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In this paper a group theoretical approach was employed for the classification and construction of molecular exciton
wavefunctions for two important crystal structures (naphthalene—anthracene and benzene), utilizing the representation
theory of finite groups. The generally valid scheme requires only cyclic boundary conditions (being explicitly imposed on
all space group operations, including rotations and reflections). Even though these symmetry considerations are insufficient
to determine crystal wavefunctions belonging to a general k vector, it is still possible to write a simple expression for such
wavefunctions. This is achieved for cases where the nonvanishing exciton transfer integrals are confined to molecular inter-
actions along symmetry axes and/or planes.

1. Introduction

Ever since the pioneering studies of Davydov [la}, and of Winston and Halford {1b] on molecular excitons and
phonons, space group symmetry has been extenswely utilized for the determination of the band structure and op-
tical properties of molecular crystals {2]. Most of the work has been concentrated on the “optically active™ states
for which k = 0. In recent years more interest has been devoted to the study of the entire exciton band [3]. Exper-
imental results from hot band spectroscopy furnished information on the density of states for the entire exciton
band [4]. Several investigations [5] were aimed towards the study of substitutionally disordered crystals where
the k selection rule for the optical transition is not valid, so that some limited information on the entire electronic
band can also be obtained. On the other hand, the disordered crystal solutions are obtained from zeroth-order per-
fect crystal functions, thus retaining the importance of symmetry classifications.

It would be useful to obtain a simple method to classify and construct crystal wavefunctions according to the
irreducible representations of the crystal space group for the various kK wavevectors. Another interesting question
concems the conditions for a simple representation of the wavefunctions belonging to a general k vector. It is
known that crystal wavefunctions belonging to special k vectors can be determined by symmetry [2a]. It is an in-
teresting question in this context to determine the conditions under which wavefunctions can be compared to func-
tions belonging to special k vectors. The simplification of wavefunctions belonging to general k vectors is relevant
to the utilization of the experimental results of hot band spectroscopy [4], and for the determination of the den-
sity of exciton states in the pure crystal. In addition, Green’s function matrix elements tend to be very complex
[6,5c¢] if the crystal wavefunctions for a gereral k cannot be simplified.
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In the next section a general scheme will be presented for the classification of crystal states and the construc-
tion of crystal wavefunctions, utilizing the representanon theory of finite groups. In section 3 the crystal states

of the two imporiani cases, naphihaiene [L.Zh ) and benzene u)“' ) will be investigated. These crystals contain two
and four molecules per unit cell, respectively, where all molecules are interchange equivalent. Section 4 is devoted

to the discussion of wavefunctions belonging to a general & vector.

2. The application of group theory for the determination of wavefunctions in molecular crystals

In this section we consider a crystal wavefunction corresponding to a single molecular excited state f,and a
crystal containing o molecules per unit cell. The crystal wavefunction is given by:
9D
Ik, i) = Ll B,;(k)Ik,s,) , )
a:

where s, is a vector denoting the location of the a molecule in the' unit cell, k is the wavevector, j is the exciton
branch index, and |, 5,,) is the site excitation wavefunction. The excitation index f is omitted since only a single
molecular state is considered in this paper.

The site excitation wavefunction |k, s} is represented by:

Ik, 3,3 =(1\/N) 25 exp(ik-R,,) IR, +5,) , )
n

where IR, +s,) denotes a localized excitation at a site & of the nth unit cell and V is the number of unit cells in
the crystal. R,, is spanned by the three primitive vectors @y ,a; and a3:

R, =nya, +nya, +n3a;, 3)

where n; = 1,2, ..., NV;, and N, is the number of unit cells in the a; direction, so that N = Ny N, N;. The wavevector
k can be represented in terms of the reciprocal primitive lattice vectors by, b,,and b3:

k=[11b1 +[sz2 +I13b3 y (4)

where g; satisfies the condition — § < ; < 4. The reciprocal lattice vectors are subjected to the following orthog-
onality relation:

ﬂi‘b,-=21|'81". (5)

A cyclic boundary condition is imposed on the crystal. In addition it is assumed that ¥y, N3, and NV, are even
numbers, so that the k vector attains values for all special points, within, and on the boundary of the Brillouin
zone for a finite V.

