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Ahatraet: A formalism is derived which allows the evaluation of spectroscopic amplitudes for two- 
nucleon transfer reactions. The transfer is assumed to take place between low-lying collective 
states described by boson expansion wave functions. Numerical calculations have been performed 
for (t, p) reactions on 1*s*1so*152Sm. Excellent agreement is obtained for cross sections leading to 
the ground state in the residual nucleus. 

1. Introduction 

It is well known that two-nucleon transfer reactions can provide a rigorous testing 
ground for nuclear wave functions ‘). This is due mainly to the critical dependence of 
the cross section on the coherent interference of terms with different principal quan- 
tum number for the c.m. motion of the transferred nucleons. Since these terms are 
proportional to the nuclear overlap coefficients, fiYLSJ, we may test the goodness of the 
wave functions obtained from a nuclear structure model by evaluating these coeffi- 
cients pyLsJ. In two-nucleon transfer reactions, in contrast to the simpler one-nucleon 
transfer processes, we cannot extract a spectroscopic amplitude from the experimental 
cross section due to the interference mentioned above. In order to evaluate the cross 
section, it is therefore essential to be able to calculate the jIYLSJ starting from a nuclear 
structure model. For low-lying collective states, it has in general been possible to pre- 
dict these spectroscopic amplitudes only in the limiting cases where the relevant nuclei 
are either spherical ‘) or well deformed 3), while for nuclei in the transition region no 
satisfactory formalism has been available. 

It is perhaps not so surprising then, that in the last decade or so, considerable effort 
has been expended in obtaining a unified theory of collective motion. We believe that 
one of the most successful approaches in this respect is provided by the boson ex- 
pansion method. This technique was first introduced by Belyaev and Zelevinsky 4, who 
used it to understand anharmonic effects in vibrational nuclei. The basic idea is to 
express a microscopic Hamiltonian in terms of boson operators. This is done by 
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expanding the fermion pair and one-body operators in the Hamiltonian in terms 
of boson operators, in such a way as to preserve the appropriate commutation 
relation for the fermion pair operators. Sdrensen 5, extended the scope of the boson 
expansion method by performing calculations within the transition and deformed 
regions. In doing so, Sdrensen had to introduce a correlated boson by performing a 
canonical transformation within the boson space. Later Kishimoto and Tamura (j) 
introduced sixth-order corrections to the boson Hamiltonian which were shown to be 
important in the deformed limit. The rather impressive results 7, obtained for the 
quadrupole moments and electromagnetic transition strengths tend to indicate 
that the wave functions obtained with the boson expansion method do indeed offer a 
good description for low-lying collective states. 

In this paper we intend to check the boson expansion wave functions further by 
calculating the spectroscopic amplitudes for two-nucleon transfer reactions. It should 
be noted that these spectroscopic amplitudes are formally similar to the electromag- 
netic transition matrix elements. Therefore we are particularly interested in studying 
two-nucleon transfers between nuclei which have a markedly different deformation. 
We expect the two-nucleon transfer amplitudes between such nuclei to be a more sen- 
sitive probe of the nuclear wave functions than the electromagnetic matrix elements. 
In pursuing this program we would then have developed a technique which will 
give us spectroscopic amplitudes with equal ease if either target or residual nucleus is 
spherical or deformed. Furthermore, low-lying collective states are amenable to 
strong inelastic excitations in both incoming and outgoing channels. Therefore, our 
approach will be general enough so that the spectroscopic amplitude connecting any 
pair of low-lying collective states in the target and residual nucleus can be calculated 
with equal ease. 

In sect. 2 we give a brief account of the formulation which was developed for this 
purpose. In contrast to the Hamiltonian, the two-particle transfer operator is non- 
hermitian and is in general a spherical tensor of rank greater than zero so that some 
extensions are required of the techniques introduced in the works referred to above. 
Whenever possible we follow the notation of ref. 6). In sect. 3 we apply the results of 
sect. 2 to the study of (t, p) reactions on the isotopes 1489 ’ 5o9 is2Sm. We have chosen 
these Sm isotopes since they show a gradual transition from spherical ( 14*Sm) to well 
deformed (“‘Sm). 

