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NON-PLANAR, NON-LINEAR OSCILLATIONS 
OF A BEAM-I. FORCED MOTIONS? 
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University of Michigan 

(Received 18 MUJJ 1974) 

Abstract-Large amplitude whirling motions of a simply supported beam constrained to have a fixed 
length are investigated. Equations of motion taking into account bending in two planes and 
longitudinal deformations are developed. Using the method of harmonic balance, response curves 
for certain planar and non-planar steady state, forced motions are obtained. Another approximate 
scheme is used to study the stability of these motions. Stable regions corresponding to non-planar 
motions are found, thus confirming the existence of whirling motions. Numerical results are 
presented and discussed for several specific cases. 

1. INTRODUCTION 

Many investigations into the non-linear motions of strings and beams have been made. 
Only relatively recently however has it been pointed out that planar forcing of such 
structures could occasionally generate nonplanar response. This observation was first made 
for strings. Considerable theoretical and experimental work has been done by Ames ef 
al.[l], [2], [3] on a traveling string undergoing a planar, transverse excitation. Not only 
was so-called “ballooning” of the string observed, but also some new jump phenomena 
were noticed. For example, jumps from the ballooning state to a planar one occurred. 
Further work in this general area was done by Shih[4]. For non-traveling strings, 
theoretical and experimental studies have been done by, for example, Narasimha[S], 
Anand[6] and Eller[7]. 

Allied work on elastic beams has also begun to emerge. Haight and King[8] examined 
the plane harmonic excitation of the base of a cantilever beam and found, both theoretically 
and experimentally, that in certain circumstances the response was nonplanar. Somewhat 
related studies of Rodgers and Warner[9] should also be mentioned. They looked at the 
dynamic out-of-plane stability of thin curved rods excited by harmonic end forces applied 
normal to the cross-sections. The present paper is also concerned with non-linear motions 
of elastic beams, with the major focus being on ballooning or whirling motions. Specifically, 
the structure treated is a simply supported beam, with two perpendicular axes of symmetry, 
which is constrained to have a fixed length. Forced motions of this structure are considered, 
the forcing function being harmonic and planar. In a later paper, it is planned to look at 
free motions. 

Approximate equations of motion are derived using Hamilton’s extended principle and 
are reduced to ordinary differential equations by Galerkin’s procedure. Several approximate 
schemes are then used to obtain analytical and numerical results on response and stability, 
for planar and nonplanar motions. 
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2. EQUATIONS OF MOTION 

Although the inputs to the system are transverse. an issue is whether torsional motions 
are likely to arise. Minorsky[ lo] in discussing finite-degree-of-freedom systems, pointed 
out that parametric coupling between modes having very different frequencies was quite 

small. This is also taken to be true for the infinite-degree-of-freedom system at hand. Based 
on this, and the fact that in general the frequencies of torsional modes are considerably 
larger than bending-mode frequencies, it is concluded that torsional motions do not arise. 
Note that this may not be true for thin-walled. open sections. Then with the usual beam 

theory assumptions, 

where the z-axis is the neutral axis of the beam and the s, J.-axes are axes of symmetry fat 
the cross-section, u, I’. and 11’ are the displacement components of a point on the neutral 
axis in the X, J’. and z directions, respectively. ti, F, fi., are the displacement componen!s of 

an arbitrary point in the cross-section, a comma denotes differentiation 1~. r. r. the 
subscript, and 6. is any initial strain (constant) that may be present. Using equations (I). 
(2). and (3), and Green’s strain measure (in the :-direction) to account for the non-linearity 
induced by the fixed length requirement, it can be shown that the only non-zero strain 
component is : 

I: - G+%(fi,.)* +(Q _t(,Ty] *z - 

= \I‘,2 + co - sli.,z -!%:+f-[cfi.,)2 +(,,z)2 _t(Q] (4) 

It is assumed that the longitudinal motions are small, and in the sequel (pi’,,)’ in equation (4) 

will be deleted. 
Taking the beam material to be isotropic, the strain energy and kinetic energy can be 

calculated from equations (I), (2), (3). and (4). Assuming any damping mechanism to be 
viscous, the work done can readily be found. Then Hamilton’s extended principle yields the 
equations of motion. Assuming no external forces in the z-direction, one of the equations 

is, on neglecting longitudinal inertia. 