The coefficients B,j(k) of eq. (1) can be determined by diagonalizing the crystal hamiltonian H, corresponding
to the excitation in question. Since |k, 5,) are diagonal in K, it is necessary to diagonalize op X op, matrix elements

Lop (k)= (K, s, |H1k,35) . ©

The crystal hamiltonian 4 commutes with all space group operations, hence, it is possible to construct symme-
try wavefunctions belonging to irreducible representations of the space group.

In the next section we shall adopt the regular prescription [7] for the classification and construction of wave-
functions according to the irreducible representations of a finite group. This procedure is adequate for the treat-
ment of infinite discrete (non-continuous) groups [8].

The procedure for the construction of the symmetry adapted wavefunctions is straightforward, and can be sum-
marized in two steps:
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(a) — A reducible representation I" of the crystal is constructed. This is a op N X op V dimensional matrix,
spanned by the localized excitation wavefunction (R, +s,,). Since we are dealing with a crystal where each mole-
cule can be mapped onto the other by a spacegroup operation, each row of the representation matrix will be filled
with zeros, except for one matrix element of that row. The nonzero element of the row has the absolute value of
one, and corresponds to the transformation of |R,, +s,). The crystal wavefunctions can be classified according to
the irreducible representations by utilizing the following formula:

n, = (1/h) § XORXR) , |

where n,, is the number of times the irreducible representatjon D® appears in the reducible representation I
x® (R) and x(R) are the traces of D® and T, respectively, corresponding to the element R of the group.

There are two immediate results for I':

(1) The trace of the identity operation {€|0} is op N, since all localized excitations are invariant under the iden-
tity operation.

(2) The trace of the pure translation subgroup {€[r, } and operations involving screw axes and glide planes
{O1a(0) + 7} is zero.
(b) — Wavefunctions belonging to the row i of the irreducible representation D®) are given by [7]

v =, /n) :z; [DW R, Or Y » @)

where Op is a symmetry operator, corresponding to the group element R, Ul,(") is a function belonging to the ith
row of the vth irreducible representation of the group of dimension /,.

3. Application of representation theory to crystals containing two and four molecules per unit cell
3.1. Two molecules per unit cell: The naphthalené—anthracene (Cs2h) space group

The symmetry elements of crystals belonging to the naphthalene-anthracene Cszh space group irclude a twofold
screw axis C, parallel to the a5 lattice vector and a glide plane 6 perpendicular to the screw axis. A molecule is
located at a lattice site 7/2, where 7 = (@} +43)/2. All other molecules are related to this molecule by the Cs,_h space
group operations. The inversion centers of the molecules in the crystal are located at lattice sites =1/2 + R,,.

The four basic symmetry operations are: {€10}; {C,l1(a3/2)}; {Ii7}; {ol(a;/2)}. The remaining elements of the
space group can be generated by multiplication of the pure translation operation {€|R,} by the four basic opera-
tions.

The trace of the reducible representation spanned by the localized excitation will be non-zero for the identity
operation and for some of the inversion operators (s¢e appendix). Assuming that the molecular wavefunctions are
ungerade, and therefore change sign under an inversion operation, the trace of C({/|R,, + 7}) can be given explicit-
ly by the following compact form:

X(UIR, +7}) = —2[1+ (-1)"2] [1+(-1)"""] . ©)

The trace of the identity element {e|0} is 2N. Utilizing eq. (7), the representation I' is readily reduced into its irre-
ducible components. The result is displayed [9] in table 1. The traces of the irreducible representation of table 1
are determined from table 2.

It is apparent from table 1 that it is necessary to diagonalize a 2 X2 hamiltonian matrix only for a general k, i.e.
ky5- In all other cases it is possible to choose the basic wavefunctions invoking symmetry considerations only.
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Table 1

- Reduction of the I reducible representation into its irreducible components D“;) for Cgh
Wave vector kj v x({e10D x{NRp++H ng)
k-; =0 1
k-, =0 -1
ky =0 1
ky =0 -1
ki3 =3, -n"
kia=1b, -(-n"
ky3 =3b; (—1)72
ky3=3by ~(-D™
ks =3(by+b3) ~(-p™M* "3
ks =3(by+b3) (-pm*ns
ks =3(0)+b3) ~(-ph*m
ks =3(b;+b3) -nh*ns

