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In this paper a group theoretical approach was employed for the classification and constmction of .molccubu exciton 
wavefunctions for two important crystal stxuctures (naphthalene-anthrrcene 2nd benzene), utiking the representation 
theory of finite goupr The generally valid scheme requires only cyclic boundary conditions (being explicitly imposed on 
all space group operations, including rotations and reflections). Even though these symmetry considerations are insufticient 
to determine crystal wavefunctions belonging to a general & vector, it is still possiile to write a simple expression for such 
wavefunctions. This is achieved for cases where the nonvankhing exciton transfer integrals are confuted to molecular inter- 
actions along symmetry axes and/or planes. 

1. Introduction 

Ever since the pioneering studies of Davydov [!a], and of Winston and Halford [lb] on molecular excitons and 
phonons, space group symmetry has been extensively utilized for the determination of the band structure and op- 
tical properties of molecular crystals [2]. Most of the work has been concentrated on the “optically active” states 
for which k = 0. In recent years more interest has been devoted to the study of the entire exciton band [3]. Exper- 
imental results from hot band spectroscopy furnished information on the density of states for the entire exciton 
band [4]. Several investigations [S] were aimed towards the study of substitutionally disordered crystals where 
the k selection rule for the optical transition is not valid, so that some limited information on the entire electronic 
band can also be obtained. On the other hand, the disordered crystal solutions are obtained from zerothorder per- 
fect crystal functions. thus retaining the importance of symmetry classifications. 

It would be useful to obtain a simple method to classify and construct crystal wavefunctions according to the 
irreducible representations of the crystal space group for the various k wavevectors. Another interesting question 
concerns the conditions for a simple representation of the wavefunctions belonging to a general k vector. It is 
known that crystal wavefunctions belonging to special k vectors can be determined by symmetry [2a]. It is an ~II- 
teresting question in this context to determine the conditions under which wavefunctions can be compared to fimc- 
tions belonging to special k vectors. The simplification of wavefunctions belonging to general k vectors is relevant 
to the utilization of the experimental results of hot band spectroscopy (41, and for the determination of the den- 
sity of exciton states in the pure crystal. In addition, Green’s function matrix elements tend to be very complex 
[6,5c] if the crystal wavefunctidns for a ger.era.I k cannot be simplified. 
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Tel-Aviv University. 
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In the next section a general scheme will be presented for the classification of crystal states and the construc- 
tion of crystal wavefunctions, utilizing the representation theory of ftite groups. In section 3 the crystal states 
of the two important cases, naphthalene (C$,) and benzene (DE) will be investigated. These crystals contain two 
and four molecules per unit cell, respectively, where all molecules are interchange equivalent. Section 4 is devoted 
to the discussion of wavefunctions belonging to a general k vector. 

2. The application of group theory for the determination of wavefunctions in molecular crystals 

In this section we consider a crystal wavefunction corresponding to a single molecular excited state f, and a 
Crystal containing oD molecules per unit cell. The crystal wavefunction is given by: 

where s, is a vector denoting the location of the a molecule in the’unit cell, k is the wavevector, j is the exciton 
branch index, and Ik,sJ is the site excitation wavefunction. The excitation indexfis omitted since only a single 
molecular state is considered in this paper. 

The site excitation wavefunction Ik. sJ is represented by: 

Ik,sJ=-(1/fi) c exp(ik-R,) IR, +sJ , 
n 

(2) 

where IR, +s,) denotes a localized excitation at a site a of the nth unit cell and N is the number of unit cells in 
the crystal. R,, is spanned by the three primitive vectors al, u2 and a3: 

R, =nlal +n2u2+n3a3, (3) 

whereni= 1,2,..., Nip and Ni is the number of unit cells in the Ui direction, so that N =Nl N2N3. The wavevector 
k can be represented in terms of the reciprocal primitive lattice vectors b,, bZ, and b,: 

k=lrlbl +p2B2 +c13b3 1 (4) 

where & satisfies the condition - i < & Q i. The reciprocal lattice vectors are subjected to the following orthog- 
onal@ relation: 

ai=bi = 2dij. (5) 

A cyclic boundary condition is imposed on the crystal. In addition it is assumed that Nl , fV2, and Iv3 are even 
numbers, so that the k vector attains values for all special points, within, and on the boundary of the Brillouin 
zone for a finite N. 

