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A natural and essentially unique extension of the Chou-Yang model to multiparticle 
processes is presented. The multiparticle amplitudes are derived from the physical ideas 
of the original Chou-Yang approach. The beam and target particles are treated as exten- 
ded, non-recoiling, Lorentz-contracted objects which interact and produce particles 
as they pass through each other. The resulting multiparticle amplitudes satisfy s-channel 
unitarity exactly. 

A minor modification allows us to include diffractive inelastic effects. When diffrac- 
tion is included the connection with the electromagnetic form factor must be given up. 
The model is in good qualitative agreement with various features exhibited by the data. 
The model requires the total cross section to rise in a definite way. However, quanti- 
tative agreement at ISR energies is far from satisfactory. This is probably due to the 
"no-recoil" assumption inherent in the Chou-Yang model. 

1. Introduction 

An important constraint on models for multiparticle amplitudes is that they 
yield correct elastic and inelastic diffraction scattering results via unitarity calcula- 
tions. The multiperipheral model faces extremely serious difficulties in this respect 
[ 1 ]. This leads us to consider alternative models for multiparticle production. The 
Chou-Yang model is an attractive suggestion for describing elastic scattering [2]. In 
this article, we extend the model to multiparticle production in a natural and es- 
sentially unique way. These multiparticle amplitudes, when used to calculate elastic 
scattering, exactly give the original Chou-Yang result. 

The essential features of the Chou-Yang model are: 
(i) Particles are treated as extended objects, and their scattering is determined 

from the matter overlap. 
(ii) In calculating the matter overlap, an integration is performed parallel to the 

direction of motion, so that every piece of the incident particle, as it passes through 
the target particle, interacts with every piece of the target at the same transverse 

position no matter what the relationship between the longitudinal positions are. This 
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can be seen to be a "no recoil" approximation, since the amplitude for interaction is 
independent of  whether the same piece of  the incident or target particle has under- 
gone previous interactions. This approximation is in contrast to that of, for example, 
the multiperipheral model, in which an interaction at some transverse position en- 
hances the probability of  subsequent nearby interactions. 

(iii) The matter distribution used in calculating the overlap is the same as the 
charge distribution, which gives the electromagnetic form factor. As we shall see, 
this equality of  matter and charge distributions, cannot hold because o f  the pre- 
sence of  inelastic diffraction processes. These processes can be handled in an analo- 
gous "q-number" model, also developed by Chou and Yang [3]. 

(iv) Eikonalization is included in the Chou-Yang model. This makes it possible 
for us to write down a multiparticle extension which incorporates unitarity. 

(v) In its original form, there was no energy dependence in the model. However 
energy dependence has more recently been included [4], in an ad-hoc way. We 
shall see that our approach leads to definite predictions on the energy dependence. 

Our extension is based on the ideas proposed by Chou and Yang. It appears to 
be the essentially unique application o f  these ideas to multiparticle processes. We 
take the no-recoil assumption as basic, and assume that even such fundamental 
recoil effects as energy-momentum conservation do not seriously perturb the re- 
suits obtained by neglecting recoil. As each bit of  the incident particle passes 
through the target particle, it can cause an interaction at a particular point in 
space and time. This interaction leads to the production or possibly to the destruc- 
tion, of  some object, which ultimately decays (if it is not subsequently destroyed 
in another interaction) into the observed particles. We refer to this object as a 
"cluster". (We will see later that a cluster must have vacuum quantum numbers so 
that, for example, it cannot be a single pion.) 

The probability for such an interaction is given by the product of  the matter 
densities of  incident and target particles. Thus, the interaction amplitude p(x, y, z, t) 
is the product of  wave functions whose squares are the matter densities. One would 
like to identify this matter density with the charge density if possible. Since Chou 
and Yang assume that there is only one type of  matter density, our parallel assump- 
tion is that there is only one type of  cluster. This produced state in general is not 
an eigenstate of  the mass operator. The bits of  the incident and target particles 
that led to the interaction are not allowed to recoil, nor are they allowed to be en- 
hanced or suppressed. In other words, the source O is not affected by interactions. 
This property is the defining property o f  a classical source, one which can be speci- 
fied independently of  the quantum uncertainties connected with the presence o f  
an interaction. Thus we see that the no-recoil assumption of  Chou and Yang 
forces us to assume a classical source whose strength is the square root of  the 
Chou-Yang matter overlap. 

Because of  the no recoil approximation, energy-momentum conservation cannot 
be exactly satisfied. The approximation would be more justifiable if the leading 
particles carried almost all of  the incident energy. 
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For the same reason, that we don' t  allow recoil, we cannot allow the produced 
clusters to interact among themselves. If  we did, it would introduce a correlation 
absent in the Chou-Yang model. Thus the clusters are treated as free particles, ex- 
cept for their interaction with the classical source and their decay which is assumed 
to occur a long time after the collision is concluded, so that it does not affect the 
collision. 

It is fortunate for us that, as is well known, the classical source problem has an 
exact solution and that the exact unitary S matrix can be written down. We are 
able to calculate any quantity of  interest. For example, our elastic scattering agrees 
exactly with that o f  Chou and Yang. 

To finish the specification of  the model, the wave function of  each incoming par- 
ticle is given by a spherically symmetric function f(r)  in that particle's rest frame. 
Lorentz transformations are done to transform to the same frame for both particles; 
for convenience we work in the center of  mass frame. In order to make the total 
amount of  matter be energy independent in spite of  the Lorentz contractions, it is 
required that the wave functions be vectors. From phenomenological consideration 
we choose the simple form that the wave function ~ have only a 4th component 
in the particle's rest frame. 