2. Formulation 

2.1. THE SPECTROSCOPIC AMPLITUDE 

The purpose of this section will be twofold. First, we describe the basic steps in- 
volved in obtaining the spectroscopic amplitude with the boson expansion method, 
and secondly, we will discuss the approximations which have been introduced. 
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We define the two-nucleon spectroscopic amplitude j3 by + : 

PyLSJT(Ji7 Jf) = CyJfCA +2)IC4yL.SJT(rl 9 r2)lCIJ,(A)IJf)* (1) 

The notation [AJI BJJJsMs will be used throughout to denote vector coupling. The 
quantity c$yLSJT(rl, r2) represents the wave function for the two transferred particles. 
Since the expansion of this factor in terms of boson operators is central to the evalua- 
tion of(l), we will discuss the approximations needed at length in the next subsection. 
The $,,(A) stands for the wave function of a target nucleus of A nucleons, which is 
specified by a complete set of quantum numbers Ji . The wave function of the residual 
nucleus II/&t +2) should be understood in a similar fashion. 

The wave functions $,,(A) and ~I/,AA + 2) are calculated by making use of the boson 
expansion method ‘). We may therefore write them as : 

+J,MjtA) = 1 BkvJNV?Ji Mi),4 7 (24 

NUV 

$JfMf(A + 2) = 1 &z”~,.IN’~‘?‘J, M,), + 2. W 
N’ll’Vf 

Here INv+rM) represents a many-phonon state built from a single collective quad- 
rupole-type phonon (I 1102M)). The meaning of the quantum numbers is as follows : 
N gives the number of phonons; u gives the seniority of the state; JM gives the total 
angular momentum and its z-component; q is an additional quantum number needed 
to completely specify the state. 

The coefficients B$,, are obtained by diagonalizing a model Hamiltonian accord- 
ing to the prescription given by the boson expansion method 6). 

The one-phonon state 11102M) may be conveniently written in the language 
of second quantization by use of the creation (destruction) operators c&(u,,) 
which satisfy : 

c&lo) = Il102M), (3a) 

%fIO) = 0, (W 

[a,,, &r] = &f&f*. (3c) 

The operator &, may in turn be expressed in terms of the operators A,+, defined 
in eq. (3.3a) ofref. 6, [see also discussion on p. 238 of ref. “)I by use of the canonical 
transformation : 

a lM = ~z+Z-‘)Az+M-~Z-Z-1)A,~, (4) 

where the parameter Z is obtained by imposing the condition that the coefficient 
of [ct2+al], + [a2 aJo vanishes from our model Hamiltonian ‘). 

t Although in (1) we have in mind a stripping process, our discussion may be applied to pickup 
reactions as well, provided we replace 4 by 4* and interchange A ++ A +2. 
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The vacuum of the a-operators may be expanded in powers of these A-operators 
acting on the BCS ground state, i.e. 

IO) = (C, + C&4&4;], + . . .)lBCS). (5) 

The coefficrents Ci in (5) are easily obtained as solutions of (3b) and using the fact 
that A,,lBCS) = 0. 

In table 1A we have tabulated for the case of the samarium isotopes the values of 
C, , C, and Z. 

It is essential for the evaluation of the overlap in eq. (1) to be able to express the 
target and residual nucleus wave function in terms of a common basis. We achieve 
this by exploiting the slow dependence with mass number of the parameter Z, the 
coefficient Ci and the operator A&. 