Kig=3(By+by+b3)
kig =3(by + by +b3)
kig=3(01+b2+b3)
kio = 3(by+by+b3)
k2 =3b,
k1a=3(b1 +5;)

ky =pyby+ub,;

k3 =uidy +3usby +30:
ky =p1by+ byt 3by
k3 =u3bs

k3 =u3b;

ks =p3by+3b,

ks =paby+3b;

ks =3(by+by)+u3bs
kg =3(by+b3)+u3b;
ky =73b;+u3b;

ke =3By +u3b;
kis=p1by+uyby+usbs

P B M= R P RO ma RO b B b R b b e b o A WD R WOKN e D WN R B WN e

B NN N B N R DD NN NN KN N N e e e b e s pt des bt b b e e e e e

(_l)nl +ng+n,

(-Mtnatny

(-pmtnziny

(—l)"l +ny+n;
0

[~ -~ N — N -~ I - - R - I -~ I - - - - -]

D b b pm et e e b e Pt b b bt b et i e D e D O e O e e O O o O o O

The symmetry adapted wavefunctions for k|, k5, k3, k4, k5 and k¢ are displayed for the D! ;) representation

Ik, +)= (1/\ZN) ? exp(ik-R,) (IR, - 7/2) + exp(ik-7) IR, +7/2) .

while for D 3’

1£,-) = (1\/2N) 4"',) exp(ik+R,) (IR, — 7/2) —exp(ik+7) |R, +7/2)) .

(10)

an
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0 1 0 (z/E-y1)dxo~ 0 (VY- ypdxo 0
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= 0o 1 0 (z/%0-ypdxo 0 4y ydxo 0
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The partner functions of |k, +) and |1k, are | —k, +) and | —k,-), respectively. This degeneracy does not exist for
special points of the Brillouin zone k5, kg, Ky, k|3 (see table 1). However, |k, +) and |k,—) form a degenerate
pair of partner functions on the Brillouin zore boundary for points kg, kyy, k9, and k4.

3.2. Four molecules per unit cell: The benzene space group D%ﬁ

The D;_,s, space group includes the eight basic operations

{elo}; {cln +1,}; {c 415 {cln +1.}1: a2

{neY {oplre+7,hi loxln+1.h {og,lr +7,.}.

Since the three primitive vectors ay,a, and a5 are orthogonal, they coincide with the cartesian axes x, y, and z,
respectively. ¢; denotes twofold rotation around the i axis (f = x, y, 2), oy denotes mirror reflection by the ij plane,
and 7, 7,,, 7, specifica, /2, a,/2, a3 /2, respectively.

The localized excitations of the crystal can be generated by applying the first four operations of eq. (12) to-
gether with a translation on the localized excitation 10):

IR =O0({elR,DI0Y, a3)
IR, + 7, +7,)=O({c, IR, + T, + 1, DO, (14)
IR, +1,+7,) =0({c, IRy + 7, + 7,110, (15)
IR, +7,+ 1) = 0({c, IR, + T, + 1, 1)IO) . (16)

These 4N localized excitation wavefunctions form a basis for a 4N dimensional reducible representation I'. The
only symmetry operations which furnishes a non-zero trace are the identity and some inversion operations. These
traces are

xR, = —aN[1 + (—1)"* 723 | (18)

The reduction of I is accomplished by utilizing eq. (7). The results for the reduction of I" are displayed in
table 3. Since the three axes x, , and z are equivalent from a space group symmetry point of view, only results
for one set of equivalent points is given.

The symmetry wavefunctions for k4 and kg (see table 3) are determined by symmetry only, and so do their
equivalent wavefunctions for k parallel to the y and z axes. Utilizing eq. (8) and the representation table given by
Kovalev [9], wavefunctions belonging to k; and k | (and their equivalent points) can be summed up:

lk, D=3 {1k, 00 + Ik, 7, + 1, ) + 1k, 7, + 7,0 + K, 1, + 1)) (19)

1k, 2)=3{Ik,0) + Ik, 7+ 1) = Lk, 7, t 1,0~ Lk, T, + 1)), (20)

