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MANIFOLDS COVERED BY EUCLIDEAN SPACE 

RONNIE LEE and FRANK RAYMOND 

(Receiued 18 January 1974) 

81. INTRODUCTION 

A CLOSED manifold M is called aspherical if its universal covering is contractible. Thus M 
is a K(x, I)-space where n = X,(M). Let dimension M = m be different from 3 or 4. The 

purpose of this note is to show the following. 

THEOREM 1. The universal covering of M is homeomorphic to Euclidean space tf R 
contains a finitely generated non-trivial abelian subgroup, 

This theorem was first proved by Conner and Raymond in [l] and [2] under the ad- 

ditional hypothesis that the (not necessarily torsion free) quotient group N of rc by the 

abelian subgroup acts properly discontinuously on some contractible manifold W so that 

W/N is compact. It is unknown whether this additional hypothesis is automatically satisfied 

for aspherical manifolds. 

The proof will consist in showing that the universal covering of M is simply connected 

at infinity for n7 > 2. To do this we utilize the notion of the fundamenral group of a group 
which is due to the first author (see Theorem 3). We shall show that n,(x) is trivial form > 2. 

This, in turn will imply that the universal covering of M is simply connected at infinity. 

Actually the underlying algebraic fact which we show is the following. 

THEOREM 2. Let II be a finitely presented group with a normal abelian subgroup iso- 
morphic to 7’ and quotient group N = n/Zk. Assume when k = 1, that N has exactly one end, 
when k = 2 that N is not finite, and no restrictions when k > 2. Then, n,(n) = 1. 

We have not given the briefest possible proof of Theorem 1. One could dispense with 

the general notion of the fundamental group of a group and just consider the special case of 

groups with one end which are I - LC at infinity. However, a weak form of Theorem 3 

would still have to be proved even for this method. Finally we call attention to 6.2 where we 

summarize the geometric content of the argument. This probably should be read next. 

$2. THE FUNDAMENTAL GROUP OF AN END 

Recall that if X is a connected, locally connected, locally compact space with a count- 

able basis we may define the ends of X as a maximal O-dimensional compactification of X. 

Specifically. if K is a compact set in X, then X - K consists of a finite number of unbounded 
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connected components (unbounded means their closures are not compact). Regarding each 

component as a point, partial ordering (by inclusion) on the compact sets naturally induces 

an inverse system on the finite sets (of unbounded components). The inverse limit is the set 

of ends of X. The set of ends has a natural topology so that it is compact and totally dis- 

connected. Adjoining the ends to X we define a neighborhood of an end to be any connected 

open set which is a projection of the point in the inverse limit together with all the ends with 

the same projection. Such a neighborhood will be path connected and remain path con- 

nected even when the ends themselves are deleted. It is customary to speak of the neighbor- 

hoods of an end by deleting from any neighborhood all the added ideal points. This is the 

intersection of a neighborhood with X. We shall adopt this abuse of language throughout. 

Since we may write Xas the countable increasing union of connected open sets with compact 

closure. we may regard an end E as described by a sequence of connected open sets: 

& = {X0 3 X1 3 X, 3 *. .>, f-l x = 4. 

There is a natural notion of the fundamental group of the end. It is simply the inverse system 

of groups 

x1(s) = {x,(X, 3 x0> + 7h(X,, -q) + . . .I. 

Such systems depends, of course, on the choice of the decreasing family of neighborhoods 

and their base points xi. To make it well defined, we consider two inverse systems of groups 

as related if they have the same cofinal subsequence or if their morphisms are the same up 

to an inner automorphism. We then take the equivalence relation generated by these rela- 

tions. It may not be true that 

is isomorphic to: 

Inv lim {rr,(X,, x,) + ... n,(X,, .ur) + ... 