Indeed as shown in table 1B the overlaps a( 1102Mll lOZM), + 2 are always larger 
than 0.9. We calculate these overlaps by first evaluating the overhzps .(BCSlA,, A& 
IBCS)A+z and then using eqs. (4) and (5) with the corresponding values from table 
1A. The overlaps .(BCS(A,, A~,(BCS),.+. 2 are in turn easily obtained by expressing 

&.#CS), and &IBWA+, in terms of the same truncated spherical shell model 
basis, following ref. @). 

TABLE 1 A 

The values of Z, Ct and Cz for the samarium isotopes 

Isotope ‘48Sm 150Sm ‘+rn l s4Sm 

Z 1.09 1.13 1.19 1.24 
Cl 0.989 0.979 0.962 0.946 
Cz 0.143 0.199 0.272 0.324 

TABLE 1B 

The overlaps ,,(BSC jAZMA& 1BCS)n+2 and “(1102M j1102M)A+2 

A = 148 A = 150 A = 152 

.@CS IAm& IBWA+Z 0.9884 0.9953 0.9865 

.(1102M Il102M)_4+z 0.9652 0.9470 0.9100 

It is therefore possible to express the wave function of both target and residual 
nucleus in terms of the same many-phonon basis, i.e., we will replace the index A + 2 
in the right had side of eq. (2b) by A. (Since from now on we will refer everything to 
the many-phonon basis of the target nucleus, we will drop the index A altogether.) 
We point out here that this does not mean that we assume the wave functions for the 
Sm isotopes to be A-independent; it rather means that the basis in which we expand 
the Sm wave functions is A-independent. The A-dependence of the wave function 
appears then only through the coefficients B&,, of (2). 
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Since our present boson expansion code BOSEXP ‘) allows us to calculate only 
wave functions for the low-lying collective states of doubly even nuclei, we will restrict 
our study to the transfer of two identical particles only. 

2.2. THE FACTOR &LSJTMT(rl, r2) 

In order to evaluate the overlap (l), it is necessary to express &,LSJTMT(rl, r2) in 
terms of boson creation and destruction operators which can act directly on the many- 
phonon basis lNoqJM), i.e., in terms of the operators defined in eq. (3). In order to 
accomplish this we generalize the procedure which was employed elsewhere 6, to 
write the Hamiltonian in terms of boson operators. This generalization is needed since 
we now deal with an operator which is necessarily non-hermitian and in general a 
spherical tensor of rank greater than zero. 

We rewrite I$ as+ 

4 yLSJMh y r2) = C JWI~; 
j,=l,*+ 
jz=l2*3 

(6) 

where rl and r2 are the coordinates of the two transferred nucleons referred to the 
c.m. of the target. We introduce the notation A^ = (2A + l)* and Dj, j, = (1 + Bjlj2)*, 
while y = (nl, 1, ; n2, I,) where nili stand for the principal and orbital angular mo- 
mentum quantum numbers of the orbit occupied by the transferred nucleon i. 

Furthermore: 

We have chosen harmonic oscillator eigenstates for the q&rJ. The x*(i) stands for 
the spin part of the wave function of particle i. Finally we have introduced the notation 
of second quantization which we will use throughout. 

We now introduce the quasiparticle d,; by performing a Bogoliubov transforma- 
tion : 

ajL = ujdj+,-vjdjK, (8) 

where dj; = (- y’-“dj_,. We then obtain for 4: 

4 yLSJM = - c; R. u. u. 6 6.. 6 ++(-)L+s) 1 JlJl Jl JI JO 1112 1112.2 

h 

+i C SRj~J2[Uj~Uj2Bj:j2JM-Vj~Uj2Bjtj,J91 (9) 
j,j2 

’ From here on we will always assume T = 1. Furthermore, the dependence of 4 on ~~ is trivial so it 
will be ignored. 
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where 

Rjtj, = D,;2&$;lj^, S f f 1 I , (104 
J A +i, 

s = (1f(-)L+s+~1+~2), (lob) 