The coeffkientsB&) of eq. (1) can be determined by diagonalizing the crystal hamiltonian ri. corresponding 
to the excitation in question. Since 1k.Q are diagonal in k, it is necessary to diagonalize oD X oD matrix elements 

L,,(k)=(k,s,Ifilk,s,$. (6) 

The crystal hamiltonian fi commutes with all space group operations, hence, it is possible to construct symme- 
try wavefunctions belonging to irreducible representations of the space group. 

In the next section we shall adopt the regular prescription [7] for the classifkation and construction of wave- 
functions according to the irreducible representations of a finite group. This procedure is adequate for the treat- 
ment of infinite discrete (non-continuous) groups [8]. 

The procedure for the construction of the symmetry adapted wavefunctions is straightforward, and can be sum- 
marized in two steps: 
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(a) - A reducible representation I’ of the crystal is constructed. This is a oDNX ~~Ndimensiorlal matrix, 
spanned by the localized excitation wavefunction IR,, + Q. Since we are dealing with a crystal where each mole- 
cule can be mapped onto the other by a spacegroup operation, each row of the representation mat& will be filled 
with zeros, except for one matrix element of that row. The nonzero element of the row has the absolute value of 
one, and corresponds to the transformation of IR,, + sJ The crystal wavefunctions can be classifted according to 
the irreducible representations by utilizing the following formula: 

‘5 = (llh); [x(~)(R)I’x(R) > m 
where nv is the number of times the irreducible representation D(v) appears in the reducible representation F. 
x(“)(R) and x(R) are the traces of DC”) and I’, respectively, corresponding to the element R of the group. 

There are two immediate results for l? 
(1) The trace of the identity operation (~10) is o,N, since all localized excitations are invariant under the iden- 

tity operation. 
(2) The trace of the pure translation subgroup {EAT”) and operations involving screw axes and g!.ide planes 

{CIla(@ + 7n,3 is zero. 
(b) - Wavefunctions belonging to the row i of the irreducible representation Dt”) are given by [7] 

where bR is a symmetry operator, corresponding to the group element R, !J$” is a function belonging to the ith 
row of the uth irreducible representation of the group of dimension f,. 

3. Application of representation theory to crystals containing two and four molecules per unit cell 

3.1. l’ko molecules per utzit cell: The naphthalemf-anthruene (C&) space group 

The symmetry elements of crystals belonging to the naphthalene-anthracene C$& space group kslude a twofold 
screw axis C, parallel to the a3 lattice vector and a glide plane u perpendicular to the screw axis. A molecule is 
located at a lattice site r/2, where T = (ut ++)/2. All other molecules are related to this molecule by the C&space 
group operations. The inversion centers of the molecules in the crystal are located at lattice sites f r/2 + R,. 

The four basic symmetry operations are: {E IO); {C~l(a~/Z)); {IIs); {ol(at 12)). The remaining elements of the 
space group can be generated by multiplication of the pure translation operation {eIR,,) by the four basic opera- 
ti0IL.k 

The trace of the reducible representation spanned by the localized excitation will be non-zero for the identity 
operation and for some of the inversion operators (see appendix). Assuming that the molecular wavefunctions are 
ungerade, and therefore change sign under an inversion operation, the trace of r({CIIR, + r)) can be given explicit- 
ly by the following compact form: 

x({IIR, + ~1) = -2[1+ (-I)“21 [1+ (-1)RI+“3] . (9) 

‘Ike trace of the identity element (f IO} is 2 N. Utilizing eq. (7), the representation I is readily reduced into its irre- 
ducible components. The result is displayed [9] in table 1. The traces of the irreducible representation of table 1 
are determined from table 2. 

It is apparent from table 1 that it is necessary to diagonalize a 2 X2 hamiltonian matrix only for a general k, i.e. 
k,,. In all other cases it is possible to choose the basic wavefunctions invoking symmetry considerations only. 
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Table 1 
Reduction of the r reducible representation into its irreduciile components Dg) for c& 

Wave vector kj 

k7 =O 

k7 =O 

k7 =o 
k7 =O 
k13 = ;b2 

kn=z a ‘b 

kn=T 2 ‘b 
1 

kl3 = $2 

b = ;(b, + b3) 

k:s = f(bl + b3) 

kg = ;(bl + b3) 

kn =+(b,+b3) 

klo = ;(b, + b2 + b3) 

k.Io=;(b1+b2+b3) 

