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Abstract: Several explicit numerical solutions of generalized nuclidic mass relationships (partial 
difference equations) have been derived. These solutions are mass equations with about 230 
parameters which reproduce more than 1000 experimental masses with N, 2 2 20 with a 
standard deviation of about 300 keV. The internal consistency of the solutions and other 
aspects such as the ability to describe the experimental Coulomb displacement energies are 
explored. The solutions are compared to the transverse and longitudinal mass equations of 
Garvey and Kelson and the shell-model mass equations of Liran and Zeldes for their reliability 
to predict masses of very neutron-rich and proton-rich nuclei. 

1. Introduction 

Generalized nuclidic mass relationships have been introduced and discussed ear- 
lier ‘I “). They represent partial di@dence equations for the nuclear masses with 
respect to N and Z (or A and T,). The transverse and longitudinal mass relationships, 
GK-T and GK-L, of Garvey and Kelson “) are contained in the general relationships 
as limiting cases. A necessary condition for an application of the generalized relation- 
ships is certain knowledge about the effective neutron-proton interaction &,(A, T,) 
which is defined below. General solutions M*(A, T,) of the above partial difference 
equations have been obtained earlier ‘). It is the purpose of the present work to 
present and to discuss explicit numerical solutions M*(A, T,) based on certain 
assumptions and theories about I,,. The solutions M*(A, T,) represent many- 
parameter mass equations which will be distinguished from other (many- or few- 
parameter) mass equations M(A, T,) by an asterisk. 

The discussion of the new mass equations M*(A, T,) concentrates on their internal 
consistency with experimental data which particularly involve the symmetry and 
Coulomb energy. Emphasis will be given to the question of the reliability of extra- 
polations into the regions of neutron-rich and proton-rich nuclei. The results will be 
compared to the predictions from the Garvey-Kelson mass relationships 3), GK-T 
and GK-L, and to those from the new shell-model mass equations of Liran and 
Zeldes “). 

All known experimental masses with N 2_ 20 and Z 2 20 were included in the 
present treatment. The resulting mass equations M*(A, T,) of sect. 4, however, should 

t Work supported in part by the USAEC. 
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only be used for A 2 70. The dependence of the effective neutron-proton interaction 
&(A, T,) on shell-model configurations becomes too important in light nuclei and 
will have to become the subject of further studies. The new mass equations are 
believed to be more reliable for nuclei far away from the line of beta-stability than 
known mass equations. 

2. Solution of generalized m&die mass re~at~~~~ps 

The modified transverse and longitudinal nuclidic mass relationships 

M~(A,T,+2)-M*(A,T,)fM”(A-l,T*+~)-~”f~-l,T,+~)+~*f~ff,T,~#) 

-M*(A”l- I, T&) = 1”&4 + 1, Tz++-_lnp(A + 1, YE&), (I) 

M*(A+4, Q-M*@, T,)-tM”(A+l, Tr”l-4)--A4*(A+3, rr,+3) 

+M*{A+l, T,-$)---M*(A+3, r,-=9=--I,,&-4> T,)-&, f&.2, r,), (2) 

have been introduced and discussed earlier ‘* “). Here, the quantity &&f, T=) is 
defined by 

&,(J& Ii;) = -%(A, T&f+&‘&-1, T,-S)+M(A-11, T&)-M(A-2,T,) 

a2 ---- 
i?A* 

M(A- 1, T,). (3) 

It can be extracted from the experimental masses. However, in order to solve the 
partial difference eqs. (1) or (2) it is necessary to introduce assumptions or theories 
about &,(A, T,). This is also the case for the generalized nuclidic mass relationships 
[refs. “>“)I h* h w ic constitute linear combinations of the difference eqs. (1) and (2). 
General solutions of the generalized relations~ps have been derived before “), They 
can also be interpreted as those solutions M*(A, T,) which satisfy eqs. (1) and (2) 
simultaneously. They consist of a special solution of the inhomogeneous equation 
and the most genera1 solution of the homogeneous equation. The latter is doseIy 
related to the solutions of the Garvey-Kelson nuclidic mass relationships “). 

If it is assumed that &,(A, T,) is a function of A only, the generalized nuclidic mass 
relationships reduce to the GK-T relationship. The most general solution is 

M”(A, LT,) = 91(WWO)+9,(N+Z). (4) 

Here, gl(N), g*(Z) and g&V-l-Z) are arbitrary functions of N = &4-l-T,, 
Z = 4A - T, and Xi- 2 = A, respectivefy. 

If it is assumed that &,(A, T,) is a function of 7” only, the generalized nuclidic mass 
reIations~ps reduce to the GK-L relationship. The most general solution is 
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Here, h(N), A(Z) &V-Z) are arbitrary functions of iV=+A+ T,, Z =+ A -T, 

and N-Z = 2 T,, respectively. 
If it is assumed that Z,,(A, T,) is constant (separately for even-,4 and odd-A nuclei), 

the most general solution of the generalized nuclidic mass relationship is 

M*(4 T,) = 41(N-Z)~+l~28,+136,,+~46,,+fls6,,+F,(N)-t-Fz(z>. (6) 

Here, Fr(N) and F,(Z) are arbitrary functions of N = &A+T, and Z = $-A -T,, 

respectively, and the vi are arbitrary constants. The quantity 6,, is one for doubly odd 
nuclei and is zero otherwise. The quantities a,,, 6,, and 6,, are defined accordingly. 