Bj:j2JM = I[dj:dj:lJM, WC) 

cj: j2J.W = lIdj: djJJM * (104 

At this stage we extract the collective mode by performing a Tamm-Dancoff approxi- 
mation (TDA) on the two-quasi~rticie states by using a Q - Q type of residual inter- 
action of the same strength as the one which was used in obtaining the wave functions 
of the target nucleus. This amounts to performing an orthogonal transformation on 
the two-quasiparticle states of the form: 

Here we reserve a = 0 to denote the collective branch. 
We then obtain for (6; 

4 yLSJM = -&#+(-)“““)C _EUji~jlLW~&_il+; El+VJ06j,j,Sl,i* 
j* 

+ c (G&z&- F:; &Jid - c (F;C~:M -t F;CPJd, (12) 
a P 

where 

FZ = C Rjlj,Dj,j,Svj, Vj2dJE\2jy UW 
jij2 

F‘“p” = Rj,j,uj,vj2S, (134 

FE;” = Rj,j,uj, Vjt S, (13d) 

and p stands for the pair (jr, j,). 
We proceed now to expand the fermion pair operators in terms of boson operators. 

We do this following the procedure introduced by Belyaev and Zelevinsky4). 
The expansion takes the form 6): 

B+ aJM = xA~~J, + 1 X,(dd)Ai, AZ A,+ . . +, (W 
bed 

c+ PJM = x0 + c X,Cp, ab)A,t A, + . . . . WI 
nb 
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The boson operators Ai satisfy: 

[Ai, Af] = dij. (15) 

Except for the coefficient x all the other coefficients in the expansion are determined 
by requiring that the fermion pair operators satisfy the appropriate commutation 
relations. We assign to x the value used in the wave function of the target nucleus in 
the case of stripping, while for pickup we use the value used for the wave function of 
the residual nucleus. Furthermore, since eventually we will have to take matrix ele- 
ments of these boson operators between states of the form (2) only those operators 
which correspond to a = 0 will survive. Therefore, we retain only the component 
which relates to the collective branch. Upon inserting (14) in (12) and rearranging, 
we obtain: 

4 yLS.JM = xgg;GlnAn)i, (16) 
mni 

where the operators GfJi with m 2 n are defined by: 

G‘o”’ = 1 

G’;L:, = &4;A;,,,a,~, 

G’;“:, = ,/%,&:~Jo, 

G%y = ,/%J~t~:l,, 

G’;4,’ = [A:$]JM, G’i? = [A:AZ]JM, 

G!& = [[A:A:]KA:]JM, G’Fd = $M, (17) 

G% = C~:~GMKI,~ 
The corresponding operators with m 5 n are defined by : 

G(A) = ($A),+ 
mni “In, . (18) 

The coefficients gz\ in (16) are given by: 

.#’ = &x2-2) ~j:“j,oj,iw(l,Lj,t; 11+)+(1+(-)“+“), 

g’F0’ = xFy2, gb”: = -xF;;“,, 

g$rjN = 2rFr2, g\TN = -2rFt;“,, 

g\“l’ = - c (Fy +( -)JFy)&,J’, 
P 

(19) 

(20) 
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while 

As a last step we now need to &form a final canonical transformation within the 
A-boson space given by 

a iM = @+z-~)A;~-$z-z-~)A~~. (23) 

Again we chose for 2 the value obtained for the target wave function in the case of 
stripping. Explicitly then our operators in the A-representation may be expressed in 
terms of the corresponding operators in the a-representation in the following way: 

G$ = +AGy;++G@) 
013 

G’P,’ = $b( G’295 + G#) + %A2 + ( - )Ja2)G(,al , 

G;TN = ~~C-~A)G~~+~~C-~~)G~“~+~C+A)G’,~~+~C-~)G~~,+~C-A)~“,~ 

+&c + a)G& + SC + a)G(,& + $(C - A,G$$, , (24) 

