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A m e t h o d  for de termining parameters  o f  a physical spec t rum 
f rom pulse-height  da ta  is described. This  me t hod  is designed to 
utilize informat ion  f rom the entire range o f  da ta  and  possesses 
advantages  over o ther  m e t h o d s  in use which arbitrarily restrict 
the input -da ta  range used for parameter  determinat ion.  Appli-  

cat ions to two problems in fl-spectroscopy are made.  This  me thod  
is mos t  useful in those cases in which the informat ion  is distrib- 
uted fairly smooth ly  over m a n y  data  points.  The  statistical 
errors associated with the parameters  m a y  be determined in a 
s t ra ightforward manner .  

1. Introduction 

In the analysis of pulse-height data or any similar 
data which can be related to some physical spectrum 
by a relation of the form: 

f~2 
f(x) = ¢(~)R(x,  ~)d~, (1) 

1 

where f(x)  is the measured (pulse-height) distribution, 
¢(x)  is the physical spectrum, and R(x, 4) is the 
response function of the spectrometer; one usually has 
to determine ¢(4) with f(x) and R(x, 4) known. 
Various methods for obtaining solutions have been 
devised1). The uniqueness of solutions to equations of 
this type depends strongly on the nature of the kernel 
or response function R(x, 4)2). In some cases an 
inverse R-1  to R exists such that a solution: 

[P (4) = f(x)  R-1 (~, X) dx, (2) 
I 

may be obtained. However , f  (x) is generally known only 
approximately, and the resulting ~(¢) may contain 
much noise, obscuring important behavior. 

Often sufficient information is known about ~b(~) 
that it may be written as a well-defined function of its 
independent variable ~ and a set of undetermined 
parameters A = {21, ..., 2k}: 

¢(4) = O(~; 2, . . . . .  2k). (3) 

If  this is so, a value for any 2i may be found by a fitting 
process, such as least-squares fitting, which seeks to 
find values for all elements of A that are optimal in the 
sense of  the fitting criterion. For example, if least- 
squares fitting is used, one would seek values for 
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2 1  . . . .  , J~k w h i c h  w o u l d  c a u s e  t h e  expression: 

Z 2 = W(~) {q~(~)-O(~, A, . . . . .  2,)}2d¢, (4) 
I 

to be minimized, where W(¢) is a weighting function 
reflecting the statistical uncertainty of q~(¢). While this 
approach has been used successfully in numerous 
cases, several things are likely to occur which can pre- 
vent it from providing useful results. One is that the 
uncertainties of the resulting parameters may be too 
large to make them meaningful. Another is that there 
may be several relative minima of X 2, and there may be 
no compelling reason to believe that one is really better 
than another, thus leaving the values of the 2's 
ambiguous. These things become more significant if 
R-1 is uncertain, which it will be if R is itself uncertain 
to some degree, which in practice is often the case. In 
fact it does not take much uncertainty in R to make 
R -1 completely meaningless, along with ~ ( 0 .  
Furthermore, there are many cases where R-1 does not 
exist at all, whether or not R is precisely defined, and 
this approach does nothing for them. It is therefore 
interesting to see what other approaches could take 
advantage of the information in eq. (3) without encoun- 
tering the obstacles mentioned above. 

2. The present approach 

Rather than trying to reconstruct the physical 
spectrum through something like eq. (2), it is possible 
to attempt, at least formally, to reconstruct the mea- 
sured distribution with a function of the form: 

f? f(x; 2, ..... 2k) = 0 (4 ;  21, ..., 2k)R(x, ~)d¢. (5) 
I 

Now a suitable fitting process may be used to choose 
values for the 2's in such a way that the fitting criterion 
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is again satisfied in some optimal sense. For example, 
using a least-squares fitting process, and assuming that 
the measured distribution is obtained only at a discrete 
set {x j} of values of  x, the )-'s would be chosen in such 
a way that the expression: 

Z2 = ~ { f ( x / ) - f ( x j  ;)-, ,  .. , 2k} 2 (6) 
2 j O'j 

is minimized, where a s • represents the uncertainty in the 
data and possibly in f also, if  the response function is 
somewhat uncertain. This process has an advantage of 
directness over that implied by eq. (4), and does not 
require special properties in the response function. 
Furthermore, it can handle uncertainties in the data and 
in the response function in a natural and straight- 
forward fashion. While it is not the desired function 
4~({) that is fitted, that function is determined in the 
process, and if it was not an appropriate function for 
the fitting job at hand, the resulting minimum value of 
Z 2 will show this. In addition, by determining the 
variation of X 2 with each )`i, the uncertainty of )-i may 
be determined; i.e. one can find out how much each 
parameter  can change without spoiling the fit exces- 
sively, which gives a well-defined meaning to the uncer- 
tainty associated with 2i. 

