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The method of thin grating decomposition, which is derived entirely from thin-grating diffraction theory, is shown 
analytically to be equivalent to the coupled-wave solution of Maxwell's equations for a thick sinusoidal grating. 

Recently a new and physically intuitive method 
for analyzing wave propagation in thick holographic 
gratings was described [ I ] .  The method proceeds by 
decomposing the thick material into a series of  thin 
slabs, each of  which acts simply as a thin grating. 
For a readout plane wave of  arbitrary spatial frequency, 
the total amplitude of  the zero and diffracted orders 
is determined by computing the successive effect of  
each thin grating upon the propagating waves. The 
effect o f  each thin grating is described by a coupling 
matrix which is determined solely from thin grating 
theory. The i, / element of  the coupling matrix gives 
the amplitude and phase shift effected by the thin 
grating when it diffracts the / th  plane wave into the 
ith one. Because the output plane waves from one 
thin grating are incident upon the subsequent one, 
the total effect is found by successively multiplying 
each of  the coupling matrices. In general, several 
diffracted orders may be significant and the necessary 
matrix multiplication must be performed by a digital 
computer. The advantages of  the method are its in- 
tuitive simplicity and general applicability. For ex- 
ample, the method has been employed to study the 
strong coupling which occurs between two gratings 
with common or nearly common Bragg angles recorded 
in the same emulsion [2]. 

Previously we have shown numerically the equi- 
valence between the results of  the above theory and 
Kogelnik's [3] coupled-wave solution of  Maxwell's 
equations for a thick grating for which his assumptions 

are valid [l ]. In this note we show this equivalence 
analytically. 

We consider a pure phase grating constructed 
holographically as shown in fig. 1. We assume a sinusoidal 
index modulation and there is no variation along the y 
direction. The readout beam is in the x , z  plane and 
is polarized along the fringe lines. The grating is assumed 
to have a sufficiently high Q factor [3] such that only 
the zero and one diffracted order are significant for 
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Fig. 1. Holographically constructed grating. Plane waves P~ and 
P2 interfere to produce a sinusoidal grating of spatial frequency 
f throughout the volume of the emulsion. The propagation 
vector of PK2) makes an angle 0 b (-0b) with respect to the z 
axis. The emulsion thickness is D. 
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readout about the 1 st order Bragg angle. Because only 
two orders are important, the coupling matrix for the 
nth thin grating [ 1 ] can be truncated to a 2 × 2 
matrix, 

ej % Jo(bo) J e j~l J l ( b l )  eJa(n)) 
n H = . , (1) 

_j eJaO J_ l  (b0)e -j6 eJ~l  J0 (b l )  

where 

27r Az n 1 

bl - XXf] - (X/no)2 f 2 

27r ~z n o x/1 (h/no)2 f2 
- I , l = 0 , 1 ,  

5 = - 27rnf tan ¢ .  

fo =fi is the spatial frequency of the readout wave, 
f l  = f i -  f i s  the spatial frequency of  the diffracted 
order, f is the spatial frequency of  the grating in any 
z = const, plane, X is the free space wavelength of the 
readout wave, q~ is the slope of the fringes with respect 
to the z axis, n 1 is the index modulation of  the grating, 
n O is the bulk index of the emulsion and ~z is the 
thickness of  the thin grating slab. For simplicity we 
assume that the fringe planes are perpendicular to the 
emulsion, q~ = 0. Therefore, the phase factors of  
eq. (1) due to fringe slope vanish and all the coupling 
matrices are identical. Also, for typical values of  index 
modulation and because we will take Az arbitrarily 
small, we can approximate the Bessel functions by 
their first order approximations, J o ( x ) ~  1 , J l ( X ) ~  1 ~X 
for x "~ 1. Furthermore, since fl  = (no sin Ol),,gt we have 
X/1 - (X/n0)-'Uff/= cos 0 I. Note that the correspondence 
to'Kogelnik's notation for the subscripts of  the readout 
and diffracted waves is 0 -+ r and 1 ~ s. The coupling 
matrix for each thin grating can therefore be written 
as 

H = e x p  j ~  A~cosO1 

lj 1 j 7 e J2¢)  
cos 01 

X 

e j2¢ 
cos 00 

where 3, = 7r Az n 1/X, 20  = (27r/X)n o Az 

(2) 

× (cos 01 cos 0 0) and we have also used, J_  1 (x) = 
- J 1  (x). All angles are internal. 

If the amplitudes of the zero and first order at the 
nth thin grating are expressed by the elements of a 
column vector 

A(n) = , (3) 

A1 

then the value of  A at the exit plane of the emulsion, 
z = D i s  [1] 

A(N)  : H N A ( o ) ,  (4) 

where N = D/Az and 

A(0) =(10) . (5) 

Here we analytically perform the matrix multiplication 
of eq. (4) in the limit N-+ ~,  Az ~ 0 such that 
N A z  =D. 

