &(4 where each of w1 , a2 , 
+ and 4s is a real-valued function, so as to preserve a binary relation > on 
ir’ x A, x A, by > in the numerical system. 

The principle structure of the present model is similar to the structure of the simple 
models. But in the nonsimple model, we define two different identity elements of A, 
for its different multiplicative effects on the other two components A, and A, , whereas 
in the simple model, one identity element for each component is defined. The principle 
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of using multiple identity elements for one component can be generalized 
to construct the axiom systems for the more complicated models, e.g., wr(aJ $a(as) + 

w2@2) 43w + 4%) drW 

DEFINITIONS 

DEFINITION 1. > is a binary relation on A, x A, x A, . Two elements (a, , us , us) 
and (6, , b, , 6,) of A, x A, x A, are equivaIent, (a, , us , us) - (b, , b, , 6s) if and 
only if they satisfy the following two conditions: 

and 

We first define the cancellation condition known as the Thomson condition. 

DEFINITION 2. A relation - on (ur} x A, x A, , where a, E A, , satisfies the 
Thomsen condition provided that for every u2 , b, , K, E A, and us , b, , k, E A, , if 

and 
(a, 3 ~2 ,b> - (a, > A2 9 bJ 

(~1, k2 9 4 - (a, , b, , 4 

then 
(aI , a2 ,4 - (a, , b, ,4J. 

The Thomsen condition is a necessary condition for the simple additive model. 
It is clear that the nonsimple model examined is an addtive model on {ur} x A, x A, . 

DEFINITION 3. (1) AsO and Aso are the subsets of A, and A, , respectively, 
such that if u,O, b,O E A,0 and ua”, bzo E AaO, then 

@I 7 uz”> 4 - (a, , b,O, 4 for all a, E A, and us E A, ; 

@I 3 a2 > %Y - (% , a2 , boo) for all a, E A, and u,EA~; 

(a, > uz”, +Y - (b, , uz”, ~3’) for all a, , b, E A, . 

(2) AlO and AO,O are the subsets of A, , such that if alo E A,0 and a? E Aye, then 

(a:, uz > aso) - (a?, b, 3 ~30) for all u2 , b, E A, and u2” E A,“; 

(a?, a,O, 4 - (u”,“, az0, b3) for all ua , b, E A, and uzo E A,O. 
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AZ0 and As0 are the sets of zero elements of A, and A, , respectively. A,0 and Am 
are two sets of zero elements of A, and have degenerate effects on A, and A, , 
respectively. 

DEFINITION 4. (1) {ar} x A, is independent of (a,) x A, if and only if for 
a2 , b, E A, , (a, , us , x3) > (a, , b, , xs) for some xs E A, implies that (ur , a2 , ys) > 
(a, , b, , y3) for every y3 E A3 . 

{ur} x Z4, and {ur} x A, are mutually independent if and only if {ur} x A, is 
independent of (al> x A, and {ur) x A, is independent of {ur} x A, . 

DEFINITION 5. A, is sign dependent on A, x A,O if and only if A, can be parti- 
tioned into three sets, A,+, AgO, and A,- such that for any a, , b, E A, and a30 E A,O 
the following conditions hold. 

(1) (%,h, a3O) b (bl 3 x2 3 a3O) for some x2 E AZ+, then 

@I Y Yz > u3O) 2= (bl , y2 , a3O) for every ys E A,+, and 

(b, , ~2 > a3O) + (a1 9 Yz > a3”> for every yZ E A,-. 

(2) (~1, xz ,a3’) B (b, 7 x2 9 ~3’) for some x2 E A,-, then 

(a, , ~2 , ~3”) > (4 > xz 9 ~3”) for every y2 E A,-, and 

(b, > 3’2 , a3”> > (a1 > Y2 > a3O) for every ys E A,+. 

A, and A, x A,O are mutually sign dependent if and only if A, is sign dependent 
on A, x A,0 and A, x Aso is sign dependent on A, . 

DEFINITION 6. For every pair of elements u2 , 6, E A, , u2 m b, if and only if 

(a1 9 a2 > a31 N (a, , b, , u3) for every a, E A, and u3 E A, . A, is essential if and only if 
there exist u2 , b, E A, such that u2 + b, . Similar definition holds for A, . 