Integrating this, using the boundary conditions IV(O) = 0. n,(L) = 0, where L is the beam 
length, and substituting the results into the other two equations of motion can be shown 
to give, on neglecting Poisson effects. 
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where 

s=z J Et 
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fx,fy are components of the external force, CU,, and cu,, are the viscous forces per unit 
length, t is time, E is Young’s modulus, A is cross-sectional area, p denotes density, and 
E,, is the strain in the first buckling mode, i.e., a,, = Zyyn2/AL2. 

Equations (5) and (6) are non-linear and cannot be treated exactly. It is assumed that, 
for simply supported ends, 

ii = f sin mns<,(r) (7) 
m=l 

6 = $J sin n7cs~,(r) (8) 
n=l 

Applying Galerkin’s method to equations (5) and (6) then yields : 

(9) 

where 

P,, = ha2m27-c4(m2 +/I), Py. = ha2n27c4(yn2 +fi) 

2L 1 
Qxm = - 

s AE o 
Fx(s, z) sin mns ds 

2L 1 
Qyn = - 

s AE o 
Fy (s, z) sin nzs ds 

,=r,, d 

Ad” 
a=- 

L 

d being the depth of the beam (maximum dimension in the xs-plane). 

3. RESPONSE 

Information on the steady-state response to harmonic inputs is the primary goal. The 
complex, multi-mode structure of equations (9) and (10) precludes obtaining such 
information exactly, and approximate techniques must be employed. Here harmonic 
balance is used. Moreover, only one mode interactions are treated, since it is felt that they are 
the ones most likely to arise. 
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Plane harmonic forcing, that is, 

Qx,, = F,,,costo~, Qsn = 0 (I 1) 

where Fxm is a constant, will be first investigated. It is initially assumed that the beam 
response is planar and involves only one mode, the !?I-th, say, that is : 

: I 

\m >> <i 1 i # 111 , 
jzl7 

. _, , % 

<, >> tlj, .i= I,2 ,... ‘, % 

Using equation (1 l), equations (9) and (10) then reduce to the Duffing equation : 

d2:,, d&,, s 4 
dzs_ + k <; + eXm .‘, +!yrdT- ;;f, = Fxm cos (,IT (13) 

Seeking harmonic response. one takes 

’ - A,,, COS(WT+(&) im - (I?) 

where A,, and 8,, are constants. Inserting equation (13) into equation (14). equating to 
zero the coefficients of cos (01 +O,,,) and sin (OT +8,,,). and eliminating OXn, gives the 
frequency-amplitude relation 

Some numerical results for this equation will be presented later. 
Nonplanar response to the same input will now be explored by assuming that in addition 

to the single mode in the xs-plane (<,), a single mode (n-th say) in the ,s-plane also occurs. 
Then equations (9) and (10) reduce to 

To facilitate discussion of the many possible responses. some comments on notation 

should be made. By i-th order parametric excitation is meant motions with a frequence i 
times the driving frequency. (some writer’s, for example. Efstathiades and Williams[l t], 
call this i-th order internal resonance). For nonplane motions. the phrase I’- I parametric 
excitations is used. It means that the response frequency in the xs-plane (the plane of forcing) 
and the ys-plane are r and /times the driving frequency, respectively. The term ‘?n - II mode” 
is used to designate the spatial modes operating. It means that the nl-th mode is active in the 
xs-plane, whereas, the !I-th mode is active in the J,.s-plane. 

