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Unitarity in the s-channel is invoked to derive an upper bound for the inelastic diffractive cross-section as a func- 
tion of impact parameter. The application of this bound to high-energy proton-proton scattering strongly suggests 
that inelastic diffraction should be peripheral in the impact parameter space. 

Introduction. Recent observation of  a structure 
around t = - 0 . 2  GeV 2 in the differential cross-section 
of the process pp ~ p(n,r +) at the CERN ISR [1 ] sup- 
ports the assumption that inelastic diffraction, unlike 
elastic diffraction, is peripheral in the impact param- 
eter space. This assumption has been made very plaus- 
ible in the past by many authors [ 2 - 6 ] ,  partially on 
intuitive grounds, partially on the basis o f  phenome- 
nological analyses of  experimental data. 

In this letter we suggest that  the previous conclu- 
sion is in fact a very natural consequence o f  s-channel 
unitarity and of  the assumption that inelastic, as well 
as elastic diffraction, is the shadow of  non-diffractive 
particle production. Using these assumptions, Pumplin 
has recently derived the following bound [7] : 

Oel(b ) + ocfff(b ) <~ }Otot(b ). (1) 

Here, oi(b ) -(1/rr)doi/db 2, where i = el, diff, tot ,  is 
the elastic, inelastic diffractive and total cross-section, 
respectively, in a collision at the impact parameter b. 
We apply this bound to high-energy proton-proton 
scattering and find that it is indeed very restrictive. In 
particular, it implies that at b = 0 the inelastic diffrac- 
tive cross-section can be most a third of  the elastic 
cross-section. Since the total inelastic diffractive cross- 
section is roughly equal to the elastic one (both  are 
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around 7 - 8  mb at the top ISR energy), the conclu- 
sion inevitably follows that inelastic diffraction must 
be more peripheral than elastic scattering. 

We then examine in what circumstances the bound 
eq. (1) could be saturated. We derive the following 
stronger bound: 

!. o(1)(h$, o(2)(h'~ °diff(b) '~ tot ~-" to t ' - "  (2a) 

- iOtot(b)] [1 Odiff(b)<~ [1 I (1) 1 (2) 
- ~ °tot(b)] (2b) 

where both  inequalities must be simultaneously satis- 
fied. Here o. (1). is the proton-proton total cross-section 

r o t  

and a,(2, ) is a suitably defined average cross-section of tot 
inelastic diffractive states (resonant or non-resonant) 
on other such states and on protons. From eq. (2) it 
follows that the bound eq. (1) can be saturated only 
if, for all b, a~lo~(b) + a{2l(b) = 2. Strictly speaking, 
this would imply that oI~ t is infinite. In practice one 
can essentially saturate the integrand bound if this re- 
lation holds for a large range of  b, say b < 2 fm, but 
the shape of  a{2l(b)required to achieve this result is 
obviously very peculiar. 

In order to find a more physical bound, we require 
that O~2ol(b) is a smoothly decreasing function of  b 
(such as a Gaussian, say) and that the integrated 
cross-section o( 2 ) should not be unreasonably large. tot 
It turns out that eq. (2), when supplemented by these 
assumptions, provides us with a very strong bound for 
Odiff. This bound has a sharply peripheral shape in b- 
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space, and it restricts odi ff to be ~ 8 mb. Since the ex- 
perimental value of Odiff is around 8 mb, we conclude 
that the above bound should be nearly saturated at all 
b-values that contribute appreciably to the integrated 
cross-section and, consequently, that inelastic diffrac- 
tion should be peripheral in b-space. 

General bound. Let us recapitulate Pumplin's deri- 
vation of the bound eq. (1). We introduce the notation 

S = 1 + 2iT--- 1 - 2t. (3) 

Here, S is the S-matrix. We consider the collision of 
two protons at high energies, and assume that there 
are an unspecified, but finite, number of diffractive 
states produced (this is only for convenience in pre- 
sentation). We choose a basis where these states are 
the N first ones, and write the t-matrix on this basis: 

1 . . . N  N + I . . .  

/ 
7" 

N 
t =N+I 

diffractive states 

non-diffractive 
states 

(4) 

This representation defines a sub-matrix'F, whose 
elements describe the transitions among the diffrac- 
tive states. We assume, for simplicity, the diffractive 
amplitudes T i¢ (i, ] = 1,. . . ,  A t) to be purely imaginary. 
Consequently,'/" is a real symmetric matrix. Since the 
eigenstates of'/" are linear combinations of the original 
diffractive states, they are diffractive, too. Thus, we 
may assume that elastic scattering of these eigenstates 
is purely absorptive. This implies that the eigenvalues 
o f t  should be real numbers between zero and one 
half: 

O~X n ~½, n = 1,... ,N. (5) 

Our normalization is such that )t n = ½ corresponds to 
total absorption of the nth eigenstate. 