3. Examples of application 
This approach has been used in two different prob- 

lems of fl-spectroscopy. The differences between the 
problems serve to illustrate the considerable flexibility 
of  this approach, since the problems differ significantly 
in the nature of  the functions O(4;)-1 . . . . .  )-k) and 
R(x, 4). The same fitting criterion is used for both 
cases, which is a X 2 minimization. The actual fitting 
process is performed by a computer program derived 
f rom the program C U R F I T  described by Bevington3). 
I t  has been modified to include the option of fixing any 
of the parameters, with the effects of the uncertainties 
of these fixed values included in the calculations of  X 2 
and the uncertainties of the variable parameters. The 
usefulness of  this modification will be seen in the first 
example. This fitting program is designed for fitting 
of functions which may have non-linear dependencies 
on the parameters. In order to carry out the fitting 
process, the partial derivatives of  the fitting function 
with respect to the fitting parameters and some sort of 
reasonable initial estimate for the parameter  values are 
required by the program in addition to the fitting func- 
t ion itself. In the examples presented below, it was 
generally not difficult to provide the needed initial 
estimates, and, if the fitting process converged at all, the 

final parameter values were fairly insensitive to the 
initial choices. The time required for convergence 
depended somewhat more on the initial parameter 
estimate, however, so that it was desirable to choose 
the initial estimate with some care. The parameters for 
which good estimates are most critical are those for 
which the fitting function is the most non-linear; 
parameters appearing linearly can have very rough 
initial estimates. 

It should be noted that the fitted parameters do not 
have to be restricted to those which appear in the func- 
tion O. The response function could just as well depend 
on some or all of the same parameters as O, as well as 
on some different ones. Then the fitting function (5) 
would depend on all of  the parameters, even though 
some of them do not contribute to information about 
the physical spectrum. This feature will prove to be 
useful, again in the first example below. By this means 
some features of the response function may be deter- 
mined at the same time as the spectrum. The fitting 
program is indifferent to the source of the parameters. 

3.1.  FITTING PULSE-HEIGHT SPECTRA FROM A Si(Li) 
DETECTOR USED AT THE EXII APERTURE OF A 

DOUBLE-FOCUSING MAGNETIC SPECTROMETER 

In this example the magnetic spectrometer provides 
the primary resolution, so that the energy resolution of 
the detector is used only as an aid to reduce back- 
ground. The only parameter desired in this case is the 
total number of focused electrons. Since the detector 
pulse-height spectrum for monoenergetic electrons 
extends from a peak corresponding to total energy 
absorption down to zero, where it overlaps with detec- 
tor and amplifier noise, one cannot simply count the 
total spectrum to obtain the desired number. Elim- 
inating everything below a fixed level with a discrimi- 
nator results in the inclusion of different fractions of 
the backscattering tail of the spectrum. Adjusting the 
discriminator level to correspond to changes in the 
magnetic field to keep this fraction constant would be 
tedious and likely to produce errors. It has been 
shown 5) that, if the electron range is less than the 
depletion depth of the detector, the total-energy- 
absorption efficiency is essentially constant. Therefore 
a measure of  the area of the total-energy-absorption 
peak should be proportional to the desired number. 
Thus the purpose of the analysis will be to extract this 
number from the pulse-height data with maximum 
accuracy and minimum arbitrariness. 

On the basis of  observations 4'5) that the tail in the 
pulse-height spectrum due to backscattering is essen- 
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tially constant, and with the assumption that the 
detector and amplifier noise is described by a Gaussian 
distribution, the response function for the detector is 
assumed to be of the following form: 

R(v, E) -- P ~  exp [ - ( v - q E ) 2 / 2 a  2] + 
ax/(2n) 

-+ 1 - p  i s exp [ - (v -qE ' )2 /262]dE' ,  
Ea x/(2 n) de 

(7) 

where v is the pulse voltage, E the energy of the incident 
electron, and p, a, and q are calibration parameters to 
be determined by the fitting program. A constant 
background is also assumed in the pulse-height spec- 
trum. The source spectrum is assumed to be of the 
form: 

O(E; E~) = Npfi(E-E~),  (8) 

giving for the fitting function: 

f ( v ;N~ ,p ,a ,q ,  Nbkg) = O(E;Ep) R(v,E)dE+NbRg 
E 

= N~6(E-E~)  P exp [ - ( v - q E ) 2 / 2 a  2] + 
0 a \/(2 n)  

-~ 1 - p  fo~ dE,}dE+Nbkg E~r ~-~niJE exp[- (u-qE ' )Z /2a2]  

= No {exp [--(V--rlEa)2/2~7 2] + 
a , / ( 2  n) 

1--p 
l "~ exp [ - ( v -qE ' )2 /2a2]dE ' l  + Nbkg. (9) + 

Ep d ep J 

Ep is the energy of the focused electrons, which is 
determined by the magnetic field and therefore is 
fixed; Na is the desired parameter, namely, the number 
of focused electrons incident upon the detector. The 
remaining parameters are not related directly to the 
incident spectrum, although they could depend on the 
incident energy Ep. In the present case they are taken 
to be constant over the energy range of interest. This 
function has been found to represent the measured 
pulse-height spectrum very well in the vicinity of the 
total-energy-absorption peak. 