Consider l-1, m-n, mode parametric excitation. For these one may take : 

<,, = il,,, cos (‘>Z (17) 

p/,1 = A,,, cos ((‘IT + fly,,) (18) 
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where A,, and A, do not depend on z and By,, is a constant. Substituting equations (17) 
and (1X) into equations (15) and (16) gives, on equating the coefficient of cosoz and 
cos (07 + 0,,) to zero, 

A 
3m”x4 m2n27z4 

xm Pxm-a2 +TAf,+ ~ A$ (2 + cos 28,,) 
16 1 = F’, cos &,, (19) 

m2n27c4 
~ A,, AZ,, sin 28,, = Fh sin 8,, 

16 

A,, Pyn - a2 + 
3n4rc4 m2n27c4 
---A;n+---- 

16 
l6 A& (2 + cos 28,,) 1 = 0 (21) 

m2).n27-c4 
- A& A,, sin 28,, = 0 

16 (22) 

Inspection of equations (19), (20), (21) and (22) show that two cases arise, namely: 
(i) A,, = 0, 8,, = in,i=0,+1, f2 . . . . The motion is planar with a frequency-amplitude 
relation given by equation (14). (ii) Q,, = in, sin28,, = 0, which leads to the subcases: 
(a) $, = q71, 4 = 0, + 1,. . . . It emerges later that all such motions are unstable, and so 
they will not be pursued any further. (b) 20,, = + (2i + 1)x, i = 1,2,. . . . Equations (19), (2~ 
(21), and (22) yield the frequency-amplitude relations : 

P,,-m’+~(3n’A~,,+m’A:,) = 0 

P,,-co2 + 
m27c4 ’ 
16(3m2A&,+n2A$) = &> 

xm 
(24) 

The plus and minus signs in equation (24) correspond to motions in the xs-plane that are 
in phase and out of phase with the driver, respectively. For A,, to exist, it follows from 
equation (23) that 

m2n27t4 
w2 3 Py,+---- 

16 
AZ, (25) 

To examine 1-2, m-n parametric excitations, one would take 

i”, = A,, cos oz , qn = A,, + A,, cos (2~ + e,,) 

and proceed as before. For brevity, such an analysis is not pursued here. 

4. STABILITY 

Letting 
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where the primed quantities denote small perturbations, equations (9) and (10) to the first 
order yield the so-called variational equations 

d ‘$ dq,: l?+ X 
-dT”+kd;fP,,‘IA++, t: j2(5j+$?jz, 

j=l 

n=l’ , _. . . (27) 

For the planar motions given by equation (13), the relations (26) and (27) reduce to the 
uncoupled, damped Mathieu equations : 

d’&, dt:, 
p + k,l, -I- [PX,, +E,, +c,, cos (2W + 2&J]<;, = 0 

d2<!2 
~+k~+[E,j+c,j+ ~~jCOS(2t0~+2H~~)]~~ = 0 .i # m 

(28) 

(2% 

d’rj; 
ir’+k~~[P,j+i:,j+i;,j~OS(LlJT+LO,,)]q;= O 

where 

(301 

(31) 

Equations (28), (29) and (30) can of course be treated exactly. However. an approximate 
approach is adopted here, since the results so obtained tie-in better with the approximate 
response results. Moreover, the scheme is known to give excellent results elsewhere (see 
References [lt], 1121 and [13]). F rom Floquet theory (see 5.6, Bolotin[t4]), the solutions 

to equations (28), (29) and (30) have the form : 

(33) 

where i is the so-called characteristic exponent, and the Q’s are periodic functions. Seeking 
results for first and second order parametric excitations, they can be approximated by 

Q1 = ai cosrvz+u,sinw~++u,cos2ro~+u,sin2a~t+us (33) 

Q2 = u2 cos (1)~ + ~1~ sin UK + u6 cos 2toz + ug sin 2mr + II 1 o (34) 