Inv lim {9(Y0, h) + x1(&, vd +. ..I 

when E is represented by the 2-sequences 

X, 3 Xi 3 .-. 

and 
Y, 3 Yi 3 *.* 

but the totality of these inverse limits is the fundamental group of the end E. x1(s) is dis- 

cussed at length in [5]. However, if the end is 1 - LC (that is given any connected neightbor- 

hood U one can find a connected neighborhood V, V c U so that rr,( V) + r,(U) is trivial), 

then rrl is stable at E (Siebenmann), and all the inverse limits are trivial. In fact, one can 

select subsequences so that the homomorphism is always trivial. 

We shall use the following: 

LEMMA I. If X and Y have the same proper homotopy type, then the-v haoe the same 

number of ends and for each end the corresponding fundamental groups are isomorphic. 

Here by proper homotopy equivalence f: X -+ Y, g : Y + X, we mean two proper maps 

f and g with the property that f 0 g and g 0 fare properly homotopic to the identity map. 

(A proper homotopy equivalence will actually extend to a homotopy equivalence of the end 

point compactification and induce an isomorphism of the ends of X onto the ends of Y.) 
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43. THE FUNDAMENTAL GROUP OF A GROUP 

Let 71 be a finitely presented group and let X be a finite CW complex with x,(X) = IC. 

Denote by x’ the universal covering of X. A theorem of Hopf says that 2 will have 0, I,2 or 

an infinite (uncountable) number of ends and furthermore this number is a function of n 

alone. The number is 0 if and only if n is finite. (For simplicity one may assume that 7~ has 

exactly one end E although it is not necessary for the arguments.) We define n,(n) to be 

{x,(s);. To show that this is well defined, we need the following lemmas. 

LEMMA 2. Let X and Y be twoJinite CW complexes. A homotopy equivalence between X 
and Y kfts to a proper homotopy equivalence between their universal covering spaces x’ and 9. 

Proof. We lift each cell ei in Y into a single cell Oi in the covering space 7. BY taking 

the union of these cells ci and their closures, we obtain a compact set Kin 7. The projection 

of K covers the entire space Y and every compact set in 7 is covered by ui=, gi K for 

some finite number of group elementsgi in n,(Y). Letfbe a lifting of a homotopy equivalence 

$ Since f-’ (closure ei) is covered by a finite number of open cells in X, and f induces a 

bijection of the fundamental groups it is not hard to see that f-‘(closure zi) is compact. 

From this it follows that J‘-‘(K) is compact, and so is the inverse image of every compact 

set. We may now repeat this argument with F: X x Z --) Y and obtain that the lifted homo- 

topy is also proper. This completes the proof. 

Observe that the argument only depends upon the compactness of X and Y, properties 

of covering spaces, and not explicitly on the cell structures. 

A topological manifold properly homotopic to Euclidean space of dimensions different 

from 3 and 4 is known to be homeomorphic to Euclidean space [6]. 

COROLLARY I. Zf an aspherical manifold of dimension >4 is covered by Euclidean space 
then any other man fold with the same homotopy type is also covered by Euclidean space. 

LEMMA 3. Let X be a jinite CW complex and X2 be its 2-skeleton. Then the universal 
covering spaces x2, x of X2 and X have the same number of ends and the fundamental groups 
of the ends are the same. 

Proof. We may think of X as obtained from X2 by attaching cells of dimension higher 

than 2. 

X = X2 U (ei), dim ei P 2. 
cpi 

In the same way, the universal covering of X is obtained from X2 by lifting these ceils ei 

to Pi,gEi, . . . . g E I[ and attaching them to x” by di. Let A0 c A, c * *. be an increasing 

sequence of compact sets whose union is X “. Since each compact Ai intersects only a finite 

number of the cells Si, and can be chosen to be a subcomplex, we may enlarge the neighbor- 

hood Ai into one in r? by setting 

Bi = Ai U {Pjl Oj n Ai # 0). 