Al0 = ;(b, + b2 + b3) 

klo = ;(b, + b2 + bj) 

k,, = ;bl 

kla = {(b, +bd 

k,, = Tbs 

kg = ;(b2+b3) 

kl =r~b~+rzbz 

k, =rlh+r-rbz 

k, =plbl+f~lb2 +;b: 
1 

L2 =wlbl+r2b2+ sb3 

kr =cl3h 

4 = lr3b3 

ks = p3b3+ ;b2 

ks = p3b3+ ;bz 

k6 =;(b,+b2)+lrjb3 

kts =;(bl+b$+Irjbj 

k4 = :b, + rabj 

4 = +bI +pabs 

kls =~rlbl +~zbz+r3ba 

1 

2 

3 

4 

1 

2 

3 

4 

1 
2 

3 

4 

1 

2 

3 

4 

1 

1 

1 
1 
1 
2 

1 

2 

1 

2 

1 
2 

1 
2 

1 

2 

1 

1 
1 

1 

1 
1 
1 
: 
1 

1 
1 
1 

1 
1 

1 
1 
1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

4 

1 
-1 

1 

-I 
(-lP2 

-(-1)“2 
(-l)“l 

-(-1)“2 
-(_1)“1+ n3 

(_I)“1 + n3 

_(_1)“1+ “3 

(-I)“1 + n3 

(_I)“1 + n2 + “3 

(_l)“l+ n2 + n3 

(-l)“l+ n2 + n3 

(_l)“l +ni+n3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

The symmetry adapted wavefunctions fork,, k2, ka, k4, k, and kg are displayed for the D$) representation 

I&,+) = (l/d%) F exp(ii=R,) (IR, - r/2) + exp(ik*r) IR, + t/2)) . (10) 
while for Dh;’ 

It-) = (l/&N) F exp(ik*R,)(IR, - r/2) - exp(ik*r) IR, + 7/2)). (11) 
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The partner functions of Ik, +) and Ik,-) are I-k, +) and I -k,-1, respectively. Thls degeneracy does not exist for 
special points of the Brillouin zone k,, k,, kl,,, k13 ( see table 1). However, Ik,+) and Ik.4 form a degenerate 
pair of partner functions on the Bdlouin zone boundary for points kg, k,,, klZ, and k,,. 

3.2. Four molecules per unit cell: The benzene space group D$ 

The D$ space group includes the eight basic operations 

{eIO]; {c,lr, + Q; {cylry tT,I; CCJ;; t I.& 

IAOI; by,lr, + 7yl; b,,l+y t 7J; b-J,,lT, t TX3 . 
(12) 

Since the three primitive vectors ul, u z and 03 are orthogonal, they coincide with the cartesian axes x, y, and z, 

respectiveiy. Cj denotes twofold rotation around the i axis (i = x, y, z), uq denotes mirror reflection by the ij plane, 
and tX, z,,, 7, specific ur 12, a212, a312, respectively. 

The localized excitations of the crystal can be generated by applying the first four operations of eq. (12) to- 
gether with a translation on the localized excitation IO>: 

IR,) = d(bIR,I)lm, (13) 

IR,tT,t7y~=d(~c,lR,~r,~7y~)10~, (14) 

IR,tT,tT,~=d(~cylR,t~y+7,~)10~r (13 

IR,t~2t~~X)=b({c~lR,tr,ttX))IO). (16) 

These 4N localized excitation wavefunctions form a basis for a 4N dimensional reducible representation r. The 
only symmetry operations which furnishes a non-zero trace are the identity and some inversion operations. These 
traces are 

~(~40)) = 4N, (17) 

x({fIR,)) = 4N[l t (-l)nl+n2+“3] . (18) 

‘The reduction of I’ is accomplished by utilizing eq. (7). The results for the reduction of r are displayed in 
table 3. Since the three axesx, Y, and L are equivalent from 2 space group symmetry point of view, only results 
for one set of equivalent points is given. 