Before performing the above matrix multiplication, 
we wish to simplify and examine the significance of 
the parameter ~b. The direction cosines cos 0 0 and 
cos 01 are related through the grating equation f l  = 
f0 - f '  We wish to determine the change in diffrac- 
tion efficiency that results when the readout angle 
or wavelength differ from their construction values. 
Therefore we write, 

0 0 = 0 b + A0 , ~k = X c + AX, (6) 

where A0 ,< 1, AX/X c "< 1, X c is the wavelength of  the 
construction beams and 0 b is the angle of  each of the 
construction beams with respect to the z axis. Thus, 
it is the Bragg angle that corresponds to X c. In terms 
of the construction parameters the spatial frequency 
of  the grating (fig. 1) is (2n0/Xe) sin 0 b =f .  From the 
thin grating equation above and trigonometric expan- 
sions, we find 

cos0 0 = cos0 b --A0 sin0 b , 

(7) 
c o s 0 1  = c o s 0  b + A 0  s i n 0  b - tanOb(AXf/no), 
where we have dropped terms of  second order in A0 
and AX. It is interesting to note from eq. (7) that at 
the Bragg angle and for AX = 0, the readout and dif- 
fracted waves have the same inclination with respect 
to the fringe planes, i.e. the reflection law is followed. 
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Indeed, Bragg diffraction is frequently viewed as reflec- 
tion off the fringe planes. In general, however, the 
reflection law is not obeyed. Substituting the expres- 
sions for the direction cosines of  eq. (7) into the ex- 
pression for • we find, 

d~=~ccAZnosinOb (AO - A),f 
2n 0 cos Ob] " (8) 

As shown by the coupling matrix of eq. (2), 2~ re- 
presents a relative phase shift between the two waves 
that is produced by each thin grating when the recon- 
struction wavelength or angle or both differ from their 
construction values. It is this phase shift that causes 
the decrease in diffraction efficiency for readout 
waves incident off the Bragg angle. ~I, corresponds to 
the dephasing parameter of the coupled-wave theory 
as we will show below. The term in parenthesis in 
eq. (8) shows the relative effect of readout angle change 
compared to wavelength change from their construc- 
tion values in causing this phase shift. 

The matrix multiplication of eq. (4) is greatly 
simplified when H is represented in a basis such that 
it is diagonal. The diagonal elements are just the 
eigenvalues of H and the basis vectors are the associated 
eigenvectors. The eigenvalues of H can easily be 
shown to be, 

ffl,2 = exp (j~) exp [+j(qb 2 + "y2/C0Cl)1/2 ] , (9) 

where we have used the limit Az ~ 0 to set sin2~ = (1)2. 
Also c o - cos0 0 and c I - cos01. The associated eigen- 
vectors El ,  E 2 are then 

E2 a2] \A l /  
where a i = j (c 1/7) (1 - ffi) e-j2¢. From eq. (10) and 
the initial condition on A [eq. (5)],  we find the 
initial condition in the E basis, E(0) = (~). Therefore 
in the diagonal representation, 

(11) 

We next use the inverse of the transformation of 
eq. (10) to transform back to the original representa- 
tion to find the amplitude of the diffracted order, 

A I ( N ) -  1 ( ~ 2 N  - ~ I N )  " (12) 
a 2 -- a 1 

The intensity of the diffracted order is therefore, 

,Al(N)12=(~iI2 sin2[N(cb2 +72/cOCl)'/2] (13) 

dp 2 + "72/C0Cl 

Kogelnik [3] defines diffraction efficiency (for a unit 
input amplitude A0) to be (Icos 011/cos 00) IA112. There 
fore we find from the thin grating decomposition 
approach that the diffiaction efficiency is, 

sin2 [N2~b2 + N272/C0Cl] 1/2 
O.E.(N) = (14) 

1 + ~b2/(72/C0Cl) 

To compare this result with the coupled-wave solu- 
tion of Maxwell's equations for the thick grating, we 
make the correspondence between the parameters 
above and those of Kogelnik's expression. Because 
NAz =D, 

N272 rr2D2n 2 

COCl ~kZc0c I , (15) 

which is p2 in Kogelnik's notation. Furthermore be- 
cause cos 01 ~ cos 0 b we can write, 

0 - ~n  ° cos  Oh! 

[KDAO cos0 b K2DAX }2 (16) 

= [  2 c o s O  1 8rrn 0 cos01 ' 

where K = 27rfand we have used f =  (2n 0 sin 0b)/)k e. 
Therefore N2qb 2 is ~2 in Kogelnik's notation. Thus 
eq.(14) can be written as 

D.E. - sinZ(u2 + ~2)a/2 
1 + ~2/v2 (17) 

which is identical to that obtained by Kogelnik (eq. 
(43), ref. [31). 

We have shown analytically the equivalence be- 
tween the method of thin grating decomposition and 
Kogelnik's coupled-wave solution for wave propaga- 
tion in a thick sinusoidal grating for which the assump- 
tions of the latter theory are valid. The method of 
thin grating decomposition is derived completely 
from thin grating theory and does not require explicitly 
solving Maxwell s equations for a thick material. It 
therefore has the advantage of being intuitively 
physical and as shown here also gives accurate results. 
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The method is also quite general in that higher orders 
can be included and multiple gratings in the same 
emulsion can be analyzed. 
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