It is not difficult to see that 

(a) the closure of Bi is compact in x’ ; 
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(b) .F - B, is obtained from 2’ - Ai by attaching cells of dimension higher than 2. 

Thus rrr(J?-closure Bi) z x1(x2 - Ai) and the two spaces ,? and .p2 have the same funda- 

mental group at each respective end. 

Let 7c be a finitely presented group with generators _I-,, . . _Y, and relators rr, . . , r,. 

For every such presentation P, we form a finite CW-complex X, by forming a wedge of 

circles KS,’ corresponding to the generators x,, . . , xs, and then attaching 2 cells ej accord- 

ingtothewordsr,,...,r,. ,I’, is called the graph of the presentation P. Every 2-dimensional, 

finite connected CW complex has the homotopy type of a graph. 

THEOREM 3. Let X and Y be two finite connected CW complexes. If’ X and Y hare the 

same fundamental group rt, then their universal covering spaces x and y hare the same 

fundamental group for their ends. 

Proof. It is enough to prove the theorem when both X and Y are 2-dimensional com- 

plexes. Up to homotopy type, we may assume that they are graphs X,, ,I’,, of two presenta- 

tions P,, P2 of the fundamental group. Given a finite presentation 

P = (x,, . . . x, : r,, . . r,> 

for a group 71, any other presentation for rr can be obtained by a repeated finite application 

of the following elementary Tietze transformations to P. 

(T,) If the word w is derivable from r,, , r, then add iv to the defining relators in P. 

(T2) If one of the relators w listed among the relators r,, , rr is derivable from the 

others, delete w from the defining relators in P. 

(T,) If L is a word in .Y,, .Y~ 1 . . . xr, then adjoin the symbol _I-~+~ to the generating 

symbols in P and adjoin the relator x, + 1 = f. to the defining relators in P. 

(T,) If one of the defining relators in P takes the form ~1 = L where _r’ is a generator in 

P and L is a word in the generators other than _P, then delete _I’ = L from the defining rela- 

tions. and replace y by L in the remaining defining relators in P. 

Note that (TJ is the reverse operation of (r,). Under the transformation (T,) : P -+ Q 

from the presentation P to Q the graph XQ is obtained from X, by attaching trivially a 2 

sphere,-i.e. 
XQ = x, v s’. 

( Tz) is the reverse operation by killing such trivially attached 2 spheres. As for ( T3), (T,), 

they do not change the homotopy type of the graph. Since all these transformations do not 

change the fundamental group of the end, ,q,, and xP1 have the same fundamental group. 

This completes the proof of the theorem. 

$4. THE EXTENSION I -22’ - 7~ - IV - I 

Let 71 be a finitely presented group with normal abelian subgroup isomorphic to Z’. 

the direct product of the integers taken k-times, k > 0. We wish to construct a finite CW- 

complex which is fibered over a 2-complex with fiber a k-torus. Furthermore, the homotopy 

exact sequence should be 
I -+Z~+rc-+:V-rl 



MANIFOLDS COVERED BY EUCLIDEAN SPACE 53 

at the fundamental group level. To do this we begin with a finite presentation of N. We form 

the graph of this presentation. We then kill all the higher dimensional homotopy groups. 

Thus we build a Cl%‘-complex B which is a K(N, I) whose 2-skeleton B2 is our original graph. 

Let E be the universal covering of B and on T” x Ewe shall impose an N-action which 

is equivalent with respect to the projection Tk x E + B, and the covering action of N on B. 