The only freedom in the model is the choice of  the function f(r) ,  the choice of  
a coupling constant determining the strength o f  the interaaction, and the decay 
distribution of  the clusters. The first two of  these freedoms are exactly the same 
as for Chou and Yang. Our energy dependence comes completely from the Lorentz 
transformations. 

Chou and Yang considered a further model in which the interactions can cause 
transitions to additional states of  the same quantum numbers as the incoming par- 
ticles [3]. We can do likewise by considering the wave functions to be matrices in 
the space of  such states. This "q-number" model is to be preferred to the simpler 
one because it includes diffractive inelastic processes as well as elastic scattering. 

The model we arrive at turns out to be the same as a model considered by Caluc- 
ci, Jengo and Rebbi [5], as well as being a special case of  a class of  models con- 
sidered by Aviv, Sugar and Blankenbecler [6]. The new features of  our work, not 
discussed in ref. [5] are (i) the derivation of  the model from the Chou-Yang mo- 
del and the implications of  our results for the Chou Yang model, and (ii) the 
identification of  the most important phenomenological aspects of  the model. 

A detailed description of  our model and derivation of  observable consequences 
is given in sect. 2. The casual reader may wish to skip to sect. 3, where a summary 
of  the important qualitative results is presented. Sect. 4 contains a quantitative 
comparison of  the extended Chou-Yang model with data, concentrating on the re- 
lationship between the growth of  total cross section (and associated elastic slope) 
and the growth of  the average multiplicity. Our conclusions are presented in sect. 5. 
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2 . Description of  the m o d e l  

In this section we present our formalism. The results used in subsequent sections 
are eqs. (10), (21), (29) and (25) for the "c-number model" and eqs. (42), (43) and 
(45) for the "q-number" model which includes diffractive inelastic scattering. The 
extreme asymptotic behaviors of  the cross section and the multiplicity are given 
in eqs. (32)-(35) .  The inclusive cross section (in the central region) is given by eq. 
(37), with a particular example given by eq. (38). 

As discussed in the introduction, we extend the Chou-Yang model to production 
processes by considering these processes to be described in terms of  a classical source 
for production, and this source to be given by an overlap of  wave functions o f  the 
two incident particles, which we refer to as "protons". The source density which 
we denote by p is 

p(x, y, z, t) = g  ffl(X, y, z, t) ~2(x,y,  z, t), (1) 

where we have introduced a coupling constant g to provide the normalization. The 
wave functions ~ 1 and ~2 depend on the preparation of  the incoming states and on 
the structure of  the protons. Rather than using the experimentally feasible momen- 
tum eigenstates, we imagine the protons as approaching each other with center of  
mass energy w = ,v/S ", and at a relative impact parameter b. To make experimental 
statements we must transform between b and t. We work in COM coordinates, with 
the z-axis along the direction of  motion of  the protons, and the origin o f  coordina- 
tes half way between the protons (the z-axis bisects the impact parameter vector b); 
t = 0 is chosen to be the time at which the center of  each proton is at z = 0. We 
define a transverse position vector ~ = (x, y).  In the rest frame of  each proton, its 
wave function is spherically symmetric, being given by ~i =ft' (R2) where R is the 
distance to its center. In the COM system each proton is Lorentz contracted [7]. 
Since we are interested in high energy collisions, we make the approximations 

o = 1, (2) 

s = 4 M272 , (3) 

where M is the proton rest mass. The Lorentz transformations give us the source 

p([J,z, t) =g(1 (([~- ~b)2 +72(z-t)2)f2 ((1)+ ~b)2 +72(  z + t)2), (4) 

which depends on b,s as well as the explicit coordinates. 
The classical source problem is exactly solvable [8]. The fundamental quantity 

is the on mass shell Fourier transform of  the source 

ok = fdSx  dt e i k ' x - i ~  p(x, t), (5) 

where/a is the mass of  the produced object, which we call a "cluster". The S-matrix 
for the classical source problem is 
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{" d3k + . ~Okl, S = e x p i j ~  [O k tpk+Ok (6) 

where ~o~, ~0 k are the creation and destruction operators of  a cluster. This expression 
explicitly exhibits the unitarity of  S. The S-matrix elements are easy to evaluate. We 
are interested in the transition from zero clusters (only protons) to n clusters (in ad- 
dition to the protons). For this case we have 

S n =- (pp + n ~o's IS[ pp) 

where 

n 

=ine-~'ff  j=ll-I Pk/' (7) 

. r d3k 2 
f f = h ' ( b ,  s)=Jk2x/~y-~21Pkl. (8) 

The physical meaning of  h- is discussed below. 
We define the amplitude f a s  

f =  1 - S ,  (9) 

which has 0 -~ n matrix elements. 

f0 = 1 - e -~-ff, (10) 

n 

= e ~ 1-[ (11)  /n.0 - in -'-~ i=1 P~" 

We will establish the identification of  our elastic amplitude fo [given by eq. (10)] 
and that of  Chou and Yang when we show 