G$ = +(C- A)Gld:, +&- 3a)G6”f +&-)“(c + Q)G~~~+~-)~(C- A)G& 

+ x(+(C-A)K?(-)JW (5222; ~~)+~~~[~C+C+~A+~~)+~-)~(C-A)])G~~~ 

+ 1 (&+a)k%‘(J222; Kl)+&,(c-3a))Gl”l,, 

with 

A = Z+Z-‘, a = z-z-l 3 

B = Z2+Z-2, fl= 22-z-2, 

c = z3+z-3, c = 23-z-3. (27) 

We have therefore succeeded in expressing $ as a linear combination of operators 
which can act directly on the many-phonon basis, i.e., 

and so finally 

4 yLSJM = I&$ GgLi, (26) 
mni 

In order to evaluate (27) we only need the matrix element of the G-operators between 
many-phonon states. We have obtained these matrix elements by generalizing the 
procedure described in ref. “) to include tensor operators of rank greater than zero. 
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3. Calculations 

465 

In this section we apply the formulation of the previous section to obtain spec- 
troscopic factors for two-nucleon transfer reactions for the Sm isotopes. In fig. 1 we 
have compared the experimental spectra with those obtained by performing a sixth- 
order boson expansion calculation for the isotopes 1489 150,152, ‘54Sm. The details 
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Fig. 1. Comparison of energy levels obtained with a boson expansion calculation with experimental 
values from ref. 16), for the isotopes 14s* I509 ls2* ‘*%m. 

of these calculations have been reported elsewhere ‘). The theoretically predicted 
spectra do account for the transition from a vibrational to a rotational spectrum. This 
is further corroborated if we use the boson expansion wave functions to calculate the 
quadrupole moment of the first 2+ state as well as electromagnetic transition strengths 
for members of the ground-state band. The results are given in table 2. The effective 
charge (e,,,) is defined as eproton = 1.0 + eeff. The good agreement with experiment 
should be noted. 

The boson expansion wave functions used are given explicitly in table 3. These were 
obtained by using our boson expansion code BOSEXP. It is important to point out 
that the character of these wave functions is a sensitive function of the expansion 
parameter x. We normally determine x by using an automatic search option provided 
in BOSEXP which adjusts x so that the energy of the 2+ state is approximately re- 
produced ‘). In table 3 we have used a shorthand notation for the many boson states 
INuyJM) in which we drop the quantum numbers yJM, since J and M are implied 
by the left hand side of the state vector equation. (The y-multiplicity when needed is 
to be understood through the appearance of consecutive repetitions of the pair Nv.) 
We have also ignored components of magnitude less than 10m3; this allows us to 
truncate the expansion so that N 5 8. In this table we also include the value used for x. 
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Using the wave functions given in table 3 and the formalism presented in the pre- 
vious section, we have calculated spectroscopic factors for two-neutron stripping 
reactions on 14*, ‘so. “‘Sm. The results are presented in table 4. The table can also 
be used for two-neutron pickup provided we interchange Ji c) J, and multiply each 

entry by J2J,+GJi+l. Instead of tabulating the spectroscopic amplitude PyLSJT 
as given by (l), we have chosen to tabulate ByjljlJT defined by: 

this can then be used directly in existing DWBA codes such as DWUCK r5). All 
non-zero quantities which are smaller than 10m3 have been tabulated as S. 

By inspection of the tables, we may arrive at the following conclusions: 
(i) As we go to heavier isotopes of Sm, we see a gradual shift of strength to higher- 

lying levels, which is expected due to partial filling of low-lying orbits. 
(ii) A relative concentration of strength for J = 2 when several transfer J-values are 

allowed. This is due to the fact that we are expanding our states in terms of a basic 
quadrupole-type phonon. As we shall see below, there is an indication that it might be 
desirable to include a monopole type of excitation as well. 