DEFINITION 7. > is a weak d or ering of(q) x A, x A, . For any set N of consecu- 
tive integers, N = {i, i + 1, i + 2 ,..., j, j + 1, j + 2 ,... 3, a set {usi 1 uaj E A, , j E N} 
is a standard sequence on A, iff there exist x3 + y3 such that (ur , a,~‘, x3) N (ur , &+I, y3) 
for allj, j + 1 E N. A standard sequence on A, is strictly bounded if and only if for any 
u3 E A, , there exist &s and 3 such that gZ & as and (a, , & , u3) > (ur , uZj, u3) > 

@I , a2 , 3 a ) for all j E N. A bounded standard sequence is finite if and only if the 
integer set N defined above is finite. 

Thomsen condition, independence, sign dependence, and standard sequence were 
defined by Krantz et al. (Krantz, Lute, Suppes, and Tvresky, 1971). 
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DEFINITION 8. A relation N on A, x A, x A, satisfies unrestricted solvability 
provided that for all aso E AZo, as0 E Aso, a, , b, E A, - AI0 - A?, a2 , b, E A, , us , 
b, E A, , there exist b,’ E A, , b,’ E A, and a,‘, UI E A, such that 

(a, , a2 3 4 - (4 > b2 , b31), 

(a1 > a2 > 4 - (bl 9 b2’, fh), 

(a1 , a2 7 as”> - (a,‘, 62 , %Y, 

(a, , uzo, 4 - (a;, 029 4. 

DEFINITION 9. A relation N on A, x A, x A, satisfies the nonadditive weighting 
condition provided that for all a, , b, E A, , cr E A, - AI0, dI E A, - A?, u2 , b, , d2 , 

e2,f2,g2~A2,c2~A2-A2o,a,,b,,d,,e,,f3,g3~A3,andc,~A,-AA,o,c2~g2, 
and cs + gs , if 

(al , e2 ,4 - (4 , c2 ,4, (1) 

(4 J2 9 4 - (cl> g, 3 4, (2) 

(cl,4 > 4) - (~1 3 b, > fJ> (3) 

(~1, ~2 , gd - (4 7 4 9 bd, (4) 

(Cl > c2 YfJ - (4 ,.f2 > 4, (5) 

(al , e2 , gd - (h 9 gz ,eJ, (6) 

(~1 , gz A - (4 ,f2 9 gJ, (7) 
then 

(~1 , ~2 ,~a> - (b, , b, , 4. 

This complicated property is necessary for all the simple models as well as for the 
nonsimple model. To show the necessity for the nonsimple model, OJ~(U~)~,(~,) + 
w2(ul) &(a,), we translate the above equivalences into equations. We drop the notations 
for the functions and use a, to represent ~,(a,), a,’ to represent w,(a,), and u2 and u3 
to represent $2(a2) and &(a,), respectively. 

The fourth condition yields 

~1~2 + q’gg = hdz + b,‘b, . 

The conclusion is that 

u1u2 + u1’u2 = b,b, + b,‘b, . 

Therefore, we need to show that the other six relations will provide 

~1’~s + Wz = b,b, + al’gs , 
or 

UI’(+ - gs) = W, - 4). 
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The first and sixth condition can be translated into 

and 
u1e2 + a,‘~, = b,c, + b,‘e, 

ale2 + al’gs = kg2 + h’e, . 

Subtracting the latter from the former, we have 

4’(cs - g3) = w2 - ‘a!). 

Similarly, the second and seventh conditions will provide that 

Cl’V, -fJ = dl’k - gd 

The third relation can be translated and rewritten as 

(4.1) 

It follows that 

4’(% - g3) = ClP, - 4). (4.2) 

The fifth and seven relations yield 

&z - 82) = dl’(C3 - gd (4.3) 

Multiplying (4.1) (4.2), and (4.3) together, we have 

~,‘4’&, - g,)G% - g&2 - gz) = ~&‘(c, - gdh - dJ(c3 - gd 

Since cr # 0, 4’ # 0 (cl is not in Ar0, and dl is not in A?), ca # g, , and ca # g, , 
we cancel c,d,‘(c, - g,)(c, - gs) and obtain 

as required. 
From a practical point of view this property is too complicated to test directly. The 

conditions can be simplified by letting e2 = fi = g, = uzo and ea = f3 = g, = uso. 
The theorems which we want to obtain will not be affected by this simplification. The 
simplified condition is somewhat easier to test empirically. 