£Z = lh-, (12) 

where ~2 is the matter  density overlap. 
In order to understand the model, it is convenient, as we have mentioned, to 

consider scattering between eigenstates of  impact parameter, rather than the experi- 
mental conditions of  momentum eigenstates. Each cross section is a cross section 
per unit area in impact parameter space, da/d2b, which is dimensionless. Actually, 
we describe the clusters in momentum space and the protons in impact parameter. 
The no-recoil assumption implies the conservation of  impact parameter. We ob- 
tain cross sections by  squaring eqs. (10, 11) and integrating over phase space. In 
integrating each cluster over all of  phase space, we have counted each configuration 
n! times, so we must divide by  n! The cross sections are 
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de 0 
- 1 - 2e -~h- + e - i f ,  (13) 

d2b 

dan~O - e - f f  Kn/n!. (14) 
d2b 

At this point, unitarity for elastic scattering is easily verified. By summing eqs. (13) 
and (14) we find 

do T , -  
- 1 - 2 e - r n  + e - f f  nn/n!  

d2b 0 

= 2  - 2  e -¢h- = 2 f  o. (15) 

The average multiplicity at fixed b can be calculated from eq. (14). One sees that 
for n :/: 0 the multiplicities follow a Poisson distribution with mean h-. This does 
not imply a Poisson distribution after averaging over the impact parameter, but in- 
stead implies a broader distribution. The multiplicity times cross section is 

(n) do = ~ n  e -ff  Kn/n! =n-.  (16) 
d2b 

The value of  (n) depends on the definition o f  a in eq. (16). We distinguish five 
interesting cases. 

(i) The average multiplicity at fixed b, irrespective o f  whether any interaction 
occured, but counting each incoming particle equally. For this case we make 
da = d2b and 

(n) b = h-; (all incident particles). 

(ii) Given that some interaction occurred, do = do T , 

(17) 

(n) b = h-/(2-2 e -k  if); (a T normalization). 

(iii) Given that an inelastic interaction occurred. 

08) 

(n) b = K / ( 1 - e - f f ) ;  (Oinel normalization), 

(iv) and (v) Integrating over b, 

(n) o = 27r f bdb ff (b,s), 

(19) 

(20) 
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where o = o T or Oinel depending on the normalization chosen. The last of  these 
choices corresponds to the experimentally reported (n), minus the two protons and 
divided by the average number of decay products of  the clusters, which we call v. 
Therefore, we will use 

(n) = 2 + (/,'/Oinel) 2rr fbdb ff (b,s). (21) 

Eqs. (16)-(21),  especially eq. (17) describe the physical interpretation of h-. 
We will now give a simple argument to show that the clusters produced have 

vacuum quantum numbers. Suppose, for example, that a cluster did have non-zero 
charge; then this charge necessarily comes from one of the two initial nucleons. 
(The interesting case is one neutron and one proton). Eq. (8) shows that the quanti- 
ty ff is the integral over phase space of the square of  the source Ok, which corre- 
sponds to the emission and subsequent absorption of a cluster. When the cluster is 
re-absorbed, its charge may be returned to the nucleon from which it was derived, 
or it may be transferred to the other nucleon. In the latter case, there is a net 
charge transfer; and thus, n makes a significant contribution to charge transfer 
processes, for example pn ~ np. Since such processes are expected to become small 
at high energies, we want no charge transfer contribution to g. Similar arguments 
can be used for the exchange of other quantum numbers, and we conclude that the 
produced clusters have Vacuum quantum numbers. This conclusion is easily verified 
by a matrix model similar to the q-number model described below. 

The identification of our expression with that of  Chou and Yang comes from 
combining eqs. (1), (5) and (8). We make the approximation that the z and t depen- 
dences of the wave functions can be factored out, and that the longitudinal momen- 
ta are large, compared to the transverse momenta. We discuss this approximation be- 
low. With these approximations, the integrations over longitudinal and 4th compo- 
nent coordinates simply give a function of energy. The transverse coordinates give 

= fen (s) fd2k±lp ( k )  l 2 

= fcn (s) fd2k±fd2x±qJt(xi) ~2(X.L) e i/c± 'x± 

x 

=fcn (s) fd2xt ]ffl(X±)121~b2(x±)l 2, (22) 

which, with an appropriate relationship between our coupling constant and that 
of  Chou and Yang, establishes eq. (12), by identifying the matter density distribu- 
tion with the absolute square of  the wave function. Thus we have demonstrated 
that our model agrees with Chou and Yang for elastic scattering, as is to be expec- 
ted by our adoption of their philosophy. 

Of course we should use the more exact expressions, eqs. (4), (5) and (8) rather 
than the approximation leading to eq. (22). This exact treatment leads to interesting 
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consequences, such as the lack of  factorization of  ~2 into a function of  s times a 
function o f b .  Such a lack of  factorization seems to be indicated by the ISR elastic 
scattering data [9]• However, in this paper we do not concern ourselves with this 
level of  refinement, and we shall consider a factorized model. I f  the wave function 
were Gauss±an, it would be factorizable. We shall modify the wave function slightly, 
giving up exact spherical symmetry.  We choose 

(r±, rl,) = G(~)  e -r t2/b 2. (23) 

In order to have approximate spherical symmetry we require 

G(r2)~ , e -r2ilb2, (24) 

so tha t  

2 f a 2 ( r  2) r 2 dr 2 

This equation is to be understood as only approximate in the reafisitic case that G 
is far from a Gaussian. In order to complete the factorization we replace k± in 