The extension I --) Z” -+ 7t + N -+ 1 is determined by a class in H,‘(N; Z”) where cp : N + 

Aut(Z’) are the automorphisms of Z” induced by N from conjugation in rr. Since Aut(Zk) = 

GL(k, Z), we can regard GL(k, Z) c GL(k, R) and so each element of GL(k, Z) also induces 

a group automorphism of the k-dimensional torus. Denote the automorphism q(a) when 

applied to the k-torus by 6(a). The N-action, which we wish to impose, should also satisfy 

the following “ commuting condition” with respect to the left translation action of Tk on 

T” x E 

(t’(t, @))a = (@a-‘)(t’))((f, e)a) 

where a E N, t, t’ E Tk, and e E E. Note, if cp : N --) Aut Z” is trivial, which is the case when 

the extension is central, then cp(a-‘) is the identity automorphism of Zk. Thus, the toral and 

N action will commute and on (T” x E)/N there is induced a free action of Tk so that the 

orbit space is B. In the general case if N is a group of covering transformations on T” x E, 

then the natural map (Tk x E)/N -+ B is a fiber bundle map with fiber Tk. 

In [l ; $81, for the central case, and [2; $41, in the genera1 case, it is shown that the 

equivalence classes of N-actions on T” x E satisfying the compatibility conditions are in 

one-one correspondence with the elements of H,‘(N; Zk). Furthermore, if the N-action on 

Tk x E is a covering action, then the extension corresponding to the N-action 

1 ---t n,(T” x E) + nJ(T” x Q/N) + N + 1 

is the desired 

l+Zk+rr+N+l. 

Since the N action on E is a covering action, it follows immediately that the N-action on 

TA x E is a covering action. Note also that (Tk x E)/N is a K(r, 1) which fibers over 

B = K(N, 1) with fiber Tk = K(Zk, 1). The structure group Tk c q(N) is a subgroup of 

Tk c GL(k, Z). 

The references [ 11 and [2] may offer some difficulties for the reader since the questions 

(especially [2]) treated therein are in far more generality than we actually need here. First 

of all, sheaves appear there because all principal bundles over simply connected spaces 

(our E here) are considered rather than just trivia1 bundles. Secondly, and most importantly, 

the actions of the discrete group on the simply connected spaces considered in [l] and [2] 

may not be covering transformations. 

In [2: $7 and 121 the modifications of [2; $41 are pointed out for the analysis to be carried 

out in the smooth or continuous category instead of the holomorphic category. In the rather 

elementary case at hand here, we need to classify toral bundles 5, over a space B. We observe 

that n,(B) = A; acts as a group of automorphisms of T” and yields a representation 

4 : q(B) -) GL(k, Z). 
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Since GL(k, H) can also be regarded as a group of automorphisms of T”, our toral bundle 

5 will be equivalent, up to fiber homotopy equivalence, to a toral fiber bundle <’ with struc- 

ture group Tk 0 4(lr,(B)). This type of bundle is classified by the elements of H,‘(B; Zk) 

(see [2; 12.1, $4, 7.2, 3.9, 3.5]), if n,(B) = 0. There is a natural isomorphism 

H,Z(B; zk> + H&r@); zk> = &Z(N; Zk), 

where n,(B) = N, [2; 3.51. Under this isomorphism it is shown that the characteristic class, 

~(5’) E H4’(B; Zk) of the bundle 5’ goes to a class a’ E H42(N; Zk) which, as an extension. 

is equivalent to the extension defined by the homotopy exact sequence at the fundamental 

group level of 5’ : 1 4 n,(Tk) + x1(5’) --* n,(B) + 1. 

Of course, we may also proceed backwards from an extension a : 1 --* Zk + r -+ AJ+ I 

to a construction of a toral bundel 5 over B, with n,(B) = N and n,(B) = 0, whose homotopy 

exact sequence at the fundamental group level is equivalent to a’. This construction is what 

has been described briefly at the beginning of this section. 

Let us denote, the constructed (Tk x E)/N by K and by K’ the restriction of the /L-torus 

bundle over the finite CW complex B 2. Of course, without any loss of generality, we can 

assume that K’ is a finite CW complex. Consider the inclusion i : B2 + B and the resulting 

homomorphism of the homotopy exact sequences of the fiber bundles: 

0 - 7r,(Tk) - xl(K) - n,(B) - 1 

t t t 

- n,u-‘1 - q(K’) - n,(B2) - I. 