We now want to list all the conditions which together are sufficient for the nonsimple 

model 44 vM4 + 44 Ud. 
It is clear that 44 b&J + w&d A( a J is an additive model for {al} x A, x A, . 

Therefore, we need conditions which are sufficient for the additive model. When 
+s(us) = 0, wl(ul) +z(uz) is a multiplicative model for A, x A, . Therefore, we need 
an axiom which states that A, and A, x Aso are mutually sign dependent. Similarly, 
A, and AZ0 x A, are mutually sign dependent, but this can be asserted by other 
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axioms. Finally, the weighting condition functions in the nonsimple distributive 
model the same as the distributive cancellation axiom functions in the simpIe 
distributive model. 

DEFINITION 10. A relation > on A, x A, x A, is a nonsimple distributive model 
iff it satisfies the following axioms. 

Axiom 1. > is a weak order. 

Axiom 2. A, and A, are essential. AZ0 and ASo are not empty. 

Axiom 3. A, and A, x Aa are mutually sign dependent. 

Axiom 4. For any a, E A, , (al> x A, and (al) x A, are mutually independent. 

Axiom 5. Unrestricted solvability of Definition 8 holds. 

Axiom 6. For any induced order on A, x A, , every strictly bounded standard 
sequence in one component is finite (Definition 7). 

Axiom 7. The nonadditive weighting condition of Definition 9 holds. 

THEOREMS 

THEOREM 1. If a relation > on A, x A, x A, is a nonsimple distributive model 

then the Thomsen condition holds. 

Proof. The proof has to be done separately for the different conditions on the 
elements. The proof for a representative case is shown below. 

Given (a, , a2, K,) - (a, , k, , b3) and (aI , k, , a3) - (al , b, , KJ, we need to show 
that (a, , a2 , a3) - (aI , b2 , b). 

We consider the case for which 

Since we have 

and 

(aI 9 a2 l k3) - (aI y k2 ,b3) 

(aI y 4 y 4 - (aI , k2 f 4 

(al , k2 ,aJ - (aI , b2 ,k,) 

(aI y a2 ,kd - (aI y k2 , b3) 

(aI 9 4 ,kJ - (aI , k2 T 4 

(aI , a2 I 4) - (aI , k2 , b3) 

(al > k, 7 kJ - (al > k, > k,) 

from the given condition, 

from Axiom 1, 

from the given condition, 

from the given condition, 

from Axiom 1, 

from the given condition 

from Axiom 1, 
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the nonadditive weighting condition implies that 

( a,, a2, %) - (al > 4 > b2). 

THEOREM 2. If  a relation > on a set A, x A, x A, is a nonsimple distributive 
model, then there exist real-valued functions w1 and w2 on A,, & on A, , und q& on A, 
such that 

(al , a2 ,a31 > (4 y b2 , b3) 

~~l(~d+z(az> + w2@4 &(uJ > 4bl)+2(b2) + w2W Ma& 

for uZZ (al , a2 , a3) and (6, , b, , b3) E A, x A, x A, . 

Moreover, the real value functions satisfying this property are unique up to the 
following transformations. 

4%) -+ %~l’W, 

w2(al) -+ ~2w2’Wj 

$2@2) + P2d2'@2>, 

C&J -+ &43'(%)~ 

where alp2 = &I, > 0. 

Proof. For the case in which A, # Alo u AO,O, we define two operations @ and *. 
We will then prove that there is an isomorphism from (A, x A, x A, 2, 0, *) 
to a subring of (R, 3, +, .), provided that Axioms l-7 hold. The representation 
theorem for the case in which A, = AI0 u Ai0 will be discussed at the end. 