+ 2 = d k 2 + k  2 + . 2  

• 2 2 2 2 2 ~  2 2 by its average value, and define ta± = (k±) +/a , so x / /~  +/a ~ x/kll + U± • 
With these approximations we have, for the longitudinal dependence from eq. (4), 

-(23,2/b ~)(z2+t 2) 
Oil(z,t) = e , (26) 

whence, from eq. (5) 

+ 4 + d), 
pkl I = 23,- ~ -  e 

- - - -  e 

27 2 
(27) 

The factor 1/3 '2 is clearly inconsistent with approximately constant total cross sec- 
tions. Its origin is the decrease in volume caused by  the Lorentz contraction• It 
can be removed by  making the wave functions vectors instead of  scalars. (Vector 
wave functions were also used by Calucci et al. [5]). Because of  the lack of  experi- 
mental spin effects in high energy pp scattering, we shall choose flu = Pu f ( r2)  in- 
stead of involving 7u. The factor PulPu2 ,:r. 72, and the interesting remaining part of  

pkC I is 
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2 2 ~ 2,,A 2 2 2 2 , 2 
e -b0(kll + ~ui)l'~Y = e - b 0 M  (kll+r#l)/s 

[see eq. (3)]. When written in rapidity (for kll >> O) this is exp ( -b2/a  2 e 2(v-Y)) which 
exhibits a rapidity plateau. The rapidity plateau has its origin in the Lorentz contrac- 
tion. From eq. [8] we obtain the energy dependence of  h-: 

dk11 2 2 2 +, 2 -2b0M (kll 7**k)/s 
e ~ = ( f c n o f b )  X _~.f x/,k~l +/a±2 

2 M2/$). = (fcn of  b)  × Ko(b2 0 U± (28) 

As s -~ oo, Ko(const/s ) ~ In s, so that the K 0 function just measures the length of  
the rapidity plateau, with the appropriate end effects included. Finally, the b depen- 
dence, as shown above, is just as in the work of  Chou and Yang, with the form fac- 
tor F = G 2. Putting everything together we have 

= ' - ab'2"K ~b 22M2/s ) .  (29) ~- g fd2pFI((P ½b)2)F2((l~+~ ) ) 0 ( 0/a± 

In the case of  the Gaussian G = exp ( -~ /b2) ,  for example, this works out to 

e-b 2 /b 20 
ff o: Ko(b20 M21a~/s). ~ (30) 

It is of  theoretical, but not phenomenological, interest to calculate the extreme 
asymptotic behavior of  the cross section and the multiplicity. We have found that 
the eikonal, ~ = ½if, rises at high energy like Ins.  At distances much smaller than 
a distance R,  the eikonal will be much larger than unity while at distances much 
larger than R the scattering is negligible. Therefore 

°el ] 

Oinel } ~ ~.R 2" (31) 
/ 

The radius R is determined by the condition ~ff(R,s) -~ 1. The solution of  this 
equation at extreme s depends on the large b dependence of  ft. I f ~  is a Gaussian 
exp (-b2/b~) In s, this works out to R 2 = b 2 In In s, so that at extreme s: 

Oel ~ Oinel ~ 21- O T ~ rr b02 In In s. (32) 

In this case 

K In s 
<n) (33) 

o In in s " 
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A more reasonable choice for the large b dependence of h- is g ~ e -2mnb In s. 
This leads to R = (1/2mn) in in s, so as In In s ~ 0% 

O.el~ainel~½OT ~ 7r (lnlns)2 ' (34) 
4m 2 

(n) ~ In s/0n In s) 2. (35) 

For phenomenological purposes, these expressions are useless and we use instead 
the (approximately correct) energy dependence given by eq. (29), or (completely 
correctly) by eq. (8). 

The inclusive cross section for the process 

p + p -~ cluster + anything 

is also readily calculable by squaring the amplitude fn given in eq. (11), integrating 
over phase space, and summing over multiplicities. Since the momentum of the 
observed cluster is not integrated, phase space is counted only (n - l ) !  times. De- 
fining E/= x/k2+ la 2 , 

do(b)  _ ~ e -h-(b) ]_~1 fd3k/ .  

d3kcLdEb n = 1 ~ I'=1 J E-~--'. L°k/(b)] 2 [PkcL(b) ] 
2 

ECL 

_- e-~- (b ) [Pk cL(b ) l 2 n=l ~ (n--1)!(ff)n-1 _ [PkcL(b) ] 2, (36) 

so that 

do - fd2b (b)12. 
ECL d3kc L [PkcL 

(37) 

The inclusive cross section is thus determined by the square of the classical source 
density. The absence of an absorptive factor e -h- in eq. (36) is discussed in ref. [10]. 
The rapidity plateau and transverse momentum cutoff come from the shape of ft. 
In particular, for Gaussian wave functions ~ (r) = exp (-r2/b2),  we find 

1 . 2 , 2  - b  2 2 x 2 
cc e-~O0X± e 0 [ k l l + ~ ±  ]/2~'2 do 

ECL d3kc L 
(38) 

As previously mentioned, the second factor shows a rapidity plateau. Note the 
Gaussian cutoff in transverse cluster momentum, following from the Gaussian wave 
functions. The average value of k I is given by 
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4 (39) (k2) =-2~- " 

b 0 

The model we have just finished describing corresponds to the "c-number"  model 
of  Chou and Yang. In a second paper they describe a "q-number" model [3], inclu- 
ding diffractive inelastic scattering, whose extension to multiparticle production we 
now describe. 