Q3 = [111 costuz$(11?sin(I,~+a13cos2tr)T+LI,4sin2t07:-tN,, (35) 

where the u’s are constants. Since the system is weakly non-linear and since damping is 
small, physically one would expect the perturbed motions to have slowly varying 
amplitudes. Hence i in equation (32) is taken to be small. Substituting equations (32), (331, 
(34) and (35) into equation (2X), retaining only the first order terms in i., and using the 
method of harmonic balance, it is found that the equations (homogenous) for the 
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determination of al and a3 are not coupled with those determining as, a7 and ag. The 
vanishing of the determinant of the coefficients in the first set of equations gives : 

(4wZ+k202)~2+2ko(oZ+P,,+~,,),!+(P,,-o2+~~,,)(P,,-w2+~&~,)+k202 = 0 (36) 

Using equations (31), it can be shown that equation (36) is satisfied provided A&, lies 
outside the region defined by : 

2(co2 - P,,) - [(co’ - Px,)’ - 3k2u2]* < &m2n4A$, < 2(02 -P,,) 

+ [(co’ - Px,)’ - 3k202]+ (37) 

Following the same procedure, equations (29) and (30) yield further first order parametric 
information, namely, the motion is stable provided A ,‘, lies outside the zones defined by: 

f(J - pxj) -$[(o” - Pxj)2 - 3k2c02]+ < T A$,, 

$(w2-Pyj)-$[(co2-Pyj)2-3k2c02]+ < mTA:, 

< $(O” - Pyj) ++[(CO’ -Pyj)’ - 3k2w2]+, j = 1,2,. . . (39) 

The equations involving a5, a7 and ag, stemming from equation (28) yield 

where 

boi3+bIL2+b21Z+b3 = 0 

b. = ko(k2c02 + 160~) 

b, = 8k2c04+(Px,+s,,)(16c04+3k2w2) 

b2 = 3ko(Px,+c,,,J2 +4c03k3 -+kco$,,+ 16k05 

(40) 

2 

b3 = ““(4c02-Pxm 
2 

-E,,) + 4k2w2(P,, + E,,) + (40~ - P,, - E,,) (P,, + E,,) 

Applying the Routh-Hurwitz criterion, the roots of equation (40) have negative real parts, 
and so correspond to stable motions, provided all the b’s are positive, and bI b2 > b. b3. 

It can readily be shown that the only condition that restricts A,, is the satisfaction of 
b3 > 0. For stable motions, it requires that A$,, lie outside the region defined by the positive 
roots of 

(ZgTtA;mj +(5P,,- 12c02)(F A:_) 

+ [2(402 -P,,) (40.1~ - 3P,,) + 8k2c02] (im4n4A$,) 

+ 2P,, [(402 - Px,,J2 + 4k2w2] = 0 (41) 

So far only equation (28) has been treated. Other second order parametric stability zones 
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are obtained in a similar way from equations (29) and (30). The results are, the motions are 
stable provided A.?, lies outside the regions defined by 

+21JYj[(4roz - p,$ +4kW] = 0 (421 

and a similar equation. with Pxj replaced by P,j. 

The stability of the nonplanar motions will now be investigated. Substituting equations 
(17) and (18) into equations (26) and (27) gives the Hill equations 

(43) 

where <,, and 11,~ as are given by equations ( 17) and ( IX). respectively. 
Seeking only first order parametric stability /ones, and working tirst with equations (43) 

and (44), it is assumed that 

&, = (oI h cos (‘)r + (i 1 7 sin (gtt) e”“’ (‘J-ii 

‘l,, ’ = (LI, x cm 1815 + LI 1 ‘, sin (3)~) e”“” I-ix) 

where the u’s are constants. Proceeding as before, noting that an approximate scheme i:, 
now a necessity, homogcnous equations in 0, ,,. II, :. (I, x and ~1,~ are obtained. Their 
satisfaction requires, for 20,.,, == & (21 i- I )TC, i = 0. 1 I 1.. . 
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Stability requires that all the roots of equation (49) be pure imaginary, which requires 
p > 0, 4 > 0 and p2 > 4q. The requirement q > 0 can be written in a much simpler form, 
but since it does not lead to any new stability zones, the analysis will not be presented 
here. It appears that no simple algebraic relation emerges from the conditions p > 0, 
p2 > 4q and each case requires individual numerical treatment. However, for y = 1, 
m = n, explicit information can be found, namely, the motions are stable provided A&, lies in 
the regions defined by : 