Let (a, , a2 , as) denote the equivalence class of (a, , u2 , a3) for all (a, , ua , as) E 
A, x A, x A, . Clearly, if (a, , a2 , us) N (b, , b, , b3), then the equivalence class of 
(a,, a,, ua) is exactly the same as the equivalence class of (b, , b, , b3), i.e., 

(a r , a2 , a3) = (b, , b, , bs). Let > denote the order relation on A, x A, x AZ/-, 
and (a1 , a, , as) > (b, , b, , bs) if and only if (ur , u2 , us) > (b, , b, , bJ. Define 
a = (a1 , a,, as), and a = (ur , u2 , ua). We let a > b represent a > b and not 
b > a. Clearly, the relation > on the equivalence classes is a simple order. 

Select ali, a: E A, - AlO - Ato, u2i E A, - A20, agi E A, - A30, such that 
(ali, uzi, uso) N (up, a,O, uSi). For any a E A, x A, x A,, there exist a,‘, u; E A, 
such that a N (a,‘, uai, aa”) N (u; , uzo, uai); and there exist u2’ E A, and ua’ E A, 
such that a - (ali, u2’, uso) N (a:, azo, a,‘) (using unrestricted solvability axiom). 
There also exist ui of A, and ui of A, such that a N (a, , ui , aso) - (a, , u20, ai). 
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We now define the operations 0, *r , and *z as follows. 

(al , a2, a30) 0 (al , a?, a,) = (a, , a,, a,>, 

(al , a2’, af> *I (al’, a2 , a30) = (al , a2 , a,‘), 

(a 1 , a,‘, a37 *2 (a?, 4, a31 = (al , a,“, a3). 

It is necessary to show that *r = *2 = * first. 

Step 1. We are going to show that a *r b = a *2 b for all a, b E A, x A, x AZ/-. 
The unrestricted solvability axiom quarantees that there exist a, E A, and aa E A, 

such that (a, , aa”, usi) is in the equivalence class a and (up, uzo, bs) is in the equivalence 
b, or a = (a, , a,‘, asi) and b = (a:‘, a,‘, b3). Similarly, we can find a,’ E A, , 
b, E A, , and b,’ E A, such that 

(a, > %O, ugi) - (a,‘, 4, a,O), 

(u”;i, d, bd - (d, a,O, 4% 
(ali, upo, b3’) - (ali, b, , ~2). 

But 

(a 1 9 QZO, a:) - (Qi’, %O, a,O), 
(u,i, a;, u,“) - (Uf’) a;, u,i), 
(a 1 , aso, %O) - (a,‘, %O, %O), 
(d, u,O, u30) - (u?, u,O, u,“). 

Applying Axiom 7 to the above equations, we have 

(~1 > ~2, bs) - (a,‘, b, > es’). 

Because a = (a, , a,‘, as*) = (a,‘, a,‘, a,“) and b = (af’, a,“, b3) = (al’, b, , a3’), 
a *2 b = (a,, a,‘, b,) and a *r b = (a,‘, b,, aJo). We just prove that (a,‘, b, , a3”) = 

( a, , azo, b3), that is a *r b = a *2 b. 
We are now going to show that (A, x A, x As/-, >, 0, *) is an Archimedean 

ordered ring. In other words, we need to show four things: 

(a> (4 x 4 x AS/~, >:, 0) is an Archimedean ordered group, 

(b) * is associative, 
(c) * is distributive to 0, 
(d) there is a zero element 8, if a > 0 and b > c, then a c b > a * c and 

b*a>c*a. 

Step 2. The proof of part a is contained in Krantz et al. (1971, pp. 257-266). 
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Step 3. For any a, b, c E A, x A, x As/-, we will prove that a * (b * c) = 
(a * b) * c. Let 

a = (ai , a2’, a,O), 

b = (b, , az”, asi>, 

c = (a:, azo, 12~). 

The unrestricted solvability axiom provides a b, E A, such that (b, , aso, aai) - 

(ali, b, , af). By unrestricted solvability again, we have the following relations. 

(a,‘, a,O, usi) - (a, , b, , a,‘), for an a,’ E A, , 

(4 9 u2O, c3) - (ali, u2O, G’), for a ~3’ E A, > 

(ali, a,O, c3’) - (ali, c2 3 a,O), for a ~2~4 > 
but 

(a,‘, u2O, a3”> - (a, 7 @2O, %Y, 

(ali, b, , u3O) - (b, , u,O, a;). 

From definition 3, we have 

(a,‘, %O, a30) - (a, , u2O, %O), 
hi, u2O, a3”> - (4 , uzo, %O). 