For this model the wave functions ~ 1 and ~ 2 are not simply numbers, but are 
matrices in a space of  states all with the same quantum numbers as the proton. We 
call one of  these states P*. The model, in addition to describing pp ~ pp and 
pp ~ pp + n~'s [also describes the diffractive inelastic processes pp ~ pp*, p ' p ,  
p ' p *  and non-diffractive processes such as pp -+ pp* + n~0's.] The development of  
the model proceeds as above, except that p, if, and the amplitudes become ma- 
trices. The most important change is that the zero cluster amplitude f0 includes 
both elastic and diffractive inelastic scattering. 

A convenient method for presenting the model is in terms of  the eigenstates 
li) of  ~1~2 .  These eigenstates are in turn eigenstates of  p, of  if, and of  diffractive 
scattering. The probability o f a  2 proton state being in a given eigenstate is 

P. = Iqlpp)J 2. (40) 

In terms of this eq. (8) becomes 

(pplffJpp) = ~ (pplt) ~. (ilpp) = ~ P. ~., (41) 
i i 

so that eq. (21) reads 

(n) = 2v L + (vloinel) 2zrfbdbZP.~/(b,s) ,  (42) 

where we allow the p* states to decay into v L particles on the average. Eq. (10) now 
has 2 parts, 

-~h- i 
fel = (ppIf0 ]pp) = 1 - ~ P / e  , (43) 

and the diffractive inelastic part. The elastic cross section is 

dae l_  2 (44) 
d2 b -fel" 

The diffractive inelastic cross section adiff is 

dOdfff- ~ I(p*p*lfolpp)[ 2 = ~  I(p*p*lfolpp)l  2 dael 
d2b p * ¢ p  all d2b 

= (pp l f2 jpp )  dad 
d2b 
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so that 

dadiff = ~ P t '  (1--e-~h-i)2 -- dael 
d2b d2~  

= ./<~j pt~.[e 2 l _ e-m/]  2. (45) 

Finally, eq. (29) holds for each separate eigenstate. 
We could proceed further, decomposing the n-cluster cross section into states 

with p 's  and p*'s, etc. Such things are however, not particularly interesting. We will 
only discuss the consequences of  the equations we have presented. 

3. Qualitative results of  the model 

Before proceeding to some quantitative comparisons of  our model with experi- 
mental data, we summarize the qualitative features resulting from the model. 

The fundamental interaction is the production of  clusters. These clusters must 
carry isoscalar quantum numbers. The S-matrix is exactly unitary. It coincides 
exactly with the Chou and Yang amplitude for elastic scattering and for diffractive 
inelastic scattering when that is included in the model. A central quanti ty is ~(b,s), 
which is the average number of  resulting clusters at a given energy and impact param- 
eter, irrespective of  whether any interaction occurred. This quantity, ff(b,s), in- 
creases at high energy approximately like Ins*.  This dependence follows from the 
available extent of  rapidity space; or equivalently from the Lorentz contraction. 
In the explicit example of  Gaussian wave functions [eq. (28)], h- was proportional 
to the Bessel function K 0 (constant/s) which behaves like In s for large s. The K 0 
form is to be preferred to the In s form even for non-Gaussian wave functions. 

The opacity or eikonal ~2(b,s) is ½ ~(b,s) [eq. (12)]. Since the opacity increases 
as a function of  s, the total and elastic cross sections [which follow from eq. (10)] 
also rise, In the example of  Gaussian wave functions, the asymptotic behavior of  
the total and elastic cross sections is like In In s [eq. (32)]. 

The product of  the experimentally observable average cluster multiplicity (nCL) 
and the inelastic cross section is proportional to the opacity ~2(b,s). [See eq. (20)]; 
hence this product increases like In s. Again, for the case of  Gaussian wave func- 
tions, one finds that ( n c l )  ~ In s/lnln s, since tTinel(S) ---- OT(S ) - -  ael(S ) ~ In In s. 
For wave functions with Yukawa tails the corresponding results are aT, eel , and 
ainel -+ (In In s) 2 while (ncl) ~ In s /0n In s) 2. These asymptotic statements are of  
only theoretical interest; the phenomenologicany interesting statements are that 
cross sections and multiplicities are rising in a way predicted by the t-dependence 
(or equivalently the b dependence) of  the elastic amplitude. 
* The In s factor in ff was previously noted by Krisch [ 16 ], but the resulting rising cross sections 

were not discussed. 
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Qualitatively, K 0 (constant/s) is good for fitting the multiplicity since it rises 
more slowly at small s than In s as does the data. K 0 is positive for all s, while In s 
is negative for small s. Inclusive cross sections exhibit a rapidity plateau, have 
scaling both in the central and end regions, and have a transverse momentum cutoff. 
The end effects in rapidity are given by the same K 0 function that appears in h ,  as 
well as by the actual fragmentation (if any) o f  the incident particles. Typically, the 
average transverse momentum of a cluster is given by 

4 (39) q~) =~ .  
b 0 

The value o fb  2 at ISR energies can be estimated from fig. 2 o f  ref. [11], and it lies 
in the range 0 045 ~< b2 -2 ~< 0 08 (GeV/c) 2 Conseauently, 0 18 ~< (k 2) ~< 0 32 

2 " o " • -x • ± • (GeV/c) . If  a cluster were to have a mass > 1 GeV, eq. (2) o f  ref. [12] shows that 
this range of  (k 2) is moderately small, andwould be difficult to detect experimen- 
tally. 