(iii) The apparent importance of higher-lying levels such as liy is largely offset 
when we perform the transformation to c.m. and relative coordinates since the 
transformation coefficient (Moshinsky coefficient) favors small spins. 
We expect the 0: -0: transitions to be dominated by direct processes. These tran- 
sitions should therefore provide a good test of the reliability of the predicted spec- 
troscopic amplitudes, particularly in their variation with mass number through the 
transition region from A = 148 to A = 152. For this purpose we have used the two- 
particle transfer option of DWUCK. The optical potential parameters for the proton 
and triton were obtained from refs. 13,i4) respectively. 

The theoretical cross section was then obtained by multiplying the DWUCK 
cross section by the following factors 15): 

u theor 6DWUCK, (29) 

where we have assumed the standard value ’ 5, of 0: = 22 MeV * fm3, while 

&LA’)* = 9.72 fm3. (30) 

The q and Tf stand for the target and residual nucleus isospin, respectively. The bino- 
mial coefficient is a statistical factor where n is the number of valence neutrons. 

In fig. 2 we have compared the calculated cross section with experimental data 
obtained from ref. “). The plotted cross section is related to the theoretical cross sec- 
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e hl %Y %Y 

Fig. 2. Calculated and experimental cross sections for (t, p) reactions on the M* 150- ‘%3m targets. The 
hlormalization constant N indicates the goodness of the prediction of the absolute value of the transfer 

amplitude. 

tion by: 

(31) 

where the normalization constant N gives a measure of how well the absolute cross 
sections are predicted. As shown in fig. 2, we are indeed capable of predicting them 
rather well for transitions leading to the ground state. This is indicated by the fact 
that we used for N a value close to 1. For the transitions within the deformed region . 

(l”Srn(t, p)154Sm), we use N = 1.0. The excellent agreement in this region is probably 
due to the fact that the coupling to non-collective branches is unimportant. This is 
also in agreement with the accurate prediction of electromagnetic transition strengths 
provided by the boson expansion method in this region. In the spherical region 
(i4%m(t, p)“‘Sm) we also account nicely for the transition to the ground state 
(N = 1.25). This is indeed remarkable if we recall that our calculation is completely 
free of adjustable parameters. 

For transitions to excited states, it is known ’ *) that inelastic effects in the reaction 
channels are important. Furthermore, it is known ly) that in the rare-earth region the 
ratio 0(4:)/0(2:) in (p, t) and (t, p) reactions is of the order of 0.3. An inspection of the 
table of spectroscopic amplitudes shows that the direct process 0: + 4: is severely 
inhibited, while two-step processes could be quite strong. We therefore believe that 
excited phonon states can only be properly described by a coupled channels approach. 
In table 4 we have also included spectroscopic amplitudes which lead to the one- 
phonon state, and that could be used in a coupled channels calculation. We defer this 
question to a future study. 

4. Summary 

We have presented in sect. 2 the essentials of the formalism which is needed to cal- 
culate spectroscopic amplitudes for two-particle transfer reactions with wave func- 
tions provided by a boson expansion calculation. In sect. 3 we have applied this for- 
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malism to the isotopes 148*150, 15z*154Sm and obtained extensive tables of spec- 
troscopic amplitudes for various possible transitions involving low-lying collective 
states. We emphasize that our calculations are completely parameter-free. Therefore, 
we believe we have developed a technique which allows calculations of reliable spec- 
troscopic amplitudes for two-nucleon transfer reactions regardless of the target or 
residual nucleus deformation. Using these spectroscopic amplitudes we have then 
evaluated the cross section for (t, p) reactions on 148*150,‘52Sm. We have obtained 
excellent results for transitions leading to the ground state and one phonon state in 
the residual nucleus. These results confirm our expectation that the boson expansion 
wave functions do indeed offer a good description of low-lying collective states. 

The author gratefully acknowledges Professor K. T. Hecht for many enlightening 
discussions and useful suggestions during the course of this work. 
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