More detailed theories about the A and T, dependence of ZnP are implicit in any 
liquid-drop model, shell model or other mass equation M(A, T,) and the underlying 
physical assumptions are those used in the derivation of the mass equation. The 
quantity Z&A, T,) can be extracted 1, 2, “) from any M(A, T,) by the use of eq. (3). 
It should be noted that except for small Coulomb energy contributions the quantity 
Z&A, T,) must satisfy Z_,(A, -T,) z In,, (A, +T,) because of charge-symmetry of 
nuclear forces. It is for this reason that eq. (5) for example, is not valid on both sides 
of the N = Z line for given functionsfi(k). 

Given Z,,(A, Tz) from a mass equation M(A, T,), a general solution “) M*(A, T,) 

of the generalized nuclidic mass relationships is 

with 
M*(A, T,) = M(A, T,)+dM(A, T,), (7a) 

Here, M(A, T,) represents a special solution of the inhomogeneous eqs. (1) and (2) 
and AM(A, T,) represents the most general solution of the homogeneous equations. 
The terms F,(N) and F,(Z) are again arbitrary functions of N = $A+T, and 
Z = &A - T,, respectively, and the ‘li are arbitrary constants. It should be emphasized 
that in eq. (7) use is made only of Z”,,(A, T,) implicitly contained in M(A, T,) and 
any other mass equation with the same Z&A, Tz) will result in an identical solution 
M*(A, T,). 

The constants vi and functions F,(N) and F2(Z) ( as well as the earlier functions 

9 l(k) and L(k)) can be constructed for any M(A, Tz) from a x2 minimization to 
the experimental masses. The solution of the ensuing system of 200-250 linear 
equations for the 200-250 parameters is a correction term AM(A, T,) which will 
convert any few-parameter mass equation M(A, T,) into a many-parameter mass 
equation M*(A, T,) with a generally greatly increased accuracy for reproducing 
the experimental masses. 

Another aspect of the above treatment is that it provides insight into the structure 
and possible shortcomings of a mass equation M(A, T,) (referred to as test 3 in 
ref. “)). Clearly, the “better” M(A, T,) is, the smaller AM(A, T,) will be. Additional 
information is obtained if the various contributions to AM are considered separately. 
A finite coefficient q1 points to a deficiency in the description of the nuclear symmetry 
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energy. In the Bethe-Weizsbker liquid-drop model equation, for example, one 
obtains a corrected energy 

-%$ll = (%ym + rll A)(N - a2M (8) 

A finite value of qr shows the inadequacy of a constant symmetry energy coefficient 
a sym. Finite values of qz and q3 in particular but also of q4 and q5 point to the need 
for a neutron-proton pairing energy term. Furthermore, the functions F,(N) and 
F,(Z) give additional information about nuclear shell effects and the Coulomb 

energy. 
A possible decomposition of AA4 is 

AM(A, T,) = AM,,,I(N)+AM,“,,(Z)+AM,,,(Z)+A~M,,,(N, Z)+AM,,i,(N, Z), (9) 

with 

AK,,,(k) = F,(k), (lOa) 

A&-&) = G(Z)-&(.Z), (1Ob) 

AM,,,,@, Z) = V&+-Z)‘, (1Oc) 

Alv,,i,(N,Z) = 426,+?,6=,+~46,,+?,6,=. (1Od) 

The correction Ah4 is uniquely determined from the x2 minimization. This is not 
true for the individual contributions (except for AM,,,) since the replacements 

F,(N) + F,(N)+c, +( - l)“C,) (114 

F2(Z) + F2(q-c,+(-qZc3, (9 

?2 + t/2+c2+c3> WC) 

f/3 + 1]3-c2-c3> P-9 

14 + q4-c2+c3, Pe> 

‘I5 + q5+c2-c3, WI 

will lead to identical results for arbitrary constants ci, c2 and c3. Without loss of 
generality one can therefore assume Fl (N,,,) = F2(Zrer), q2 - q3 = 0 and q4+ q5 = 0. 
Here, Nrer and Zref are two arbitrarily chosen reference values. The splitting of the 
mass surface for odd-A nuclei due to the term t/4(6co-L56,,) is very small (see below). 
It is therefore further assumed that t/4 = 0. The above remarks show that nuclear 
and Coulomb contributions are determined except for added constants, namely 
F,,&k) + c and Fcoul - 2c, respectively. 