Since a typical r-spectrometer run will consist of a 
series of measurements at different magnetic fields (and 
consequently different energies Ea), the parameters 
p, a, q, and Nbkg may be determined more precisely 
by averaging them over the whole set of spectra, taking 

into consideration whatever energy dependence might 
be expected for them. These values can then be regard- 
ed as fixed parameters, with known uncertainties, and 
the fitting of the pulse-height spectra can be repeated, 
this time fitting only Np. It is also possible to perform 
this second fit over a restricted region, e.g. including 
only those channels which fall within, say, __+ 3 a of the 
center of the total-energy peak. Thus the fitting region 
can be chosen to include those channels for which the 
probability of detecting focused electrons is highest, 
providing the best background rejection. A gratifying 
result of this procedure has been to see that the fitted 
parameters do not depend significantly on the partic- 
ular number of channels used in a fit; adding or sub- 
tracting one or more at either end of the fitting region 
does not cause a significant shift of fitted parameter 
values. Also gratifying was to find that the uncertainty 
for the number of counts in the peak was less than the 
square root of that number. This shows that, rather 
than losing accuracy in the process of subtracting off 
the tail underneath the peak, accuracy has been gained 
by deriving information from the shape of this tail. 

3.2. FITTING CONTINUOUS r-DECAY DATA FROM A 
MAGNETIC SPECTROMETER 

The physical spectrum in this example is assumed to 
be described by the Fermi theory of r-decay for allowed 
transitions, with provision for effects of a degenerate 
neutrino sea included. Again a constant background is 
assumed. This gives a physical spectrum which depends 
on four parameters: the effective source strength No, 
the endpoint energy of the r-spectrum Eo, the Fermi 
level for neutrinos El, and the background level Nbkg. 
At a magnetic field setting corresponding to electron 
momentum p, the number of electrons emitted by the 
source into the entrance aperture in momentum interval 
dp per unit time is: 

N(p; N o , E o , E 0 

INop 2(Eo-E)Z F(Z,E),  0 < E <_ Eo+E f" 
= [0, E > E o + E f ,  (10) 

where E = [ I  +p2]½ is the total electron energy in 
units with rn e = c =  1, and F(Z,E)  is the "Fermi 
function" which takes into account the effects of 
nuclear charge. The response function is derived from 
the property of magnetic r-spectrometers that the 
focusing is independent of  the electron energy provided 
that the ratio of momentum to magnetic field remains 
constant. Consequently a carefully measured conver- 
sion-electron line may be scaled up or down in mo- 
mentum to provide the response to a monoenergetic 
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electron source of any desired momentum, assuming 
that energy losses in the source are negligibly different. 
Since in some cases they are not, it is desirable to use a 
conversion electron of energy close to the energy range 
under study, and to have the source mountings as nearly 
identical as possible. Unless a calibrated source is used 
or the transmission is known precisely from other 
considerations, the response function will only 
determine the relative probabilities of  detecting an 
electron of momentum p if the spectrometer field is 
given by B, but this is generally adequate; the constant 
of proportionality will be included in the parameter No 
as determined by the fitting program. Since the 
response function used in this example was based on a 
measured electron line, it is initially defined only at 
discrete values of  the magnetic field, and for a par- 
ticular scale change it may not be defined at the value 
of the magnetic field for which it is needed, so an inter- 
polation scheme is required. The measured line is first 
smoothed by representing it as a Fourier series over the 
region where it is non-zero, and then truncating the 
series at a point where x2/n no longer decreases with 
increasing n, where n is the number of Fourier series 
terms used, and g 2 is evaluated for the truncated series. 
The original values are then replaced by the values of 
the truncated series at the same points, and then four- 
point interpolation is used to evaluate the response 
function between the original points (the Fourier 
series itself could have been used for this purpose, but 
it is more time-consuming and no more meaningful). 
This is the function R(B,p) used below. It is non-zero 
only in a region: 

or: 

Pmin "< p/B < p . . . .  