Using the fact that n,(Tk) --, q(K) is injective it follows that i,: n,(K’) -+ z,(K) is an iso- 

morphism. 

The universal covering of K is clearly an Rk-bundle over E which, of course, is trivial 

since E is contractible. Since rrt( K’) --* nl(K) is an isomorphism the universal covering of K’ 

is precisely the inverse image of K’ in the universal covering of K. Consequently when we 

look at the portion over the universal covering of B2 of the Rk bundle over E we find that 

the universal covering of K’ is precisely B2 x Rk. 

Thus we have shown the following 

LEMMA 4. Given afinitely presentedgroup z of the form: 

l-+Zk-+n-+N-+I, 

there exists a finite CW complex K’ with X,(K) = x whose universal covering is l3’ x Rk 

where B2 is the universal covering of the graph of somejinite presentation of N. 

95. PROOF OF THEOREMS 1 AND 2 

If the universal covering, E, of a finite connected complex L is homeomorphic to 

A x R’, where k > 0, then z has exactly one end unless both A is compact and k = I. 

Furthermore, since A is simply connected we may show that 
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LEMMA 5. Let L be ajinite C W complex so that the universal covering z is homeomorphic 

to the product A x B where both A and B are non-compact and A has one end. Then z has 

exactly one end, CO, and co has arbitrarily small simply connected neighborhoods (in E). 

Proof. Since A has one end there exists arbitrarily large compact Kin A so that A - K 

is connected. There also exists arbitrarily large compact C in B so that B - C consists of a 

finite number of components. The subset A x B - K x C is connected since it can be written 

as ((A - K) x B) u (A x (B - C)). Now we write this set as 

u ((A - K) x B) u (A x (B - C)j) 
i 

where (B - C)j runs through the components of B - C. We apply the Van Kampen theorem 

a finite number of times to deduce that A x B - K x C is simply connected. 

We now give a proof of Theorem 2. By Lemma 4 we know that there exists a finite 

complex K with fundamental group x whose universal covering R is homeomorphic to 

Rk x B. B is the universal covering of a finite 2-dimensional complex having fundamental 

group N. We now apply Lemma 5. In case N is finite then rewrite R = Rk x B as R’-’ x 

(R’ x B) since B would be compact otherwise and apply Lemma 5 to the product of Rk-’ 

and (R’ x B). Thus, with B compact it is necessary that k - 1 is greater than one to insure 

one end. This completes the proof. 

To prove Theorem I, note that the abelian group must be isomorphic to Zk, for some 

k > 0. We can assume that m = dimension M is greater than 2. We need only to show that 

&?jm is 1 - LC at cc and therefore will be homeomorphic to Euclidean space by the strength- 

ening of the theorem of Stallings [7] given by L. Siebenmann [6]. We make our construction 

as in Lemma 4 and use Lemma 5 together with Theorem 3 to deduce that liirn is 1 - LC at 

cc. As long as k > 2 we have no difficulties at all. If k = 2 then N is finite if and only if m = 2. 

Thus we may assume N is infinite and lR2 has one end. The remaining case is k = 1 where 

we must show B has one end. Let MzI, be the covering space associated with the normal 

subgroup Zk. This space is aspherical and has the homotopy type of Tk. The number of 

ends of M,* equals the number of ends of N (and hence of B2) since N is the group of cover- 

ing transformations of M,* with compact M as quotient. But, by Poincare duality, 

0 = H,,,--I(M2~) = ff,_l(Tk) z H,‘(Mzk), since m - 1 > k. Thus Mzk has exactly one end. 

$6. EXTENSIONS OF THE METHOD 

6.1. It is possible to use the methods developed here to treat cases other than those 

covered by Theorem 1. 