Strong correlations were observed between the Coulomb energy and symmetry 
energy correction terms. This led to the conclusion that the Coulomb energy correc- 
tion term AE,-,,, = F2 (Z) - Fl (Z) re p resents a useful correction only if the symmetry 
energy is well &scribed by the term included in the mass equation together with the 
correction term A&f_,,, = ql(N-Z)2. Adding correction terms AM will always lead 
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to considerable decreases in the standard deviation cr, for reproducing the experi- 
mental masses. The standard deviation (T, for reproducing the experimental Coulomb 
displacement energies, on the other hand, sometimes increased greatly indicating that 
improvements in o;, can be achieved by simultaneously misrepresenting the symmetry 
energy and the Coulomb energy. Extrapolations into the regions of neutron-rich or 
proton-rich nuclei will, of course, be greatly affected by such misrepresentations. 

The x2 minimizations were therefore carried out using three different procedures. 
The correction term dM of eq. (7) was constructed (A) with no constraint; (B) with 
the constraint AM,,, = 0, i.e., Fl(k) = F&c), and (C)with the constraint dMsym zz 0, 
i.e., F,Q = 0. In case B the number of adjusted parameters is greatly reduced. 

Results were obtained for 16 different assumptions and theories for I,,,. They are 
listed in table 1 and will be described briefly in the following. 

TABLE 1 
List of mass equations 

GK-T 
GK-L 
CON 
Z 
LZI 
LZ2 
BWl 

BW2 

BW3-5 

MS 
MSL 
C 
CS 

S 

Garvcy-Kclson transverse 3). 
Garvey-Kelson longitudinal 3). 
I,, = const. 
&Ides ef al. s, shell model. 
Liran and Zeldes 4, she11 model, seniority scheme. 
Liran and Zeldes 4, shell model, seniority scheme with deformation corrections. 
Bethe-Weizslcker Iiquid-drop model, parameters optimized for nlinimum a,,, 

(bc = -a&. 
Bethe-Weizslcker liq~d-drop model, parameters ac, bc optimized for mioim~m oc, 

remaining parameters optimized for minimum a,,,. 
Bethe-Weiz.s&ker liquid-drop model, parameters a c, bc optimized for minimum a=, 

remaining parameters including ql, q2, F,(N) and F,(z) optimized for minimum 
a,; cases A, B and C, respectively. 

Myers and Swiatecki droplet model [ref. *), parameters of ref. 9)J. 
Myers and Swiatecki droplet model [ref. ‘), parameters of ref. “‘)I. 
Cameron et a?. ‘I) liquid-drop model. 
Cameron et al. **) liquid-drop model with shell and pairing corrections. 
Seeger 12) liquid-drop model. 

The abbreviated notations GK-T, GK-L and CON refer to the assumptions 

4ip = 4&-z), 4lp = 4&f) and I,, = constant, respectively. The parameters of 
ref. “) were used. The notations Z, LZI and LZ2 refer to the shell-model theories 
for I,IP implicit in the mass equations of Zeldes, Grill and Simievic “) and of Liran 
and Zeldes “). The label Z refers to the earlier version “) while LZI and LZ2 refer to 
the recent work4). The first one, LZl, is essentially based on the seniority coupling 
scheme. The second one, LZ2, includes additional empirica! coirection terms to 
account for deformation effects and core excitations. 

The remaining cases refer to the theories for InP implicit in liquid-drop model 
mass equations. The notations BWi through BW5 stand for the Bethe-Weirsacker 
equation with the five parameter sets of table 2. The equation is written in a slightly 
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TABLE 2 

Parameters for the Bethe-WeizsBcker equation (in keV) 

BWl BW2 BW3 BW4 BW5 

a, 16313 15326 15326 ‘) 15326 “) 15326 “) 
aa 19436 11251 17257 ‘) 17257 ‘) 17257 “) 
%ln 23537 21161 13878 18156 18993 

2 -763 763 -2736 695 b, b, -2736 695 “) “) -2136 695 “) b, -2736 695 b, b, 
a, (1) 36949 32077 32077 “) 32011”) 32071”) 
a, (2) 5044 5044 “) 5044 “) 5044 “) 5044 ‘) 

ap (3) 0.) 0 “) 0 “) OS) 0 “) 
rll 52.4 17.8 0.0 
772 24.9 25.0 25.6 

“) Not adjusted. 
“) From ref. ‘). 

modified form as 

M(N,Z) = M,N+M,Z-a,A+a,Ai+a,,, 
(N-Z)2+2j(N-Z)I 

A 

+ ad2+W _ 6,,(a~)+ab2))-t-(s,,-6,,)a~)+6,(-a~)+a~)) 
A+ A* 

* (12) 