Applying Axiom 7 to the above seven formulas, it results 

(a,‘, U2OP 4 - t a,, c2 9 a3 “1. 
From the definitions of *, we have b * c = (b, , a,‘, cs). From the transitive property 
of the equivalence relation -, b * c = (a,‘, c2 , ajo). Therefore, a * (b *c) = 

(al , c2 ) a,“). Similarly, a * b = (al , b, , aJo) = (a,‘, a,‘, a3’), and hence (a g b) * c = 

(a,‘, a,“, cs). We proved previously that (a,‘, u20, ca) - (ui , c2 , ass), consequently, 
we have (a * b) * c = a $ (b * c). 

Step 4. We will now prove that * is distributive to 0. In other words, it has to be 
shown that a * (b @ c) = (a * b) @ (a * c) for all a, b, c E A, x A, x A,/-. 
Because of Axiom 5, we can always let a = (a1 , aa’, a,‘), b = (al’, b, , aso) and 
c = (a:‘, azo, cs). By the same axiom, we have the following relations: 

(a, , a,U, u2.y - (al’, uzi, %O), for an a,’ E A, , 

(a:‘, a,O, 4 - (ali, a:, 4, for a S3E4, 

(ali, 6, , ~4 - (a,‘, h’, a,‘), for a 6,’ E A, , 
(a,‘, b, , ~3”) - (~1 > K , us”), for a b; E A, . 
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It was chosen that 

(a:, a;, u,“) - (@, a:, ai), 

(a, , a,O, %O) - (a,‘, GO, %Y, 

(a;, a;, u,“) - (a;, a;, u,“). 

Again, Axiom 7 implies 

Since c = (a:, a,‘, cJ = (al*, a,‘, x3), it follows from the definition @ that 
b @ c = (a,‘, b, , xs). But (al’, b, ,x3) = (al’, b;, a:), and a = (al , a;, a3’) = 

(a,‘, a2i, a?), hence a * (b @ c) = (a,‘, bz’, as’). Clearly, a * c = (al , a,‘, c3), 
and a * b = (a;, b, , at) = (a, , b’;, as’), the definition of @ provides that 
(a * b) @ (a * c) = (al , b;, cs). Since (a, , b” , ca) N (al’, b2’, a,O), it follows that 
(a*b)@(aac) =a*(b@c). 

We thus proved that (A, x A, x Aa/-, 0, *) is a ring with zero element 
19 = (a, , a,‘, as”). It is easy to show that Axiom 3 leads to the conclusion that a > B 
and b > c imply a* b > a* c and b * a > c * a. We thereby conclude that 

(4 x A, x As/,- , >, 0, *) is an Archimedean ordered ring. 
An Archimedean ordered ring is uniquely isomorphic to a subring of (R, 3, +, .> 

(Krantz et al., 1971, p. 58). Hence there exists a function Y such that 

a>b iff Y(a) 3 Y(b), 

Y(a 0 b) = Y(a) + Y(b), 

Y(a * b) = Y(a) . Y(b). 

By the definitions of @ and *, we have 

(a1 3 a2 , ad = (al , azi, aso) 8 (ali, a2 , a30) 

Cf.3 (al , a,‘, asi) * (a:‘, a,‘, 4. 

Therefore, we have the following relation: 

Y(al , a2 ,a31 = ‘y(a, , a2’, a30> Yh’, a2 , aso) 

+ Wh , azO, a37 y(a:‘, azO, 4. 

Let us define wr and ws , $s and 4s such that 

44 = Y-Y+ , a2*, aJo), for all ai 6 A, , 

44 = u/(al , a20, aj’L for all a, E A, , 

Wz) = Ya,*, a2 , aAO>, for all u3 E A, , 

M4 = YCai’, a,O, ad, for all u3 E A, . 
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Finally, we have 

a>b if f  44 $?(a2) + w2(4 4&J > 4~) #&A + w&4 Mb3). 

Step 5. If wr’, us’, +s’, and 4s’ are any other functions satisfying the above 
equation, we have the following relation 

44 +2(a2) C w2(al) Ma3 = 4wl’(al) 42’(a2) + w2’(4 43’(41 

for all (a, , a2 , a3) E (al) x A, x A, , where (II is a positive constant (see Krantz, Lute, 
Suppes, and Tversky, 1971, p. 257). 