Pmin < P < Pmax, 

where Pmi.(m,x)= BPmlntmax)' Thus the fitting function 
to be used in this case looks like: 

/~(B; No,  Eo, Ef, Nbkg ) 

Ii Praax 
= {N(p; No,  E0, E 0 +  Nbkg} R(B, p)dp. (11) 

m t n  

Recalling the expression (10) for N(p; No, Eo, El) and 
the nature of  R(B,p) a numerical integration is called 
for in the evaluation of this fitting function. While some 
time might have been saved by using the same values of  
the integration variable in this process for which 
R(B,p) was directly defined, it turns out to be con- 
venient to have R(B,p) defined over the continuous 
interval [Pmi., P~.~] for other reasons which will appear 

below. Since this analysis is intended to be as sensitive 
as possible to small details near the endpoint of the 
spectrum, and since the shape of the spectrum in the 
vicinity of the endpoint is essentially quadratic, it is 
reasonable to use an integration formula which repre- 
sents areas under quadratic curves exactly, providing 
for less error in the near vicinity of  the endpoint than 
would be obtained by using trapezoidal or mean-value 
methods, which would be as reasonable as any method 
based on equally spaced subintervals such as would be 
provided by the original response-function data points. 
Thus the usefulness of  having the interpolation scheme 
for the response function comes in being able to choose 
the points at which the integrand is evaluated in any 
desired fashion. Since 100 data points were measured 
to define the response function, it would be inappro- 
priate to use more points in the numerical integration, 
and therefore 50 subintervals containing two points 
each were used. The points were chosen in each sub- 
interval according to the Gaussian two-point inte- 
gration method, which gives areas of curves up to the 
third degree exactly. The response function has to be 
evaluated at these points only once, since the same 
values are used on each repeat of  the numerical inte- 
gration and can be stored for repeated use. The fitting 
procedure requires the derivatives of the fitting function 
(11) with respect to the fitted parameters, which are 
No, Eo, El, and Nbkg. For No, E0, and Nbk 8 the 
simplest way to obtain the derivatives is to differentiate 
the sum which replaces (11) since (11)is evaluated 
numerically. This results in more sums, most parts of  
which are already available from the numerical inte- 
gration, so it is not much additional work to calculate 
these derivatives at the same time the fitting function is 
calculated. 

The dependence on Ef is sufficiently different to make 
a special note. As long as the range of integration 
[Pmin,Pmax] corresponds to values of electron energy 
less than Eo + El, the fitting function does not depend 
on El. However, when Eo + Ee falls between the ener- 
gies corresponding to Pmin and p . . . .  the upper limit 
is replaced by: 

pf = [(~o + E0 2-1]~ .  

The evaluation of the fitting function will now have 
fewer than 50 complete subintervals, with a smaller 
interval from the end of the highest regular interval 
under Pr to pf. The response function must be evaluated 
at two points in this smaller interval along with the 
rest of  the integrand, since the previously calculated 
values of  the response function are valid only for the 
standard interval. Thus the ability to interpolate the 
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response function is necessary for this last subinterval. 
The derivative of the fitting function with respect to 
Ef is much more easily calculated from (11) using pf 
as the upper limit than from the sum resulting from the 
numerical integration. 

Thus the requirements of the fitting program are met 
by this function. A curious feature requiring some 
careful attention is that the number of parameters 
fitted varies over the spectrum, depending on whether 
pf falls in the interval [Pmin, Pmax] or not. However, this 
is not a fundamental difficulty; it must be considered 
appropriately when statistical tests involving the 
number of degrees of freedom are made. 

4. Concluding remarks 

It has been shown that a fitting function to represent 
measured data may be obtained if the physical spectrum 
can be given by a definite functional form with unde- 
termined parameters, and if the response of the spec- 
trometer to a 6-function input is known over the range 
of the input spectrum. The response may be measured 
experimentally and contain experimental error. A 
significant feature of this method is that it uses all of 
the data in the determination of the unknown param- 
eters. This should prove to be advantageous over other 
methods 6) which use only part of the data for the 
determination of certain parameters. While a sharp 
peak or step lends itself rather well to this latter ana- 
lysis, cases lacking such distinctive features are better 
treated in the manner described in this work. In general, 
this method should be most appropriate in cases 
wherein the information sought is distributed rather 
smoothly over many adjacent data points. A particular 

example is found whenever details smaller than the line 
width of the spectrometer are to be investigated. Two 
distinct advantages of this method are the lack of 
arbitrariness in choosing a region of data for the deter- 
mination of specific parameters, and the ease with 
which the uncertainties associated with the resulting 
parameter values are determined. 

It is clear that determining the response of the 
spectrometer is necessary for this method to be useful, 
and that may be a difficult task. However, even a 
rather crude representation of the spectrometer 
response can be utilized with the expectation of better 
results than would be obtained without considering 
spectrometer responses. In difficult cases, Monte-Carlo 
methods could provide a very practical approach to 
the problem of determining spectrometer response. 
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