16,3)= 3 {lk,0)— lk, T, + T ) K, T + T) (K, T, + 1,0}, @1

Ik, )= 3{lk, )~ lk, 1.+ 1) — |k, 7, t 1)+ 1K, T, + 7)), (22)
where

lk,o>=1v-ll2§exp(ik-n,,)lo>, (23)

k7 7,0 = N‘W?exp[ik-(k,, 1t} IRy + 1 t1)), 24)
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Table 3
The benzene crystal space group D;f1
Wavevector kj v x({e10h x{R, D n,,;)
Kig=0 1 1 1 0
ko 3 1 1 0
k1o 4 1 -1 1
ko 5 1 -1 1
Kyo 6 1 1 0
k19 7 1 1 0
ko . 8 1 -1 1
kzo = _z'bl 1 2 0 1
k20 2 2 0 1
k23 = %(bz + b3) 1 2 0 1
kg3 2 2 0 1
kyg = 3(by+ by +b3) 1 2 2=+ Rzt a; 0
kg 2 2 —3(-1)it Azt A 2
k7 =ﬂ1b1 i 2 0 i
ko 2 2 0 1
P 3 2 0 1
kq : 4 2 0 1
kig=n1by+3b; 1 2 0 1
ko 2 2 ] 1
ko 3 2 0 1
ko 4 2 0 1
kyy =uyby+ 3y +b3) 1 4 0 2
k12="lbl+%b3 1 4 0 2
ky=uzby +u3b; 1 4 0 2
ky 2 4 0 2
Ky =3By +uaby + u3by 1 4 0 2
ky 2 4 0 2
kz27=p1by+u3by + p3by 1 8 0 4
tk, 7, + 7,y =N-12 nEexp lik-R,+7, +1 IR, +1,+7,), (25)
Ik, T, + 1) = N-V2 2explik- Ry + 1, + )] IR, + 1, + 1) . 26)
n

Each function |k, i) has a partner |-k, i) except for the point & = 0. Points Kkyq, k93 (and their equivalent points),
(see table 3) correspond to two sets of doubly degenerate wavefunctions. It should be noted that two wavefurnc-
tions belong to each row of the representations of Ky, k5, k1, k4 and kg, hence, it is necessary to diagonalize a

2 X2 hamiltonian matrix for these wavefunctions. As anticipated, a 4 X 4 secular matrix has to be solved for the
general k vector (k,7).

4. Simplified solution for a general k vector
4.1. Two molecules per unit cell

The most convenient choice of a basis set of wavefunctions for a general k vector for a crystal containing two
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molecules per unit cell, belonging to Cszh space group, is
|k -17/2) and exp(ik-7) )k, 7/2).

The exp(ik* 1) factor ensures that the hamiltonian matrix is real-symmetric, provided that the localized excita-
tions are real functions (see below). The 2 X 2 hamiltonian matrix is:

]
Ly k)= nE exp(ik-R,) ~7/21H] ~7/2+ R, @7b)
Ly, (k)= ?exp(ik-R,,) (r/21A17/2 +Ry) , @7¢)
Ly, (k)= exp(ik*7) nE exp(ik*R,) 12 |HIT/2 +R,), (27d)
Ly (k) = exp(—ik-7) :& exp(k-R,) {r/2 |HI~7/2+R,) . @27¢)

Applying the operation {J}7 + R, } to each term in the summation of eq. (27d) we obtain:

Ly (k) = exp(ik-7) "4:, exp(ik+R,)(37/2 + R, 1HI7/2) .
Since we assumed the molecular wavefunctions to be real L, (k) can be recast in the form:
Lyz(k)=exp(ik+1) }":)exp(uc-n,,) (/21H131/2 + R,
=exp(ik - 1) exp(~ik+27) ?exp[ik ‘R, +20) (12 |Hl—1/2+ R, +27)
= exp(~ik~1) 2J exp(ik - Rn) (r/2 1HI—1/2 + Ry = Ly (K) , (28a)

which proves that H (k) of eq. (27a) is indeed a real-symmetric matrix. Hence we have to investigate the diagonal
matrix elements only. We shall operate with {C,la3/2} on Ly (k):

Ly (0= %) exp(ik*R,) (~1/2 1H1—1/2 + R,) = 21 exp(ik-R,) {r/2 |HI7[2 + C,R,)
n

= ?exp(i Cok-CaR, ) (7j2 |HI7/2 + CoR ) = L3 (CaK) . (28b)