Since T is a real symmetric matrix, the transforma- 
tion U which diagonalizes it is unitary. Thus, we get 

N 

(T)I 1 = n~__ llVlnl2~kn , (6a) 

N 

(T2)11 = n~=l IUln 12;k~. (6b) 

Here, l1 ) is the incoming two-particle state. 
Combining eqs. (5) and (6), the following inequali- 

ty is obtained: 

(]V)l 1 I> 2(72)11 . (7) 

The total, elastic and inelastic diffractive cross-sec- 
tions are 

°tot = 4"F11" (8a) 

°el = 4 C l l )  2 (8b) 
u 

Odiff = 4 ~ (Tin)2- (8c) 
n=2 

Neglecting spin, it follows from angular momen- 
tum conservation that all the above relations are valid 
for each impact parameter separately. The bound eq. 
(1) follows then directly from eqs. (7) and (8). 

Application ofeq. (1). Let us now apply eq. (1) to 
high-energy proton-proton scattering. We first inte- 
grate it, and obtain for the total inelastic diffractive 
cross-section the upper bound oaiff <~ ~Oto t - %1. At 
the top ISR energy, 1500 GeV]c, the total and elastic 
cross-sections are approximately 43.5 mb and 8.5 rob, 
respectively. Inserting these values into our inequality, 
we get a value for the upper bound of o~ff about 
13 mb. At present, the most reliable estimates for 
~aiff are obtained from triple-Regge analyses of the in- 
dusive spectra of pp -~ p + X. Such analyses have been 
carried out by several authors [8]. Although the indi- 
vidual analyses differ in their assumptions and, in par- 
ticular, in their results concerning the decomposition 
of the diffractive spectra into their scaling and non- 
scaling components, their estimates for the total 
amount of inelastic diffraction seem to agree reasona- 
bly well. The value of o~i ff is 7 -8  mb at 1500 GeV]e. 
Hence, the integrated bound 13 mb is far from being 
saturated. 

Nevertheless, the differential bound eq. (1) serious- 
ly restricts the amount of inelastic diffraction at small 
values of b. In fact, inserting in eq. (1) the values of 
Otot(b ) and eel(b) taken from a recent analysis of ISR 
elastic-scattering data [9], we obtain for od.~b) the 
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Fig. 1. Upper bounds for the cross-section of inelastic diffrac- 
tion Odiff(b) versus b, for pp scattering at x/~ = 53 GeV. 

: bound given by eq. (1). -- -- -- : bound calculated 
from eq. (2) with Gaussian Ol2o)t(b) and Ol2o)t = 86 mb. Shown 
are also the impact parameter distributions for the pp total 
(--.  - - .  --) and elastic ( . . . . .  ) cross-sections. 

bound shown in fig. 1. Although we know that  this 
bound is not  saturated for all values o f  b, it  is so re- 
strictive at small b that  an integrated value o f  

Odiff ~ 7 mb can be obtained only if  odiff(b ) is much 
more peripheral than %l(b).  

Next we shall examine, under what condit ions the 
bound eq. (1) could be saturated at all impact  param- 
eters. For  this purpose, it is convenient to ex-amirm- 
"r in a basis in which state I1) is the elastic state; state 
12), defined by  

2 
12) - ax/-d~ [ T I 1 ) - I 1 ) ( I l T I 1 ) ] ,  

is the linear superposit ion o f  diffractive states ob- 

tained in pp scattering, and the remaining states 
13) . . . . .  In) are chosen so as to complete the basis. Ac- 
cording to our assumption on the shadow nature of  
diffraction scattering, also the eigenvalues o f  the 
2 X 2 matrix 

must be real and in the range 0 to 1. This requirement 
yields immediately eq. (2) #. 

The bound eq. (1) follows from eq. (2) and can be 
saturated only if  bo th  inequalities eq. (2a) and eq. (2b) 
are simultaneously saturated. This happens when 

o(1)(bh + o (2)¢h't = 2 (9) tot ~ z to t~z  , 

i.e., when the sum of  the two total  cross-sections sat- 
urates the black disk limit.  Experimental ly,  o{l~(b) is 
very much like a Gaussian. Then, in order for eq. (9) 
to be valid, O(to2~(b) must be an increasing function of  
b, and at large impact parameters it  must approach,  
and finally saturate, the black disk limit. Such a be- 
haviour of  o~2~(b) that corresponds, in particular, to 
an infinite cross-section for the state 2, is physically 
unacceptable. Consequently, we conclude that  the 
bound eq. (1) cannot be saturated at all impact  pa- 
rameters. 

More stringent bounds. To find a more physical 
bound,  we impose that  o (2)¢t'~ [in analogy to o (1)¢t,~1 t o t ~ " 1  tot~.uJJ 

has a central shape (i.e., is a monotonical ly  decreasing 
function of  b). For simplicity, we parametrize it as a 

Gaussian ~. We then analyse the bound on Odiff as a 
function of  o ~ .  