The symmetry wavefunctions for k7 and k10 (see table 3) are determined by symmetry only, and so do their 
equivalent wavefunctions for k parallel to the Y and L axes. Utilizing eq. (8) and the representation table given by 
Kovalev 191, wavefunctions belonging to k, and ktO (and their equivalent points) can be summed up: 

Ik,l~=f~lk,O~tlk,r,try~+lk,tyt~,~+lk,r,t~~~}, (19) 

lk.2)= ~~lk.O~tIk,~,t~~~-lk.~~t+~>-lk,~,+~~~}, (20) 

1k,3)=~{lk,U)-,1&,7,+~~)+lk,7~+~~)-fk,~~++~)), (21) 

lk,4)= ~(lk,3)-lk,r,tr,)-lk,~~+~~)+ Ik,r,tz,)), (22) 

where 

Ik,0)=N-Y2Cexp(ik*R,)10), (23) 
n 
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Table 3 
The benzene crystal space group D:i 

Wavevector kj Y x(CelOh xdllR,h $I 

k19 = 0 1 1 I 0 

k,, 2 1 -1 1 
km 3 1 1 0 
k,9 4 1 -1 1 
km 
919 

: : -1 

I i 

km I 1 1 0 

kn 

k20 = ;bt 
8 -1 1 
1 : 0 1 

kzo 2 

k23 = f (b2 + 63) 

2 1 

1 2 : 1 

km 
kz6 = ; @I+ bz + 63) 

2 2 0 1 
1 2 2(_1)“1+“2+“3 0 

kz6 2 2 _2(-1)“1+“2+“3 2 
k7 =fitbt 1 2 0 1 
k7 2 2 0 1 

k7 3 2 0 1 

k7 4 
k,, = rlb~ + $2 

2 0 1 

1 2 0 1 

kto 2 2 3 1 

klo 3 2 0 1 
klo 4 
ktt =M,bt+;(&+&, 

2 0 1 
1 4 0 2 

ku=rrh+;h 1 4 0 2 
kl =rzbz+psbs 1 4 0 2 
kt 
k, = fbr + fizb2 + r3b3 

2 4 0 2 
1 4 0 2 

k, 2 4 0 2 
k,, = PI bl + fizbz + rsbs I 8 0 4 

Ik,t,+r,)=N-112 c 
n 

exp[ik.(R,+ry+T1)lIR,+T~++‘I,), (25) 

Ik,rz+Q=N-Y2 c 
n 

exp[ik-(R,+7~+~~)]IRn+~~++~). (26) 

Each function Ik, i) has a partner I-k, i) except for the point k = 0. Points k zO, k23 (and their equivalent points), 
(see table 3) correspond to two sets of doubly degenerate wavefunctions. It should be noted that two wavefunc- 
tions belong to each row of the representations of k 1, k 2, k 11, k12 and k,,, hence, it is necessary todiagonake a 
2 X2 hamiltonian matrix for these wavefunctions. As anticipated, a 4 X 4 secular matrix has to be solved For the 
general k vector (k27)_ 

4. Simplified solution for a general k vector 

4.1. lb0 molecules per unit cell 

The most convenient choice of a basis set of wavefunctions for a general k vector for a crystal containing two 
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molecules per unit cell, belonging to C$, space group, is 

I&, -r/2) and exp(ikm 7) Jk, r/2). 

The exp(ik* T) factor ensures that the huniltonian matrix is real-symmetric, provided that the localized excita- 
tions are real functions (see below). The 2 X 2 hamiltonian matrix is: 

(274 

L,,(k)= xexp(ik-R,)(-r/2 lfil -r/2 +R,), 
n 

(27b) 

t22 (k) = c exp(ik*R,) (r/2 IAl t/2 + R,) , 
n 

(27~) 

&2(k) = exp(ik,7) c exp(ik*R,) (-r/2 lril r/2 t R,) , 
n 

f&(k)=exp(-ikmt) Cexp(ik-R,)(s/2 lfil-r/2+R,J . 
n 

W’d) 

(27e) 

&plying the operation {ljz+R,) to each term in the summation of eq. (27d) we obtain: 

Lt2(k)=exp(ik~t)Cexp(ik*R,)(3r/2+R,IAlrj2). 
n 

Since we assumed the molecular wavefunctions to be real L 12(k) can be recast in the form: 

&(k)=exp(ik*t) Cexp(ikoR,)(r/2IAJ3~/2 tR,) 
n 

=exp(ikT)eXp(-ik.27) Cexp[ik*(R, +2t)] (r/2 I&7/2+R, +2r) 
n 

=exp(-ik-r)~exp(ik~R,,)(rlZlfiI-~/2 +R,)=LZl(k), (284 

which proves that H(k) of eq. (27a) is indeed a real-symmetric matrix. Hence we have to investigate the diagonal 
matrix elements only. We shall operate with {C21a3/2] on L, 1 (k): 