When k is parallel to the C, axis ok =k so that:
Ly, R) =Ly (k). ] @9
When & is perpendicular to C; then C, &k = —k, but because of inversion symmetry, eq. (29) still holds, since
Ly (R)=Lyp(—K)=Lpn k).
Alternatively, eq. (29) is satisfied for a general & vector if
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CyR, =R, . (30)

A solution for eq. (30) exists only if either n3#0,n, =0 and ny =0 0r n, #0,n, =0 and n3 =0 (and for the
trivial case where n; = 0, n, =0 and ny =0, which is of no interest). In other words, eq. (29) is obeyed if al?
(translationally equivalent) interactions are zero, except those parallel or perpendicular to the rotatior axis. In
this case, a wavefunction belonging to a general £ vector can be represented by eqs. (10) and (11).

4.2. Four molecules per unit cell

The site excitation wavefunctions (eqs. (23)—(26)) will be chosen as a basis set and the hamiltonian matrix
spanned by this set is given by:

Ly (k) Lyjp(k) Lysk) Lys(K)
Ly (k) Lyppk) Lypz(k) Lyy(®)

HK) = . ‘G31)
Ly (k) Lyp(k) Lyz(k) Lygk)
Lgg() Layp(k) Lazk) Ly
where
Ly, (k) =explik* (7, + 7)) b exp(ik*R,)OIHIR, + 1, +7,), (32)
n
Ly3(k)=explik*(r, +7,)] 22exp(ik-R,) OIHIR, +7,+17,) 33)
n
Lyg )= explik(r, +7,)] 2sexp(ik-R,)(OVHIR, + 75+ 1,) , (34)
n
Ly (k) = explik - (1,— 7)1 Zexp(ik‘R,,) (T +7y 'H‘Rn t1yt1), 3s)
n
Lyg(k)=exp[ik-(r,~1))] 2 exp(ik-Ry,) (1), + 7 |HIR" +r, 41,0, (3s)
- n
L34 (k) = explik- (1, —7),)] Eexp(ik-R,,) (r,t71, IHIR +1,+1,), 3N
n
L), (k)= 2iexp(ik-R,)(OIHIR,), (38)
n
Ly (k)= Eexp(iIvR,,) (e + 7y IR, + 7, + ), (39)
n
Ly (k)= ? exp(ik=Ry) (r, + 1, |HIR, + 1, + 1), (a0)
Lyg(k)= Zexp(ilvk,,) (r,*+ 7 AR, +7,+7.). @1
n

The phase factor preceding each of the summation symbols in eqs. (32)—(37) ensures H(K) to be real-symmetric.
If k is parallel to one of the symmetry uxes, then it is possible to construct the zero-order wavefunctions in-
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voking symmetry only. 11cse wavefunctions are given in section 3.2 by egs. (19)—(22). H(k) is diagonalized by a
simple real-orthogonal matrix U:

1 1 1 1

{1 1 -1 -1
U=-2— (42)

1 -1 1 -1

1 -1 -1 1

We shall now investigate the effect of various symmetry operators on the matrix elements of H(k) [eqgs. (32)—(41)}.
Since the hamiltonian is invariant under symmetry operations, only the form of the various matrix elements
changes under these operations. Operating with {c, |7, + -ry} on L), (k) [eq. (38)], the following change of form

is induced:

Lyy ()= Zrexp(icekRy) (r + 1, AR, + 7, +7,) = Ly (cy K). @3)
n

The diagonal elements of H(k), L;; (k) and L, (k) are equal if either ¢, k = k or ¢, .k = —k, implying that k is
either parallel or perpendicular to the x-axis. Similarly, it can be shown that all the diagonal matrix elements are
equal if also cyk =1k and ¢,k = k. To sum up, if the wave vector lies parallel to one of the symmetry axes, the
diagonal matrix elements of H(k) are all equal. Alternatively, all diagonal matrix elements of H(K) are equal if the
following relations hold for the translation vector R,;:

R, =*R,, (44a)
can = tRn > (44b)
c,R, =:R,. (44¢)

It is clear from eqs. (44) that these diagonal matrix elements are equal for a general k, if interactions between
translational equivalent molecules are non-zero in the directions of the symmetry axes only, while all other inter-
actions between equivalent molecules are zero.