The symmetry energy term is modified to conform to the T(T+l) dependence 
obtained in shell-model equations. The pairing energy term is generalized by intro- 
ducing the term with ar) to allow for a different separation between the doubly 
even/odd-d and doubly odd/odd-A mass surfaces. Furthermore, the term with a:’ 
removes the degeneracy between the even-odd and odd-even mass surfaces for odd-A 
nuclei. Only the term with a:) is generally included. Since M(N, 2) of eq. (12) 
depends linearly on the parameters, a x2 minimization leads to a simple system of 
equations for the parameters which has a unique solution. The solution for BWI 
is based on the assumption b, ‘= -ac which is often made. Also, the pairing term 
with a:’ was set to zero because there was practically no difference between this 
solution and the solution where a:) was permitted to differ from zero 
(uF)/aF) x 0.05). A d’ff I erent exponent of 0.5 in the A-dependence of the pairing 
terms had practically no effect on the other coefficients and on the standard deviation. 
The parameter set for BW2 was obtained in practically the same way except that 
a, and b, were fixed at those values which independently minimize the experimental 
Coulomb displacement energies’) with a standard deviation of ~c = 84 keV. The 
subsequent determination of the coefficients qr and qz and the functions r;l(N) 
-and F2(Z) for the solutions M*(A, T,) (conditions A, B or C) was done separately. 
The pairing term u(l) was set to zero because the functions F,(N) and I;;(Z) re- 
produce the n-n and p-p p&ing energies more correctly than the term +aF)A-*. 
The three remaining solutions BW3, BW4 and BW5 were obtained under conditions 
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TABLB 3 

Standard deviations u,,, for the experimental masses and oc for the Coulomb displacement energies 
mass relationships obtained 

GK-T GK-L CON Z LZ1 LZ2 
-- 

Number of exp. masses n 1040 1041 1059 1058 1053 1053 

Number of parameters p 
Standard deviation o= 
Standard deviation ac 

Number of parameters p 
Standard deviation a,,, 
Standard deviation oc 
Coefficient 7fi 
Coefficient 7~~ 
Quantity FcaU, (100) 

Number of parameters p 230 
Standard deviation o,,, 333 
Standard deviation crc 129 ‘) 
Coefficient qr 0.2 
Coefficient qz -37.1 
Quantity FeoUl (100) 0 

Number of parameters p 
Standard deviation o, 
Standard deviation ac 
Coefficient VI 
Coefficient 7~~ 
Quantity Fcoul (100) 

Mass equation M(A, Tz) 

484 275 320 “) 90 “) 340 “) 
171 268 188 761 167 

2598 ? “) 129”) 65 ‘) 

(A) Solution N*(A, T,); no constraint 
-- 

220 310 
662 244 

5479 368 “) 
181.1 -2.8 

-113.0 -29.5 
1335 -19 

(B) Solution A4*(.4, T,); constraint F,(k) = F,(k) 

(C) Solution M*(A, T,); constraint T1 = 0 

309 
246 
281 ‘) 

0 
-30.0 
-1.4 

The experimental masses with N 2 20 and Z 2 20 from the 1971 atomic mass evaluation r3) were used 
‘) The numbers of parameters actually different from zero are 201, 87 and 144, respectively. 
‘) Region Z > 82 and discontinuities at all shell closures are excluded. 
‘) Calculated from the experimental displacement energies for spherical nuclei with Z L 20 and the 

A, B or C by simultaneously optimizing asp,,, and the coefficients t,rr and q2 and 
the functions F,(N) and E;(Z). Th us, BW3 and BW4 allow for a linear increase 
with A of the symmet~ energy coefficient. 

Results for the droplet-model mass equation of Myers and Swiatecki “) are listed 
as MS and MSL. The first one uses the parameter set of Myers and Swiatecki ‘). 
The second one is for the parameter set of Ludwig et a1.l”). Results for the liquid-drop 
model mass equation of Cameron 11) are given as C and Cs: The second equation 
includes the empirical sheRand pairing correction terms introduced by the authors r r) 
on the assumption C(N, 2) = C,(N)+C2(Z). The structure’ of these corrections 
is almost identical to the ones derived in the present work under condition C. The 
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for the mass equations M(A, Tz) of table 1 and for the solutions M*(A, rr) of the generalized nuclidic 

under three conditions A, B, and C 

BWI BW2 BW3 BW4 BWS MS MSL C cs S 
-~ ~- ~- 

1059 1059 1059 1059 1059 1059 1059 1059 1057 1059 
-.- ___-_ -._. ~___ -. 

6 7 12 12 17 233 12 

2801 3576 3171 6877 2767 316 3995 

1977 84 “) 171”) 192 ‘) 970 960 271 

225 226 226 231 231 236 231 

472 385 238 259 291 261 260 

1560 884 1082 1160’) 1184c) 1747 664 

-27.3 -6.2 52.4 19.2 5.4 8.4 4.1 

22.9 23.5 24.9 - 122.9 - 124.4 -100.0 - 110.4 

-175 -4 -i-l5 129 103 49 36 

145 146 146 151 151 156 151 

920 1036 536 519 793 510 483 
1977 84 d, 84 “) 171’) 192 ‘) 970 271 

2.4 -0.9 17.8 0.3 -6.9 0.4 -1.2 
56.1 63.3 25.0 ---113.9 -91.6 -94.3 -99.3 

0 0 0 0 0 0 0 

224 225 225 230 230 235 230 
543 389 338 320 322 274 263 

2057 778 1267 399 ‘) 971 ‘) 977 420 
0 0 0 0 0 0 0 

18.9 22.6 25.6 - 120.0 -- 120.0 -98.8 -109.8 
3.7 36.6 -72.0 3.2 12.0 -5.5 9.6 

in the x2 minimization. Values of o‘, q in keV, FcDv, in MeV. 
‘) Cannot be calculated. 
d, Standard deviation for dE(exp)--dEc,,,(calc). 