The multiplicity distribution of  clusters at fixed impact parameter is Poisson ex- 
cept for the diffractive events (i.e., those with zero clusters). The actual multipli- 
city distribution is broadened by averaging over impact parameter and by the decay 
of  clusters. 

The qualitative features o f  the model which can be compared to the experimen- 
tal situation are extremely encouraging. There remains, for the next section, to 
make a quantitative comparison with relevant data. The most important thing to 
check is whether the same h- can give both the eikonal and the multiplicity. Since 
the cluster size is arbitrary, we must compare not only the magnitudes o f  the eiko- 
nal and multiplicity, but also compare the energy dependence o f  the multiplicity 
with the rise of  the total cross section and the associated shrinkage of  the elastic 
peak. This is the place where the multiperipheral model is unsatisfactory [ 1 ]. We 
shall now see how the extended Chou-Yang model fares. 

4. Comparison with experimental data 

We have seen that the classical source Chou-Yang model described above is 
qualitatively consistent with the trends exhibited by the data; e.g., rising total 
cross sections and multiplicities. In this section we examine whether quantitative 
agreement is possible. We first consider the c-number model with only a single 
elastic 2-body channel (case A); subsequently we look at the q-number model 
with 2 and 4 eigenchannels in order to include the possibility o f  diffraction disso- 
ciation (case B). Finally, we discuss some explicit examples with many eigen- 
channels (case C). 
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Case A: The relevant formulae are the usual eikonal expressions 

OT(S ) = 47r f b db f(s,b) = 47r f b db [1--e-S2(s'b)], 
0 0 

o o  

Oel(S) = 2rr f b db [f(s,b)] 2 = 2rr f bdb [1-e -gz(s'b)] 2, 
0 0 

Oinel(S ) ---- OT(S ) -- Oel($ ) = 27r f [1--e -2c~(s'b)] b db, 
0 

do = 7r [F(s,t)] 2;F(s,t) = f bdb f(s,b) Jo(bx/~-t), 
dt 

0 

and in addition, from our extension 

(2a)" 
°nvS'b ~ = e-2a n! ' 

(ncl) (s) ainel(S) = 4rr f b db ~2(s,b ), 
0 

(nch) = Uch~ d) + 2. (46) 

(nc h) is the average number of charged particles produced and vch is the number 
of charged particles per cluster. We have written ~ instead of ½~ is these expressions. 
The model is fully specified by a choice of matter density functions F and coup- 
ling constant g, which determine the eikonal ~2(s,b) as given (approximately) by 
eq. (29). [see also eq. (25)]. 

In keeping with the original Chou-Yang ideas, the opacity is taken to be pro- 
portional to the overlap of electromagnetic form factors. For protons, the form 
factor is well approximated by the dipole formula G(t) = (1 -t /~2) -2 with ~2 = 
0.71 (GeV]c) 2 , and the opacity is 

g2(s,b) = j (x/eL-t) d(x/-L~) GZ(t) Jo(bx /~)  = g(s) (Oh) 3 K3(/lb ). (47) 
0 

The energy dependence resides solely in the proportionality function K (s). At this 
point we do not impose the relationship between the s and the b dependence, but 
instead choose • (s) to give the correct energy dependence of o1-(s ). The elastic 
differential cross section obtained from the opacity of eq. (47) is known to be in 



F.S. Henyey, U.P. Sukhatme/Chou-Yang model 301 

very good agreement with the corresponding ISR measurements [4]. Since the opa- 
city is now fully determined, Eq. (46) predicts the energy dependence o f  the charged 
particle multiplicity in pp collisions. Evaluation o f  this expression shows that the 
rise predicted by the model is approximately 5% over the ISR energy range [900 
(GeV/c) 2 ~< s ~< 2800 (GeV/c)2]; considerably less than the rise of  ~- 25% seen in the 
data. Moreover, the average number of  produced clusters is ~ 1.5, which makes 
each cluster have about 8 particles. Thus, the c-number model must be rejected on 
this basis. 

The small number of  clusters and the failure to get the desired rise in multiplicity 
can be understood by the smallness of  the opacity function. For small ~2, such that 
O(f22) is not substantial, we have 

ainel(S ) ~ 47r y~2(s,b) bdb, 

(ncl) _ 4rr f b  db g2 (s,b) ~ 1, 
Oinel(S) 

independent ofs .  Roughly speaking, when £Z is small, eikonalization is not impor- 
tant, and the energy dependence of  the opacity is more or less cancelled by that of  
the inelastic cross section, leaving an essentially flat value for the number of  pro- 
duced clusters. The situation would be quite different for large opacity functions; 
in that case the impact parameter amplitude would approximately be a black disc 
ainel(S ) would have little energy dependence, and the energy dependence of  the 
opacity function would be reflected in (ncl). 

The small number of  clusters produced can also be understood in terms of  an 
argument by Goldman and Sivers [13]. Their argument applied to a version of  
the multiperipheral model rather than to the Chou-Yang model, but can be ex- 
pressed in terms of  our considerations. They draw a connection between the 
use o f  vector wave functions and the extremely small value of  the multiplicity. 
Since we are forced to use vector wave functions, we are forced to have a low 
multiplicity. 