Let a, = aso, we have +a(as) = olw,‘(aJ +2’(a,)/wl(a,) and 

d2(a2i) = ~wl’(4 42’(a2i)/4aJ. 

It follows that &(aa) = [+z(a,i)/+a’(a,i)] &‘(a,). Similarly, it can be shown that 

4&J = [d3(a3i)/+3’(a3i)l 43’b4. 
We now want to show that wr(ai) = [wl(a,i)/wl’(a,i)] w,‘(aJ. Unrestrictive 

solvability guarantees that there exist 6, E A, such that 

(aI , a2 , aso) - (ali, b2 , a30). 

It implies that wl(al) cj2(ap) = wl(ali) $,(b,) and w,‘(a,) &‘(a,) = q’(ali) &‘(b,). 
But wr(ar) (b2(a2) = cml’(a,) &‘(a,), hence wl(ali) $,(b,) = cywl’(ali) y&‘(b,). Since 
$2(~2) = [$2(a2i)/$2’(a2i)] $2’(~2) for either x2 = a2 or x2 = b, , it follows that 
aI = u[q62’(a,i)/q42(a2i)] w,‘(a,) and wl(ali) = a[qh2’(a2i)/42(a2i)] ~,‘(a,~). Conse- 
quently, we have wr(aJ = [wl(a,i)/wl’(a,i)] w,‘(a,). 

By the similar procedure, it can be shown that w2(a1) = [u2(aii)/w2’(aii)] ++‘(a,). Let 
aci = wl(ali)/wl’(ali), a2 = w2(aii)/w2’(uii), p2 = +z(a2i)/~2’(a2i), and as = ~3(a,i)/~3’(a,i). 
Clearly, we have &3, = 01~8s = 01 > 0. 

Therefore, 

%‘(4 = Vl’W~ 

W2(%) = ~2~2’(4 

42(a2) = P2zd2’(a2), 

9%) = &53C3’(4 

where czr& = ~ys/3s > 0. 
We now consider a special case in which A, = Alo u Aye. Since A, is essential, 

there are u2 , b, E A, such that (a, , a2 , as) & (al , b, , as) for some a, E A, and 
a3 E A, . If a, E A,“, from definition of Alo we know that (a, , a2 , us) - (al, b, , us). 
Therefore, a, must be in A y”. Clearly, there is no b, E A, such that (a, , a2 , as) - 
(al , 6, , 6.J. Hence the unrestricted solvability is not satisfied, and > on A, x A, x A, 
is not a nonsimple distributed model. 
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CONCLUSIONS 

The weighting condition of Definition 9 provides a crucial test of the nonsimple 
distributive model against other nonsimple models. However, it cannot discriminate 
nonsimple models from the simple models. The weighting condition is also a necessary 
condition for the simple models presented by Krantz et al. (1971). It is the sign 
dependence which can diagnose the nonsimple models from the simple models. The 
nonsimple models satisfy neither joint independence nor proper sign dependence 
for each pair of factors. The solvability axiom of the nonsimple model is weaker than 
the solvability axiom of the simple models. For any a, E A, , a2 , b, E A, , aa , b, E A, , 
the unrestricted solvability axiom of the simple models guarantees that there exist 
b, f A, such that (al , us , us) N (b, , b, , bs). However the solvability axiom of the 
nonsimple model does not imply the existence of b, . 

The major difference between the nonsimple distributive model and the simple 
distributive model is on the different multiplicative effects of A, with A, and A, . 
In the simple distributive model, the multiplicative effect of A, on A, is the same as the 
multiplicative effect of A, on A, . Therefore, there is only one identity element of A, . 
In the nonsimple distributive model, the multiplicative effect of A, on A, may be 
different from the multiplicative effect of A, on A,. Therefore we need two identity 
elements ali and up of A, which in turn restrict the uniqueness character of the 
real-valued functions of A, and A,. In the distributive model, the real-valued 
functions of A, and A, are unique up to the interval scale, whereas in the nonsimple 
model the functions are unique up to the ratio scale. 

The key concept in this paper is the multiple identity elements for one factor. 
This concept will allow the construction of axiom systems for the more complicated 
models. 
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