(combined electrostatic and nuclear) displacement energies from the equation. 

line labelled S, finally, is based on the liquid-drop model mass equation of Seeger 12). 
The basic results obtained from the x2 minimizations for the slightly more than 

1000 experimental masses are contained in table 3. The experimental masses from 
the 1971 atomic mass evaluation 13) were used but only masses with N 2 20 and 
2 2 20 were included. Lighter nuclei will have to be treated separately because 
the liquid-drop equations are not adequate. Table 3 lists for all equations of table 1 
as well as for the solutions obtained under conditions A, B and C the number of 
experimental masses n and the number of parameters p. Solutions for GK-T, GK-L, 
Z and LZ2 were obtained but are excluded from the table because of the large number 
of parameters. Also given are the standard deviations a,,, for the experimental masses 
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and bc for the Coulomb displacement energies along the line of &stability. Unless 
noted otherwise in the table, it was considered equivalent (and simpler) to use For 
the com~a~son the empirical equation 

dE 

C 
_ &(Z< +OS)+b, 

A” -- (13) 

instead of the experimentd displacement energies. Eq. (13) with the parameters 
ofref.?) reproduces the experimenta values with a standard deviation of cc = 84 keV. 
Additional lines in table 3 give the values of vi, 11~ and Fc,,,(fOO). 

3. Discussion 

The number of parameters used in the various equations and procedures varies 
from six or seven for the Bethe-Weizslcker equation to 454 for the transverse 
Garvey-Kelson equation. This variation has to be considered when comparing 
the standard deviations (7, which range from a few MeV for the former to less than 
200 keV for the latter. A possible classification is p < 25 for few-parameter equations 
and p 125 for man~parameter equations. Ah liquid-drop model equations are 
few-parameter equations. The majority of many-parameter equations have 220 to 
240 parameters (solutions A and C), a few have about 150 (solutions B) and about 
300 parameters, respectively, and one each has < 100 and > 450 parameters. 

Fig. 1 shows a plot of the quantity oi/(n-p) as a function of p. The square of 
the standard deviation o, divided by the number of degrees of freedom f = PI--P 
is proportional to x2,1(n-p) and thus characterizes the goodness of fit ouer tf?.e 
domairt cfmeasured ma.wes. The goodness of fit improves with increasing numbers of 
parametersp approximately inversely top. The thin line represents &(n--p) 0~ P-“~. 
Little, however, can be inferred from this quantity about the expected accuracy of 
predictions for masses of nuclei outside the domain of measured masses except for 
extrapolations which reach only a few steps outside. 

Other aspects have to be taken into consideration. For example, most equations 
can be used to calculate Coulomb displacement energies. The standard deviations 
cc from the comparison with the experimental values are included in table 3. The 
smallest deviation a, exists for the equation GK-T, On the other hand the calculated 
Coulomb displacement. energies exhibit systematic deviations from the experimen@ 
values [see fig. 7 of ref.3)] which leads to one of the biggest cr, of ah few- and many- 
parameter equations. Furthermore, the Coulomb energies are functions Of 2 omY. 
The isotope shift coefficient yN for the nuclear charge radius is therefore identically 
equal to zero in disagreement with the data. Because of the strong correlation (see 
below) between Coulomb and symmetry energies, it is concluded that predictions 
for nuclei far away from the fine of ~-stab~~~y have to be considered with caution. 
Similar conclusions have been reached earlier by Sorensen 14). 
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Fig. 1. Plot of the quantity a,‘/(~-p) as a function of the number of parameters p for the 37 mass 
equations and solutions of generalized nuclidic mass relationships of table 3. The thin line represents 

~,,,~/(n-p) tc p-la3 (cr, = standard deviation; n-p = number of degrees of freedom). 

It appears that only Liran and Zeldes “) in the equations LZl and LZ2 have 
explicitly included Coulomb energy data to independently determine Coulomb 
energy coefficients. The influence of the strong Coulomb energy/symmetry energy 
correlations on extrapolations can thereby be reduced. The remaining part of the 
equation has to satisfy charge symmetry of nuclear forces. Their expression 

(14 
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is in excellent agreement with the data within all shells (with the possible exception 
of the region beyond “‘Pb) but serious discrepancies of up to 20 MeV exist at all , 

magic neutron and proton shell closures. 
The simple Coulomb energy expression EC = a,Z(Z- 1)A - p of the Bethe- 

Weizsacker equation BWI has been replaced by the two-parameter Coulomb energy 
expression EC = (a,ZZ+b,Z)A-f in BW2-BW5. The energy differences AEc = 

(2ac(Z< +0.5)+bc)A-* describe ‘) the experimental Coulomb displacement energies 
with a greatly reduced standard deviation of IS~ = 84 keV. 