Although we have ruled out the c-number model, it still is o f  some interest to 
impose the condition from eq. (29), that 

-2  2 ,*2 

(s) = K 0 s 

to see if this can fit the energy dependence o f  just the total cross section. As men- 
tioned in sect. 3, the value o f b o  2 is between 0.045 and 0.08. The parameter/a± = 
cluster transverse mass can be adjusted to fit the rise in o T in the ISR region. The 
value is somewhat sensitive to the amount o f  rise o f  OT, but throughout the range 
of  reasonable values chosen turns out to be g2 b 2 < 1. Such a low value is impos- 
sible since 
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2 2=/a2b~ 2 2 >4m2b20 + 2 /a±b 0 + k  r b  0 k±b  2 ~ 1 + 4 = 5  

by using even the smallest possible value o f b  0 and by using eq. (39). Reasonable 
2 15 or larger. Therefore, also for this reason values of/~± and b 0 would give/~2 b0 

the c-number model must be ruled out. 
Moreover, in our extension, there is no additional mechanism available for dif- 

fractive inelastic scattering. The existence of  diffractive inelastic scattering by itself 
rules out the c-number model and forces us to consider the q-number model. 

Case B: The quantitatively un-successful results o f  case A naturally lead us to the 
next more complicated (yet more realistic) case of  two 2-body eigenchannels of  the 
eikonal [2. Thus diffraction dissociation is now incoporated in the model. While it is 
true that we now have additional freedom, it must be remembered that we must 
also now explain additional facts pertaining to diffraction, e.g., that the diffractive 
cross section at ISR energies ~- 7 mb. The relevant formulae are 

- s2i(s,b ) 
fi(s,b) = 1 - e , (i = 1,2),  

~ = 1 ,  
i=1,2 

i :  e.:/, 
i = 1,2 

Odiff = 2n'P1P 2 f b db [f l(S,b)-  f2(s,b)] 2, 
0 

(nclXS) Oinel(S ) = 47r f b db ~ P.~2i(s,b ). 
0 i=1,2 

Note that the diffractive cross section involves the difference f l  (s,b) -f2(s,b), or 
f i -  fi if there are more than two channels. In order to get a substantial Oaiff, f l  and 
f2 must necessarily be sufficiently different, which would hold if one of  the eiko- 
nals [2i is considerably bigger than the other. Let us recall [see discussion prece- 
ding eq. (47)] that amplitudes with large eikonals are heavily influenced by eiko- 
nalization, and therefore give a much larger rise in multiplicity relative to the rise 
in o T . Thus, considering a q-number model is a qualitatively sound step in the 
right direction. 

The association of  the eikonals [2i with nucleon electromagnetic form factors 
cannot be made in the q-number model. This can be understood as a result of  
forcing the [2i's apart. Those [2i's which are larger than the [2 of  the e-number 
model are flattened very much by eikonalization, much more than enough to corn- 
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pensate for the lesser flattening of  the small eikonals. This leads to a flat amplitude, 
similar to 0 (1 fm-b) ,  which causes a dip in elastic scattering at - t  ~ 0.6 (GeV/c) 2. 
This dip position occurs if the amount of  diffraction dissociation is anywhere near 
the experimental value of  ~ 7 mb. How little diffraction can ruin the fit is illustra- 
ted by the work of  Elitzur and Lipes [ 14]. They included only 0.7 mb o f  diffraction, 
yet this was sufficient to move the dip from the experimental value o f  t = - 1 . 3  to 
t = - 0 . 9  (GeV/c) 2 . 

The features of  the model we are concerned with depend on ~i(s ,b)  and the pro- 
bability P1. The straightforward connection between the opacities g~i and the electro- 
magnetic form factors is now lost. However, in order to describe the elastic differen- 
tial cross section, instead o f  fitting experimental data directly, we impose the con- 
straint [as in case A] that the elastic amplitude be given by 

-K(s)(ub) 3K3(~b) e_~(s,b) 
f (s ,b  ) = 1 - e  = 1 - 

=P1 [1--e-al(S'b)] + (1 - P 1 )  [1--e-a2(s'b)]. 

We shall assume that ~21 and g22 are proportional ~l(S,b) = h ~2(s,b). This 
amounts to saying that the opacities corresponding to the elastic scattering of  
various eigenstates have the same shape. A straightforward generalization to the 
more physically reasonable case of  4 eigenchannels with ~21 -- h~22 = h ~  3 = h2~4  
can be made. The remaining free parameters and 0 ~<P1 ~< 1 were varied in an 
attempt to get odiff ~- 7 mb and a 25% rise in the average multiplicity. This turned 
out to be a difficult proposition. The best results were obtained with h -~ 20 and 
P1 ~ 0.4 in the 4-channel case. The results were odiff ~ 5 mb and a 20% rise in 
(n d) over the ISR range. The average number of  clusters is approximately 3. These 
are not entirely satisfactory to explain the experimental data, and moreover h = 20 
is probably unreasonably large by an order of  magnitude. Curves of  the eikonal 
~2 i and the diffractive differential cross section doaif f /d2b are shown in figs. 1 and 
2. Of course, our choice of  constraint (eq. A) quarantees good agreement with 
total and elastic differential cross sections. In fig. 1, one can see the effects of  the 
unreasonable value o f h .  In fig. 2, one can see that eikonalization causes diffrac- 
tion to be peripheral. [15]. 

Case C: Finally, we shall consider various analytically solvable examples with 
many eigenchannels. 