THEOREM 4 (Johnson). Let Mm be aspherical and x = K x H. If m # 3 or 4, K and H 

each non-trivial, then am is homeomorphic to Euclidean m-space. 

The theorem was announced by Johnson in [4]. His idea can be explained as follows. 

We take a finite presentation of K and H and let AK and BH denote the respective graphs. 

Then 2, x &, denotes the universal covering and the covering A, x & corresponds to 

the subgroup K. The covering space MK corresponding to the subgroup Kc n is a non- 

compact manifold having the homotopy type of K(K, I). We observe that dimension H = h, 



56 RONNIE LEE and FRANK RAYMOND 

dimension K = k and h + k = m. We choose cohomological dimension over the ring Zi2.Z. 

Now, without loss of generality, since m > 2, we may assume that k < m - I. Thus. 

0 = H,,,-l(MK; Z/2H) = H,_,(K; Z/22) 1~ Hfc’(M,; Z/22). Hence :M, has exactly one end 

and consequently so must the group H and hence also i?“. We now may apply Lemma 5 

and conclude that fim is simply connected at infinity. This completes the proof. 

6.2. The general philosophy is clear. One begins with a closed aspherical Mm with n: 

expressed as an extension 

I+K+~+N+l, L 
where K is finitely presented. One then finds a finite CW complex L and a locally trivial 

fibering over a finite complex B with fiber a finite complex A so that the exact homotopy 

sequence of the fiber bundle at the fundamental group level 

+ n,(A) + xl(L) + r,(B) -, 

becomes 

I-rK+~+N+l. 

Then one shows that the fiber bundle when lifted to the universal covering B of B splits into 

A’ x i?. If either A” or 8 has one end then by Lemma 5 one sees that A’ x B is simply con- 

nected at infinity and consequently rr is I - LC at infinity. 

6.3. We will now discuss a fairly general situation where we may carry out the program 

above. We suppose 

I-+K-+n-+N+I 

is given. We can assume that if K has finitely generated center then the center is trivial for 

otherwise the center would be normal in rr since it is characteristic in K and Theorem I 

would apply. Therefore the extension is completely determined by cp : N + Out(K) for some 

homomorphism cp. Here Out(K) denotes the automorphisms of K modulo the inner auto- 

morphisms. We can easily construct a locally trivial fiber bundle 

K(K, I) --, K(n, 1) + K(N, I) 

corresponding to this extension. If we let M, denote the covering space associated with the 

subgroup K, then our bundle can be described as simply 

MK + E,., x ,v M, + K(N, I ) = B 

where EN is the universal covering space of K(N, 1). This can also be constructed via cellular 

maps. However M, is not compact and restricting over the 2 skeleton of B will not work now. 

What will work however is knowledge that M, is homotopy equivalent to a smooth aspher- 

ical manifold A and that cp : N + Out(K) can be lifted to 

@ : N -+ Homeomorphisms (A) 

so that V u (7 = cp, where Y-’ is the homomorphism which assigns to each homeomorphism 

the outer automorphism induced by it on the fundamental group of A. 

As an illustration consider K = n,(A) where A is a closed 2 manifold whose Euler 

characteristic is ~0. Then K is centerless. If cp : N -* Out(K) has finite solvable image then 
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there exists a finite subgroup of homeophisms of A isomorphic to q(N) and whose Y image 

is exactly cp(N). 

Another illustration would be the manifolds considered in [3]. They are in some vague 

sense ” almost all ” of the manifolds which fiber over the circle with a k-torus as fiber. The 

fundamental group of this manifold A will be K in our sequence. K is centerless. It was 

shown that all of Out(K) can be realized as a subgroup of Homeo (A). Once again we may 

conclude that fi(rr) is homeomorphic to Euclidean space when m # 3 or 4. 

The last illustration is somewhat misleading in that A contains a characteristic subgroup 

isomorphic to Z” and so this abelian subgroup would be normal in n and so actually 

Theorem I would apply. 

1. 
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