The droplet model mass equation MS and the solutions MS-A, MS-B and MS-C 
of the generalized nuclidic mass relationships which are based on &, implicitly 
contained in MS will be used as examples to demonstrate the correlation between 
Coulomb and symmetry energy. Table 3 lists for MS values of o, = 3171 keV 
and oc = 171 keV. [The displacement energies calculated from the droplet model 
MS contain electrostatic and nuclear contributions i “).I The unrestricted solution 
MS-A has a vastly improved o,,, = 259 keV but at the same time a much poorer 
oc = 1160 keV. Also, the coeflicient q1 = 19.2 keV of the correction term 

AM,, = r,~i(iV-Z)’ is rather big indicating that the smallness of cr, is accomplished 
by a delicate misrepresentation of AM,-,,, as well as AM,,,. Therefore, the unrestricted 
solutions A cannot necessarily be expected to result in reliable extrapolations away 
from the line of /?-stability. The restricted solutions B and C do not have t’his short- 
coming because of the constraints AEc,,, = 0 or AE,,, zz 0. The original mass 
equations and the associated solutions B have always the same standard deviation cc. 
The solutions C, however, were found to have slightly increased standard deviations 
dc (except for S-C) suggesting slight misrepresentations of the symmetry energy 
in the original mass equations. It should be noted that almost all mass equations 
(except LZl, LZ2, BW2 to BW5 and the associated solutions B) display systematic 
rather than random differences between the predicted and experimental Coulomb 
displacement energies. 

Fig. 2 shows as typical examples the functions F,,,,(k) = F,(k) and Fe,,,(k) = 
Ir,(k)-F,(k) for the solutions MS-A, MS-B and MS-C. The Coulomb energy 
correction term F,,,(Z) for MS-A (F&20) = 0 is arbitrarily chosen) increases 
strongly with Z and reaches a value of 129 MeV for Z = 100 which is responsible 
for the strongly increased standard deviation oc. For the solution MS-B we have 
F,,,,(Z) G 0 and for MS-C the correction term F,,,,(Z) remains quite small con- 
fuming the earlier remarks. 

The functions F &k) display very pronounced shell and pairing effects. The 
oscillations due to the nuclear n-n and p-p pairing energies replace those described 
by the pairing term +apA-* (or similar) which is always removed from M(A, T,) 

before the functions F,(N) and F2(Z) are constructed. The depression of F,,,,,(k) 

in the region k = 100 is apparently due to deformation effects. A reasonable extra- 
polation of the functions F&k) and F,,,,(k) should make it possible to predict 
masses of superheavy nuclei. 
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Fig. 2. Plot of the functions F,,,,,(k) z F,(k) and Fcou,(k) s F;(k)-F,(k) obtained for the solu- 
tions MS-A (no constraint), MS-B (constraint F,(k) = F,(k)) and MS-C (constraint ?I = 0) 

based on Inp from the droplet model mass equation MS of Myers and Swiatecki ** g). 

Values of qz E - 110 keV (see table 3) indicate that no n-p pairing energy term 
of the type a(2)A-s’6,y,n_A has been included in the original mass equation M(A, T,). 
The effectivePneutron-proton interaction Inp derived from such a mass equation will 
therefore not reproduce the even-A/odd-A splitting ‘) of Inp. 
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The aforementioned discussion suggests that in constructing a mass equation 
M(A, T,) it is advisable to determine the Coulomb energy parameters independently 
from Coulomb energy data. If both Coulomb and symmetry energies are represented 
well by M(A, Y’J, the solutions M*(A, T,) obtained under conditions A, B and C 
should give similar standard deviations a,,, and oc and condition B with the smallest 
number of parameters should be given the preference. An inspection of table 3 
shows that such a situation does not exist for any of the listed mass equations. The 
solutions obtained under condition C! are therefore considered at present to give 
the most reliable results even though the solutions obtained under condition A 
which contain only a single additional parameter have smaher standard deviations 
cr El- 

To substantiate and illustrate some of the above arguments and comments about 
extrapolation, it was considered worthwhile to simply plot the various mass equations 
M(A, T,) and solutions M*(A, T,) as functions of T, or A. The effects of the different 
extrapolation is seen more clearly if one of the equations is used as a reference 
equation and the quantity M-M,,, is plotted, 