L~~(k)=~exp(ikgR,)t-r!21AI-s/2tR,)= Cexp(ik.R,)(7/2IBIr/2tC2R,) 
n n 

= ~wGC2k-C2R,,)(riZ Ifilrl2 + C2R,)=L22(C2k). (28b) 

WhenkisparalleltotheC2axisC2k=ksothat: 

ht(k)=L22(k). (29) 

When k is perpendicular to C2 then C2k = -A, but because of inversion symmetry, eq. (29) still holds, since 

L,,(k)=LuGk)=L22(k). 

Ahnatively. eq. (29) is satisfied for a general It vector if . 
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C2R, = *R, . (30) 

A solution for eq. (30) exists only if either n3 + 0, n2 = 0 and n1 = 0 or n1 # 0, n2 = 0 and n3 = 0 (and for the 
trivia! case where nI = 0, n2 = 0 and n3 = 0, which is of no interest). In other words, eq. (29) is obeyed $an 
(tmmlarionaliy equivalent) interactions we zero. ewept those pnra~lel or perpendicu&r to the rotattbt axi& In 
this case, a wavefunction belonging to a general k vector can be represented by eqs. (10) and (1 I). 

4.2. Four molecules per unit cell 

The site excitation wavefunctions (eqs. (23)-(26)) will be chosen as a basis set and the hamiltonian matrix 
spanned by this set is given by: 

~13(k)=eXp[ik~(ty+t~)] Cexp(ik.R,)(OlklR,+ry+r,), n 

L14(k)=exp[ik.(r,+r,)] Cexp(ik-R,)WfiIR, ttx+~r), 
n 

(34) 

(35) 

~,,Q=exp[ik.(s,-ry)] Cexp(ik.R,)(ry+r,IAIR,+r,+r,). 
n 

(361 

LS4(k) = exp[ikg(rz- T,,)] fi; exp(ik.R,) (T,, + TV Ifil R, + r, + T~) . (371 

LJ, (k) = Cexp(ik-R,) WfilR,) , 
n (38) 

L,,(k)= Cexp(ik.R,)(r,+rylklR,+T,+ry), 
n 

(39) 

L3, (k) = c exp(ik-R,) by + r, I&R,, + 7y + rzz), 
n 

La(k)= ~exp(ik*R,!(r,+r,IlilR,+r,t~~). 
n 

(40) 

(41) 

‘Ihe phase factor preceding each of the summation symbols in eqs. (32)-(37) ensures H(k) to be real-symmetric. 
If k is parallel to one of the symmetry aes. then it is possiile to construct the zeroarder wavetictions in- 
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voking symmetry only. I ~rcse wave functions are given in section 3.2 by eqs. (19)-(22). H (k) is diagonalized by a 
simple real-orthogonal matrix U: 

1 i 1 1 

u=; i 1 ’ -I -I \ . 
1 -1 1 -1 

(42) 

\l -1 -1 rl 
We shall now investigate the effect of various symmetry operators on the matrix elements of H(k) [eqs. (!2)-(41)]. 
Since the hamiltonian is invariant under symmetry operations, only the form of the various matrix elements 
changes under these operations. Operating with {c,lr, + TV} on L t 1 (k) [eq. (38)], the following change of form 
is induced: 

Lt,(k)= Cexp(ic,k*R,)(r,+7yl~lR,+T,+T~)=L22(c~k). 
n 

The diagonal elements of H(k), Lll (k) and Lz2 (k) are equal if either cxk = k or c,k = -k, implying that k is 
either parallel or perpendicular to the x-axis. Similarly, it can be shown that all the diagonal matrix elements are 
equal if also c,,k = *k and c,k = ik. To sum up, if the wave vector lies Farallel to one of the symmetry axes, the 
diagonal matrix elements of H(k) are all equal. Alternatively, all diagonal matrix elements of H(k) are equal if the 
following relations hold for the translation vector R, : 

cxRn = *R, , CW 
cyRn =*R, , Wb) 

czR, = l R, . WC) 

It is clear from eqs. (44) that these diagonal matrix elements are equal for a general k, if inteructions between 
translotionai equivalent molecules are non-zero in the directions of the symmetry axes only, while all other inter- 
actions between equivalent molecules are zero. 