0.323(0’ -P,,) < 
m47r4 
4 ‘4,‘m d f(J - P,,) 

4(02 - PX,) > 
m47t4 
-A$,, 3 co=-Pxm 

4 (51) 

Equations (45) and (46) must still be examined. They are uncoupled Mathieu equations, 
and can be treated in the same way as equations (28) (29) and (30). However, they will 
not be pursued any further, since it turns out that no new stability regions arise. The 
counterparts in the A,, - co plane to the above zones can be obtained from either equation 
(23) or (24). 

5. NUMERICAL RESULTS 

Some sample results on the response and stability of planar motions are shown in Figs. 1 
and 2. Various amplitudes are plotted against O/Q, where CC)~ is the fundamental bending 
frequency in the xs-plane. Two values of the forcing function are used here (and throughout), 
namely FX1 = 10m6 and 5 x 10m6. Occasionally curves corresponding to the latter value 
may be off scale. Also, CI is taken as 0.0005 throughout. The values used 
parameters are given on the figure legends. 

for the other 

Fig. 1. Response curves and stability zones for planar motions. M = 1.0, )’ = 0.5, k = 0.0, p = 0.0. 
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Unprimed and primed letters designate planar and nonplanar instability zones, 
respectively, with points inside the zone corresponding to the instability. Region AEC‘ 

comes from expression (37) with m = 1. Its lower boundary AE is the locus of vertical 
tangents on the out-of-phase (w.r.t. the driver) portions of the response curves. On such 

portions, as the frequency decreases, the amplitude slowly increases until the point of 
vertical tangency is reached. Then, in what may be called a planar amplitude jump. the 
motion changes abruptly to an in-phase one with a larger amplitude. Region .rl’B’C” stems 
from expression (39) with ~1 = .i = I. It represents possible 1 I. 1 I parametric excitation. 
To see whether these motions are steady state or not. the two-mode stability analysis 
described by equation(49)must beinvestigated. As will be shown later, the motions do indeed 
turn out to be stable, and so whirling motions can occur. Another interesting item is that 
the planar jumps corresponding to AEC end up in A’B’C” (at least for the cases considered 
in Figs. 1 and 2) so that nonplanar motions result. For some values of ;’ ( = Iss Ij,~j. 
this may not occur. The region IJK comes from expression (41) with 1~1 = 1. It represents a 
planar second order parametric excitation of the first mode. Expression (42), with /‘, j ---t Py, 
and IJL =,i = 1, gives the region I’LX4’. It represents possible 1 2. I I mode parametric 
excitation. The zone NOP. which describes possible second order parametric excitation of 
the second mode is obtained from expression (38) with 1~1 = 1. ,i = 2. The regions N’O’P’. 

R’S’T’ and U’V’W’ represent possible l-2. 1 ~2; l-1. l-2: l-2. 1 -3 parametric excitations, 
respectively. 

It can be seen from the figures that in all cases the larger the forcing amplitude the more 

likely whirling motions occur. As the frequency is increased, the types of whirling motion 
thatareencountered(forthecasestreated)are l--2.1-1: l--l, 1Ll: l-2. l-2; l- 1. l-2; l-2, l-3. 
Some effects of changing 7, should be noted. The dimensionless response curves and the 
planar instability regions remain unchanged. However. the nonplanar instability zones 
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do depend on y. As it increases, all the zones shift to the right and the amount of response 
curve lying in the zones decreases, i.e., as y increases higher frequencies are required to 
excite the nonplanar motions. It should also be noted that some of the stability zones 
overlap. Presumably the motion corresponding to these regions is a complex one, with the 
possibility, for example, of beating between plane-plane, plane-nonplane, and nonplane- 
nonplane excitations. 