Figs. 3a-3f show plots of the quantity M-M,@r as a function of Tz for an arbitrarily 
chosen value of A = 100. The reference equation is MS-C. The star symbols represent 
the experimental mass values. For clarity the curves for the various equations are 
subdivided into six groups. Fig. 3a shows six liquid-drop model equations. As 
expected for few-parameter equations, they agree with the experimental masses 
only within a few MeV. They diverge from each other particularly on the neutron-rich 
side and for T, c 0. Fig. 3b shows as an example the comparison between the droplet- 
model equation MS and the solutions MS-A, MS-B and MS-C (which is the horizontal 
line). As expected, MS-A, MS-B and MS-C agree much better with the experimental 
masses than MS. The extrapolated predictions from MS-A deviate markedly from 
MS-B and MS-C. The latter solutions, obtained with the constraints dMc,,i = 0 or 
AMsym = 0, respectively, remain quite close to each other one the neutron- and 
the proton-rich side. This behavior persists for all values of A as can be seen below 
in fig. 4b. Fig. 3c shows the results for GK-T, GK-L, CON, LZI and LZ2. While 
describing the experimental values well, the divergence of the various predictions 
on the neutron- and proton-~ch side is quite significant. The solution CON should 
not be taken seriously. Clearly, a symmetry energy term of the form ~1(N-Z)2 
will grossly underestimate the true symmetry energy for light nuclei and overestimate 
it for heavy nuclei. Figs. 3d, 3e and 3f show the results for the various solutions of 
the type A, B and C, respectively. Again, the extrapolations diverge considerably, 
particularly for B and C. It is worth noting that the liquid-drop equation S of 
Seeger i2) leads to the most consistent solutions S-A, S-B and S-C. This result is 
supported by the fact that qr has the smallest value of all solutions A (liquid drop 
only) which results in practically the same deviation (T,,, for S-A and S-C (it is also 
the smallest). 

Figs. 4a-4d show pIots of the quantity ilri-M,,f as a function of A for nuclei 
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Fig. 3. Plot of the difference IM---M,,~ as a function of T, for nuclei with A = 100. The reference 
equation is MS-C. The star symbols represent the experimental mass values. The lines represent 
various mass equations and solutions of nuclidic mass relationships. (a) BWI, BW2, MS, MSL, C, 
S. (b) MS, MS-A, MS-B. (c) GK-T, GK-L, CON, LZl, LZ2. (d) BW3-A, MS-A, MSL-A, C-A, 

S-A. (e) BW4-B, MS-B, MSL-B, C-B, S-B. (f) BWS-C, MSL-C, Cs, C-C, S-C. 

along the line of P-stability defined by 

T = 0.2A2 
z 

200+ A’ 
(15) 

and for nuclei which are located distances of AT= = + 3 and AT, = rfi6 away 
from this line on the proton-rich and the neutron-rich side. The star symbols represent 
the experimental mass values. The reference equation for fig. 4a is MS-C, for 4Hd 
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Fig. 4. Plot of the difference &Z--M,,, as ;i function of A for nuclei aiong the lint of /?-stability and 
fig. 4a is MS-C, for all others it is MS. The star symbols represent the experimental mass values. 

BW2, MS, MSL, C, S. (b) MS-A, MS-B, 

it is MS. Fig. 4a displays all liquid-drop model equations. The positive and negative 
excursions of several MeV are due to shell effects. The nucIeon numbers A at which 
shell crossings occur are marked in the figure. Except for MSL, the various predictions 
are reasonably consistent with each other. The droplet model equation MS was 
chosen for figs. 4b-4d to serve as reference for some of the many-parameter equations. 
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parallel to it, namely dT, = -6, -3, 0, +3, -i-6 (from left to right). The reference equation in 
The lines represent various mass equations and solutions of nuclidic mass relationships. (a) BWI, 
MS-C. (c) GK-T, GK-L. (d) LZI, LZ2. 

The purpose is to see how the expected shell effects are generated by these equations. 
Crossings of magic neutron and proton numbers are again indicated. Fig. 4b gives 
the results for MS-A, MS-B and MS-C, fig. 4c for GK-T and GK-L and fig. 4d 
for LZl and LZ2. All equations with the exception of LZI in the heavier nuclei 
reproduce the shell behavior for AT, = 0 as indicated by the experimental masses 
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remarkably well. The limited data for AT, = +3 are also well reproduced, Clearly 
the same kind of behavior must persist into the more neutron-rich and proton-rich 
regions. The sharp minimum near 208Fb, for example, which results from the crossing 
of the N = 126 and 2 = 82 lines must separate into two minima (deeper for N = 126) 
away from the line of P-stability. Indeed, the predictions MS-A, MS-B and MS-C 
in fig. 4b display the expected behavior quite well. On the other hand minima from 
the crossing of the 2 = 82 line arc not apparent in GK-T, GK-L, LZ2 and to a 
certain extent LZI. Similar deficiencies but not quite as pronounced occur at other 
shell crossings. The predictions GK-L below A = 80 are much lower than the droplet 
model predictions MS. It is concluded from fig. 4 that the solutions of generalized 
nuclidic mass relationships based on an effective neutron-proton interaction Inp 
derived from liquid-drop models are very adequate in describing the shell behavior 
near and away from the line of /I-stability. 

Figs. 5a-5e show plots of the quantity M- Mrcf as a function of A similar to fig. 4. 
The scale is expanded by a factor of two. The reference equation for all plots is 
MS-C. The equations considered are essentially those of figs. 3c-3f. The oscillatory 
behavior which is particularly apparent in figs. 5c-5e is easy to understand. It is 
the result of small differences in the symmetry energy coefficients which leads to 
discontinuous steps whenever T changes. The predictions for very neutron-rich and 
proton-rich nuclei differ considerably. Particularly the differences in the behavior 
of GK-T, GK-L, LZl and LZ2 on the one hand and of the solutions of type A, B 
and C on the other are quite striking. 