The situation for the interchange equivalent molecules is somewhat more complicated. Operating with 
{c,Jr, + rY} on eqs. (33) and (34) we arrive at the following expression for the offdiagonal elements: 

Lt,(M=&4(cxk) B (4Sa) 

~5~4 (k) = t23 (Q) 3 Wb) 

and operating with {c,,lr,, + TV) on eq. (32) we obtain: 

&(k)=L,(c,W - (45c) 

Thus, fork in the direction of the symmetry axes (for any interaction), the H(k) matrix has the following shape: 

Q 6 7 B 

6 p B 7 
H(k) = 

I: I 

7Safi. 
(46) 

P -r 6 Q 

llxis matrix is diagonaked by the orthogonal matrix, eq. (42). It will be shown that under certain restrictions on 
the interchange equivalent interactions, the matrix H(k) for a general k e the shape of eq. (46). Since this is a 
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more complicated case than the previous cases of translationally equivalent interactions, a detailed derivation is 
given. The set of symmetry operations, 6, will be applied to eq. (34), where d, is given by: 

6,=b({c,lT~+T2,+2T,-CyRn})_ (471 

We shall replace the crystal hamiltonian operator fi in the individual terms of the summation in eq. (34) by the 
corresponding operators 0i ci&: 

=expIik=(r, +r,)J C exp(ik.R,)(rY+rZ +2~, -c~R,~~~~~,+T,) 
n 

= exp[ik-(r, -rX)] C exp(ik.(R, + 2r,)] (1, trzlAlry +Tz -cu(Rn +21,)) 
n 

= exp[ik.(TZ -r,)] Cexp(ik*R,) (r, + 7Zlfilr,, + r, -c,,R,J . (W 
n 

By comparing eq. (48) with eq. (35), we observe that Lt4 (k) is equal to f.,,(k) if the iollowing relation hold; for 
R,: 

R, = -c,,Rn . (49) 

Eq. (49) implies rhat the equality Lt4 (k) = f.2, (k) can be achieved for a general k vector, if non-zero interactions 
between interchange equivalent molecules, appearing in eqs. (34) and (39, are confined to planes parallel to the 
XL plane only. Similar results can be derived for the other off-diagonal matrix elements of H (k). Thus, if all non- 
zero interactions between interchange equivalent elements are confuitd to planes parallel to the xy, yz, zx planes 
we have: LIZ(~) = L,,(k), Llj(k) = Lza(k) and L14(k) = L*,(k), for a general k wavevector. 

To conclude, H(k) has the form of matrix eq. (46) if non-zero interactions between translational pairs of equiv- 
alent molecules lie parallel to a rotation axis, while non-zero interactions between pairs of interchar;ge equivalent 
molecules lie parallel to the symmetry planes. 

Appendix. The determination of the trace of the reducible representation for an inversion’operation 

Operating on the localized excitation I t/2 t R,> by the symmetry operator d{Ilr + R,) we obtain for an 
ungerde function: 

&I&, ++}I~12 +R,J= --IT/~--R, + R,) . (Xi) 

The condition for which eq. (Al) furnishes a non-zero contribution to the trace of the reducible representation F 
is given by: 

2R,=R,. WI 

Because of the cyclic boundary condition eq. (A2) does not have a unique solution. The solution of (A2) can be 
derived from the simultaneous congruent equations: 

n1 = 2m, (moaNI); n’, = 2m2 (mod $1; “3 = 2m3 (mod N3). (MI 

Whenever there is a solution for eq. (A3) there exist eight such solutions implying that eight molecules are invariant 
under a single inversion operation. This is an unphysical results, but an essential consequence of the cyclic bounda- 
ry condition. 
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In a similar manner, congruent equations can be derived for the operator b{Ilr+ R,) and the localized excita- 
tion I - 42 + R,). These are: 

q = 2ml + 1 (mod N,); n2 = 2m2 (mod A$); n3 = 2m3 t 1 (mod&). (A41 

We have here eight solutions, or none. The results for the trace of {ljR,, t r} as determined from eqs. (A3) and 
(A4) can be represented in a compact form, and is given by eq. (9) of section 3. 

A simple example can illustrate the pertinent results of this discussion. We assume a one-dimensional crystal 
containing ten unit cells with one molecule per unit cell. The diagonal elements of I’ for &Ii 40) are given by: 

where u is theprirnjy lattice vector. 
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