The effects of /3 (preload) and k (damping) on the results have not been recorded here 
other than to note the following: For negative values of /3 (compression), the instability 
zones shift towards lower frequencies. For nonzero values of k, the zones become narrower 
and their tips are raised off the frequency axis (making parametric instabiiity impossible 
below certain amplitude levels). A more extensive discussion, and result for the second 
mode response can be found in a thesis of the first author[l5]. 

Some typical results for 1-1, l-l nonplanar motions are shown in Figs. 3, 4, 5, and 6. 
In addition to the previous notation, double primed letters designate regions in which the 
nonplanar motions given by equations (23) and (24) are stable. These stable regions are 
denoted by hatching (some zones are so narrow as to be not apparent in the scale of the 
sketch). Planar response curves are included for comparison purposes. They are plotted 
in solid lines, with the dashed lines standing for nonplanar responses (the out-of-phase 
portions are sometimes off scale for F,, = 5 x lo-“). 

In connection with equation (49), setting 4 = 0, gives three curves A”B”, F”G” and H”f”. 
The curve A”B” coincides with A’B’. The curves F”G” and H”I” give the nonplanar free 
vibration response and the locus of verticai tangents to the nonplanar forced response 
curve, respectively. The requirement p2 > 4, gives the curve H”J” in Fig. 3 and Q”J” in 
Fig. 5. Using equation (23), the various stability boundaries in the & --w plane can be 
transferred to the A,, --o plane. One result is that A”B” maps onto the frequency axis in 
the A,, - w plane. A general requirement for non-planar motions to exist is 

The equality sign in this last expression gives the curve R”S”, which maps onto the frequency 
axis in the AxI --co plane. 

Those portions of the plane in which only nonplanar or planar, out-of-phase, l-l, I-i 
motions exist will first be discussed. Overlap zones in which both planar and nonplanar 
motions can occur are possible. They will be discussed later. In Figs. 3 and 4, which 
correspond to 7 = l/2, possible stable motions are represented by the narrow strip bounded 
by H”I” and H”J”. In that zone, as the frequency decreases, A,, increases and A,, decreases, 
until the point of vertical tangency is reached. Then AxI and A,r jump to higher and lower 
values, respectively. Thus the particle motion changes from a broad eclipse to a narrow 
one. For all values of y less than one, Ayl is considerably larger than A,, . 

Figs. 5 and 6, in which y = 2, show that the situation is different for y > 1. A stable 
region A”Q”U” exists for small values of the forcing function. It is interesting to note 
that the locus of vertical tangents H’f” falls outside the stability region, so that no nonplanar 
jumps occur. Instead, as o decreases, the motion changes to a planar one and then planar 
jumps occur. For moderate to large forcing functions, only planar out-of-phase motions 
are stable. When they reach a point of vertical tangency, a jump to a nonplanar state 
occurs. 
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Fig. 3. Response curves and stability zones in the A,, -CN plane for planur tirst mode and 1 1. 
1 1 motions. ;’ = 0.5. k = 0.0, [i = 0.0. 

“b - 
x 

- 

a - 

B” 
3 

w/w, 

Fig. 4. Response curves and stability zones in the ,4,., --(I) plane for 1 1. ikl motions. ;’ = 0.5. 
k = @O, ii = 0.0. 



Non-planar, non-linear oscillations of a beam-I. Forced motions 125 

w/w, 

Fig. 5. Response curves and stability zones in the A,, --CD plane for planar first mode and 1-1, 
l-l motions. y = 2.0, k = 0.0, fi = 0.0. 