* Stronger bounds could be obtained by imposing that all N 
eigenvalues of the completeT matrix are in the range 0-21". 
In practice, it is hard to exploit these bounds, since they de- 
pend on unknown transition amplitudes between inelastic 
diffractive states. 
In order to test the sensitivity of our results to the paramet- 
rization used for ol~t(b) we have repeated our calculations 
using several reasonable functions to describe ol~t(b). For 
all cases we tried, the results were very similar to those ob- 
tained using the Gaussian parametrization, both in their 
shape and in their magnitude. Hence, we may conclude that 
the bound is not sensitive to the exact shape of Olao)t(b). We 
point out that our assumption that o(2)(b) "is central is not 
equivalent to assuming that all the total cross-sections of 
the "physical" diffractive states are central, since the state 
12} is a superposition of the previous ones with b-dependent 
coefficients. 
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Fig, 2. Upper bound for the integrated cross-section of inelastic 
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diffraction versus ot~t, for pp scattering at x/~ = 53 GeV. 

The result is shown in fig. 2. From it we learn that 
a value odiff ~ 8 mb can be obtained only if o(2~ is at 
least twice as large as the pp total cross-section. This 
result may be interpreted as providing some evidence 
that the average total cross-section of inelastic diffrac- 
tive states on other such states and on nucleons is 
larger than the proton-proton total cross-section. To- 
tal cross-sections of low-mass diffractive states on nu- 
cleons have been measured in experiments on nuclei 
[10]. They seem to be more or less the same as the 
corresponding particle-nucleon cross-sections. The 
low-mass states studied, however, build up only a 
fraction of Odi ft. If the heavy mass diffractive states 
have large cross-sections on nucleons, the average 
cross-section o ~  could still be considerably larger 
than the corresponding particle-proton cross-section. 
Alternatively a large value ofT22 could be produced 
by the collective effect of off-diagonal transition ele- 
ments among "physical" diffractive states and thus 
not correspond to any large "physical" total cross- 
section. 

In any case, barring an unacceptably large value of 
~2~, we see that the bound that we obtain is very 
dose to the experimental value of Odi ff ~ 7 mb. Hence 
the value of adiff(b) cannot deviate very much from 
the corresponding bound for all values of b that con- 
tribute substantially. The impact parameter depend- 
ence of the bound is shown in fig. 1, for a~2~ = 20~1o~ = 

86 mb. The bound is seen to be sharply peripheral, 
peaking at b = 0.6 fm (this is the impact parameter 

• ( 1 )  value at which ato t = 1). From the above considera- 
tions we conclude that the actual shape of ad.a-f(b ) 
must be very similar. In momentum space, assuming 
the amplitude to be dominantly non-spin-flip, such a 
shape yields a dip around t = -0 .2  GeV 2. 

Another interesting observation can be made in 
the large-b region (not visible in the figure)• There the 
bound restricts o.¢ar(b ) to be much smaller than 
a~tea(b ). This shows that particle production at large 
impact parameters must be dominated by non-diffrac- 
tive processes. 

Discussion. The essential physics underlying the 
bounds eqs. (1) and (2) is s-channel unitarity. The con- 
straint that elastic scattering of the diffractive eigen- 
states of the S-matrix should obey unitarity reflects 
itself in the physical diffractive amplitudes, forcing in- 
elastic diffraction to be peripheral, but leaving elastic 
diffraction central. 

A useful tool to study unitarity effects is provided 
by the eikonal representation. Let us define a 2 X 2 
eikonal matrix I2 such that 

( 7'11 7 '121=1(1- -e -~ ) .  (I0) 

"r21 ~22 ] 

If eq. (2b) is saturated - which seems to be nearly the 
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Fig. 3. Illustration of the unitarity structure of elastic and inelastic diffraction. The Born terms are built up by non-diffractive pro- 
duction. 

case for b ~ 0.6 fm - then e - a  must have one eigen- 
value equal to zero, corresponding to I2ik ~ oo in such 
a way that ~12 '~" ~x/~11~22 • Since, on the other 
hand,T12 "~ X/~ll" 7"22, inelastic diffraction is much 
more strongly absorbed than elastic. This latter result 
is also found in the limit of  weak absorption. If  also 
in this case7"12 ,~ 7"11 ~ 7"22, we expand the ampli- 
tudes as (see fig. 3): 

27"11(b ) = I211(b ) - ~(~21(b ) + ~2~2(b)) + .... (1 la) 

27"12(b ) = I212(b ) -½~12(b)(~211(b)+ ~222(b)) + .... 

(1 lb)  

Since now ~2ik(b) ~ Y i k ( b  ), we expect fZl2(b ) ,g 
I211(b ) ~- ~22(b). This means that the absorption 
(relative to the Born term) is about twice as strong 
for inelastic diffraction as for elastic scattering. 

Finally, let us remark on diffraction dissociation in 
pion-nucleon and kaon-nucleon collisions. The unitar- 
ity mechanism discussed in this paper gives rise to 
strong absorption in inelastic diffraction only when 
Otot(b ) is much larger than one. The recent 7rN and 
KN elastic-scattering data from Fermilab [ 11 ] show 
that, in both cases, Otot(b = 0) is around one only. 
Hence our mechanism is not particularly effective in 
¢rp or Kp dissociation. Consequently, if our mecha- 
nism is the only source of  peripherality in diffraction 
dissociation, the dip structure at small t-values should 
be absent or less pronounced in rrp and Kp diffraction 
dissociation. 
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