A e -b2/r~'~ (0 ~ A i < I ) .  (i) f =  ~ P~. with f / =  i 
i 

It readily follows that 

OT = 2rr ~ PiAi r2 , 
i 

Oel + Odfff = 2rr ~ P i f ~  db .f2 i < l O T .  
l 
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This last relation immediately shows that since a T ~ 40 mb and gel "~ 7 mb for pp 
scattering at ISR energies, it is impossible to have Odi ff greater than approximately 
3 rob, in contradict ion to the measured value o f ~  8 rob. The constraint Oel + Gdiff 

l o  T is much stronger than the rigorous bound Oel + (Tdiff ~-~ l o  T. 
(ii) Another  example is to take N amplitudes )~(s,b) to be 0-functions, all o f  equal 

probabil i ty,  and widths determined by  making the elastic ampli tude f b e  A 
exp ( -b  2 /r2 ). 
Then 

N N 

f ( b ) =  2 P / f i ( b ) ~  ~ i = ~ l  O(Ri-b), withR/2 =rA2 In . 
i=1 

It  readily follows that OT(N~ oo) = 2zrA r 2 and Oel(N-+ oo) = XnA2 r2A" 
The sum of  the elastic and diffractive cross sections is 

°el+°dfff= 27ri~= 1 P J  b db f 2  - N ~ i  In ' 

For N ~ 0% Oe I + Odif f ~ 7rA 2r2 = 2Oel. Thus, for this example it is possible 
to have a sufficiently large diffractive cross section. The average mult ipl ici ty o f  
clusters is (n d) = (41r/ainel) Zi Pi f b db ~'2 i with ~ i  = - i n  (1 - fi).  For  N -+ 0% we 
find (ncl) = - 4  in (1-A)/4(4-A) .  The energy dependence of  A is fixed b y  that of  
the total  cross section. This gives an approximate 10% rise of  (ncl)over the ISR 
range. 

25 

Z0 

15 

~L 

lO 

5 

0 i , , , J i i i i J ~ I 

.5 1.0 1.5 
b(fm) 

Fig. 1. A plot of the eikonal s2i(s,b) versus b 
for the "best" case described in the text. The 
kinks are caused by the unreasonable value 
of the parameter h. 
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Fig. 2. The diffractive cross section in impact 
parameter space for the "best" case, showing 
its peripheral nature as a consequence of ei- 
konalization. 
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From these examples, we see that the use of  many channels, in itself, does not 
solve the energy dependence problem. 

5. Conclusions 

We have presented an essentially unique extension of the Chou-Yang model to 
multiparticle processes. The extension incorporates the ideas of Chou and Yang, 
and is identical to their model for elastic and diffractive processes, and has an 
exactly unitary S-matrix. The fundamental interaction is the production of clusters 
with vacuum quantum numbers, which subsequently decay into the observed pions. 

There are several major results following directly from the formalism. One is the 
connection between the multipficity and the elastic scattering, expressed by the 
equation that the eikonal is ½,ft. Another is that the extension predicts a multiplicity 
and total cross section which rise with energy due to Lorentz contractions. This 
energy dependence is closely related to the momentum transfer dependence. The 
dependence we use follows from the spherical symmetry of each incoming particle. 

The model looks good in terms of most qualitative results. The multiplicity rises 
approximately like In s. The total cross section rises. The inclusive distribution has 
a P± cutoff, scales, and exhibits a rapidity plateau because of the Lorentz contrac- 
tions. The multiplicity distribution is broader than Poisson. Diffractive inelastic 
scattering, when included, has a peripheral profile in impact parameter. 

The existence of diffractive inelastic scattering rules out the c-number version 
of the Chou-Yang model. In our extension, the only source of diffraction is the q- 
number model. In addition, there are two more results of our work which rule out 
the c-number model: (i) The cluster mass needed falls far below a bound that can 
be established, and (ii) the multiplicity rises much too slowly. 

In the q-number model, one is forced to give up the connection with the electro- 
magnetic form factor. If  one insists on retaining the electromagnetic form factor, 
either the amount of diffractive inelastic scattering is extremely small compared to 
experiment, or the elastic dip is at t ~ ~3.6 rather than -1 .3  (GeV/c) 2. 

The q-number model without electromagnetic form factors goes in the right 
direction toward solving the problems with the c-number model, but still falls 
short of representing the data, even with unreasonable parameter values. The dif- 
fractive inelastic cross section tends to less than 6 mb and the multiplicity still 
rises too slowly. 

We have not eliminated all possibility that the q-number version can work. We 
have examined, and rejected, various possibilities. Most importantly, simply in- 
cluding a large number of  diffractive channels does not help. 

Our principal conclusions are: 
(i) An essential assumption of the Chou-Yang model is that a "no-recoil" ap- 

proximation is good. Without this approximation, the eikonal could not be just 
a longitudinal integral of a matter density overlap. 
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(ii) Given this approximation, the multiparticle extension is unique. We have 

examined that extension in this paper. 
(iii) The extension enjoys many qualitative successes. 
(iv) The version of the model without diffraction fails for several reasons. 
(v) A slight modification allows us to include diffractive inelastic effects. This 

version has a great deal of freedom, but yet we were unable to find any case which 

resembles certain important features of the data. 
(vi) In particular, the use of electromagnetic form factors for obtaining the eiko- 

nals does not give good results. 
(vii) Since the extended Ch0u-Yang model is unable to provide a basis for a quan- 

titative description of experiment, we seriously question its foundations, especially 
the no recoil assumption. 

We wish to thank G.L. Kane for a critical reading of the manuscript. 
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