IO I 

w/w, 

Fig. 6. Response curves and stability zones in the A,, --0 plane for l-l, 1-I motions. y = 2.0, 
k = O.O,j? = 0.0. 
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Those portions of the plane in which only nonplanar or planar. in-phase, I -1, 1~ I motions 
exist will now be considered. They are designated by A”B”F”G” in Figs. 3 and 4, and 

P”B”G” in Figs. 5 and 6. For small values of cc), the motions are planar and remain so until 
A”B” is encountered. Then they smoothly become nonplanar. As (11 increases further, the 
particle motion changes from a narrow ellipse to a broad one. Circular motion is never 
reached for y 3 1. However, for y < 1, ellipses with A,, smaller than A),, may be obtained. 
This can be seen, if attention is focused on the free-vibration curve N”G”. which can be 
thought of as giving results for very small values of the applied force. It is interesting to 
note that for ;I > 1, nonplanar motions can occur only for (1) > (!J". 

Overlapping stability regions will now be discussed. They are denoted by H”l”J” 
A’ACC’, ACY’F” in Fig. 3 and A”C”‘J”S” in Fig. 5. The type of motion that arises depends 
on the initial conditions. 

Consider first in-phase motions. They correspond to the zone .4’ACC’. If the motion is 
initially planar, it remains so as w is decreased. Then either A’C’ is or is not met. If it is not. 
planar motions always occur. If A’C’ is met, then a jump to nonplanar motion occurs. 
with A,, decreasing. The region AU”F” is a zone where nonplanar in-phase and planar 
out-of-phase stability zones overlap. Such zones occur only for ;’ < 1. The main features 
of the nonplanar motion have been described above. The figure would seem to indicate that 
initially planar motions can jump to either a planar or a nonplanar state. However the 
result of the jump must be a planar motion. since in the zone in question, perturbations 
into the ys-plane cannot grow. 

The zones H”I”J” and A”U”J”S” correspond to out-of-phase motions. Nonplanar 
motions in H”I”J” have been discussed before, so that only the passage of planar motions 
through the zone will be treated. As (r) decreases, A,, increases until H”J” is met. On 
entering the region, the motions remain planar since perturbations out of the plane cannot 
grow. Plane motion continues until AE is encountered. Then a jump occurs which always 
leads to a nonplanar motion. Consider now initially planar motions in .-1”L~“J”S”. As (0) 
decreases, the amplitude increases until ,4’C’ is met. Since inside .4’B’C’. planar motions 
are unstable and nonplanar motions are stable, a jump to a nonplanar state OCCLI~S. The 
situation for initially nonplanar motions has been discussed before in connection with the 
region A” U”Q”. 

Some regions are instability zones for both planar and nonplanar motions. The) are 
U”G”E” in Fig. 3 and AQ”EG”P” in Fig. 5. Presumably this region corresponds to beating 
motions or to steady state motions with a more complex modal structure. 

It should be noted in finishing that a brief discussion of 1 I. I 2 motions can be found 
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Zusammenfassung-Die Wirbelbewegungen mit grossen Amplituden eines einfach gleagerten 
Trlgers konstanter LBnge werden untersucht. Die Bewegungsgleichunge, die Biegung in zwei 
Ebenen und LLngsdeformationen beriicksichtigen, werden aufgestellt. Die Verhaltenskurven fiir 
bestimmte ebene und nichtebene, stationlre, erzwungene Bewegungen werden unter Verwendung 
der Methode des harmonischen Ausgleichs hergeleitet. Ein weiteres Ngherungsverfahren wird 
benutzt, urn die Stabilitit dieser Bewegungen zu untersuchen. StabilitPtsbereiche, die den nicht- 
ebenen Bewegungen zugehijren, werden gefunden und es wird damit das Vorhandesein von 
Wirbelbewegungen bestltigt. Zahlenwerte fur einige besondere FClle werden angegegeben und 
besprochen. 