The predictions from MS-C (the line M-M,,, = 0) are generally lower than 
those from most other mass equations. The predictions from S-C represent more 
centered and more balanced estimates. It was pointed out earlier that S-C presents 
the most consistent solution of type C and that it has the smallest standard deviation 
Go,. At present, the solution S-C is therefore considered to yield the most reliable 
predictions for the masses of unknown neutron-rich and proton-rich nuclei. It is 
hoped that this statement will be supported by future mass measurements and by 
other considerations. 

It is believed that all mass equations M(A, T,) and solutions M*(A, T,) (including 
S-C) of the generalized nuclidic mass relationships have short-comings. The most 
important one is probably the fact that the effective neutron-proton interaction In,, 
underlying the solutions M’%(A, T,) is very simple-minded. This deficiency has to be 
absorbed by the functions FI(N) and I;;(Z) and may be responsible for the slight 
misrepresentation of the Coulomb energies. Shell-dependent symmetry energy 
coefficients are definitely required, and their decrease within a given shell with 
increasing A due to the increase of the matter and potential radii has to be studied 
carefully. Correlations between neutrons and protons in strongly deformed nuclei 
will probably also affect I,,. The neutron-proton pairing energy appears to depend 
on isospin T as was observed earlier “). More attention has to be given to these more 
refined effects and more realistic expressions will have to be considered in the future, 
particularly for light nuclei. 
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4. MaRy-p~a~eter mass eqwtions for A 2 70 

Numerical values for the coefficients of the many-parameter equations S-C and 
MS-C will be given below. Both are solutions of generalized nuclidic mass relation- 
ships obtained under the constraint AM,,, = 0 with liquid-drop model representa- 
tions of the effective neutron-proton interaction I,,r. The former solution is based 
on I,, from the equation of Seeger I’). It is believed to result in reliable estimates 
for masses of unknown nuclei because of the internal consistencies pointed out earlier. 
The standard deviation of S-C for reproducing the known experimental masses is 

aln = 263 keV, the standard deviation for reproducing the experimental Coulomb 
displacement energies is oc = 420 keV. The second equation is based on I_, from 
the equation of Myers and Swiatecki ‘* ’ ). It is believed to slightly underestimate 
the masses of neutron-rich and proton-rich nuclei. Nevertheless, it is presented here 
because the droplet model contains the best justified description of macroscopic 
properties of nuclei. The standard deviation of MS-C for reproducing the known 
masses is (7, = 320 keV, the standard deviation for reproducing the experimental 
Coulomb displacement energies is (~c = 399 keV. Neither equation should be used 
below A = 70 because of the diverging predictions (see figs. Sc-5e) in this region. 

The solution S-C can be written as M*(A, 7’,) = M(A, T,)+dM(A, T,) with 
a binding energy expression I’) 

2.453 1_ 0.76361 --_ 
2” r;A3 

&8-$ +7OOOexp (-6(y) -t-14.33~1O-~Z~~~~. (16) 

The coefficients are 

c1 = 15971.3 keV, /I = 30047 keV, y = 20806 keV, 

tl = 45350 keV, 6 = (9600) keV, r,, = I .I6552 fm. 

The term AM(A, T,) is that of eq. (7) with ql = 0 keV, qz = q3 = -109.8 keV, 

f14 = q5 = 0 keV and F,(N) and F&Z) from table 4. The coefficient 6 has to be set 
equal to zero if the term AM is included. 

The solution MS-C can be written as M*(A, T,) = M(A, T,)+AM(A, Z”,) with 
binding energy expression a *“) 

-B(N, 2) = ~-a,fJTi2-~KE2+~M~4]Af[azf~(~2/Q~2]A~~a3 A’ 

f Cl Z2A- + -C2ZZA3-csZ2-CC1Z2A-1-(C4/2*)ZS_~PA-tffZ,lZl, (17) 

with 
_. 
6 = [~+~~(c,/Q)ZA-~]/[~+$(J/Q)A-*], 

E = [-2a,A-8+LS24clZ2A-~JIK, 

I= (~-Z)~(~~Z). 
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The coefficients are (in keV) 

al = 15986, ci = 735.31, 
a2 = 20760, c2 = 0.16477, 
a3 = 0, c3 = 1305.01, 
J = 36500, c, = 561.49, 
Q = 17000, 0.49695, 
K =%OOOO, ; f (llooo), 
L = 100000, a, = 30000. 
M= 0, 

The term A&@, !E,) is that of eq. (7) with Q = 0 keV, g, = Q = - 120.1 keV, 
rfir = tfs = 0 keV and F,(N) and F&Z) from table 5. The coefficient up has to be set 
equal to zero if the term dlW is included. 

Thanks are due to F, L, Milder and R. R. Howell for considerable help with 
computer programming. A research grant from the Michigan Memorial Phoenix 
Project, The University of Michigan, is highly appreciated. 
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