The situation for the interchange equivalent molecules is somewhat more complicated. Operating with
{e ln + fy} on egs. (33) and (34) we arrive at the following expression for the off-diagonal elements:

L[B (k) = L24(cxk) ] (453)
L14 (k) = L23 (ka) s (45b)
and operating with {cylry +7,} on eq. (32) we obtain:
Thus, for k in the direction of the symmetry axes (for any interaction), the M (k) matrix has the following shape:
« & v 8
8 a B 7
H&) = . (46)
y B a &
g v & «

This matrix is diagonalized by the orthogonal matrix, eq. (42). It will be shown that under certain restrictions on
the interchange equivalent interactions, the matrix H(k) for a general k has the shape of eq. (46). Since thisis a
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more complicated case than the previous cases of translationally equivalent interactions, a detailed derivation is
given. The set of symmetry operations, O,, will be applied to eq. (34), where O, is given by:

0,=0(c)lr, +1,+21, —c,R,}). ' @7
We shall replace the crystal hamiltonian operator A in the individual terms of the summation in eq. (34) by the
corresponding operators O,T, HOp:

Lya (k) = explik-(r, + 1)) %} exp(ik*R,,) (0, [011H10,[R, + 1, + 1,
= explik~ (7, + 7)) 2J exp(ik-R,) {1y + 7,421, —cy RylHl7, + 77)
m 4
= explik-(r, —7,)] 22 exp(ik- (R, +27,)] (1, Tzlﬂlfy +7, — (R + 27,
n

=explik* (1, —7,)] 2 exp(ik-R,) (1, + 'rzlfil-ry t7,—c,Rp. (48)
n

By comparing eq. (48) with eq. (35), we observe that Ly, (k) is equal to L,3 (k) if the following relation holds for
R,:
R,=—,R,. (49)

Eq. (49) implies that the equality L, 4 (k) = L3 (k) can be achieved for a general k vector, if non-zero interactions
between interchange equivalent molecules, appearing in egs. (34) and (35), are confined to planes parallel to the
xz plane only. Similar results can be derived for the other off-diagonal matrix elements of H (k). Thus, if e/l non-
zero interactions between interchange equivalent elements are confined to planes parallel to the xy, yz, zx planes
we have: L, (K) = L34 (k), L|3(K) = Ly4 (k) and L4 (k) = L3 (k), for a general & wavevector.

To conclude, H(K) has the form of matrix eq. (46) if non-zero interactions between translational pairs of equiv-

alent molecules lie parallel to a rotation axis, while non-zero interactions between pairs of interchange equivalent
molecules fie parallel to the symmetry planes.

Appendix. The determination of the trace of the reducible representation for an inversion operation
Operating on the localized excitation | 7/2 + R,)) by the symmetry operator o{lr+ R} we obtain for an

ungerade function:

OUIR, +7}|7/2+ R, D= —17/2—R,, +R,) . (AD)
The condition for which eq. (A1) furnishes a non-zero contribution to the trace of the reducible representation ['
is given by:

2R, =R, . (A2)
Because of the cyclic boundary condition eq. (A2) does not have 2 unique solution. The solution of (A2) can be
derived from the simultaneous congruent equations:

ny =2ml (mole);_ n, =2m2 (mod Nz); ny =2M3 (modN3) . (A3)

Whenever there is a solution for eq. (A3) there exist eight such solutions implying that eight molecules are invariant
under a single inversion operation. This is an unphysical results, but an essential consequence of the cyclic bounda-
ry condition.
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In a similar manner, congruent equations can be derived for the operator O{/17+ R,,} and the localized excita-
tion | —7/2 + R,). These are:

np=2my+1  (modN;); ny=2my (modN,); ny=2mg+1 (modN;). (A4)

We have here eight solutions, or none. The results for the trace of {{] R, + 7} as determined from egs. (A3) and
(A4) can be represented in a compact form, and is given by eq. (9) of section 3.

A simple example can illustrate the pertinent results of this discussion. We assume a one-dimensional crystal
containing ten unit cells with one molecule per unit cell. The diagonal elements of T for O{/|4a} are given by:

)

0
-1

(A5)

where a is the primitive lattice vector.
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