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Abstract--This study concerns the unsteady free-surface flow of a Newtonian fluid issuing 
vertically upwards from a tdbe in the base of a vertical cylindrical cavity. Experimental and 
numerical results are presented and discussed. 

The experiments involve a photographic procedure for measuring point velocities and 
surface profiles in an unsteady velocity field. Numerically, a marker-and-cell technique is 
used in conjunction with a Dufort-Frankel finite-difference approximation for solving the 
Navier-Stokes equation in two-dimensional cylindrical coordinates. It is found that the 
numerical solutions are generally stable for large values of the time step in spite of high fluid 
viscosities. Good agreement is obtained between the numerical and experimental results. 

1. INTRODUCTION 

THE WORK reported is concerned with the numerical solution of the nonlinear equations of  
motion describing the unsteady, highly viscous, free-surface flow of a Newtonian fluid 
issuing vertically, with mean velocity V, from a cylindrical tube into the bottom of a vertical 
cylindrical enclosure (Fig. 1). Conditions are isothermal and gravitational effects are taken 
into account. 

The fluid in the inlet tube is initially motionless. Subsequently, it flows into the bottom 
of th e cavity in either a non-jet or jet-like manner, depending on its velocity, eventually 
impinging on the walls of  the enclosure and advancing upward. The investigation can be 
viewed as a prelude to a more systematic study of such topics as injection molding, viscous 
unsteady and steady-state jets, and surface diffusion phenomena. 

Two particular difficulties of  the stated problem govern the direction to be taken in select- 
ing an efficient numerical approach. First, the presence of a high viscosity liquid dictates 
that, for stability, a prohibitively small value of the time step may have to be used. To 
alleviate this limitation, the approach of Dufort and Frankel[5] is employed. Instabilities 
having their origin in the inertial terms may also occur, and in this respect the results of  
Williams[23] are of  special interest. 

The second difficulty concerns the moving free surface. An effective technique for dealing 
with problems of this nature is the marker-and-cell (MAC) method developed by Welch 
et al.[22]. Although on initial examination the MAC scheme appears to be basically an 
elaborate and detailed sequence of book-keeping steps, it in fact leads to a significant 
change in the fundamental development of  the finite-difference equations. In brief, the 
use of  marker particles depends on the definition of cells. This in turn requires the use of  
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Fig. 1. Liquid injection into a vertical cylinder. 

an interlaced grid system. Additionally, the retention of the Navier-Stokes equation in its 
basic velocity/pressure (primitive) form is convenient when working in two-dimensional 
cylindrical coordinates, three dimensions, or when free surfaces are involved. However, a 
way of satisfying continuity is now needed, and this is conveniently provided by defining 
a divergence or discrepancy term for each cell and using it to formulate an equation for 
the pressure. 

Various free surface boundary conditions were tested and the simplest procedure that 
yielded reasonable agreement with experiment was used. The question of fluid motion in 
the vicinity of the contact line (see, e.g., Huh and Scriven[11 ]) was avoided in the numerical 
work by imagining the flow to occur into a vacuum. 

The experimental program established to provide data suitable for verifying the numeri- 
cal results is an extension of the work of Andrade and Tsien[1] and Atkinson et  al.[2]. 
The experiments consist of measuring both velocities within the fluid and free-surface 
profiles. Computer simulations of the experimental runs are compared directly with experi- 
mental results. 

2. T H E  M A T H E M A T I C A L  M O D E L  

The partial differential equations and boundary and initial conditions are developed for 
the physical situation illustrated in Fig. 1. A viscous Newtonian liquid of kinematic vis- 
cosity v is injected into the bottom of an empty vertical cylindrical cavity of diameter 2a 
through an inlet tube of smaller diameter d; the velocity distribution in the inlet tube is 
taken to be parabolic. The flow in the main cylindrical tube is considered to be unsteady, 
laminar, isothermal, and axially symmetric and involves a moving free surface. Nonlinear 
terms and gravitational acceleration, #, are included in the analysis. The objective is to 
compute the fluid velocities and the shape of the free surface as a function of time. 

The complete equations governing this flow can be written as 

v .  w = 0, (1)  
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0w 
d t  = - V "  (ww) - V¢ + vV" (Vw) + g. (2) 

Here, w is the velocity vector, t is time, ¢ is pressure divided by fluid density p, and g is the 
gravitational vector. These equations represent mass and momentum balances for a volume 
fixed in space and are the appropriate forms for the numerical technique used in their 
solution. In particular, the form of the convection terms as V • (ww) rather than (w. V)w is 
important for the stability ,of the numerical method, as will be discussed in §3. The form 
of the viscous term is required for compatibility with the Dufort-Frankel finite-difference 
approximation (FDA) and consequently should not be simplified by means of the incom- 
pressibility condition. 

With u and v the velocity components in the r and z directions, respectively, (1) and (2) 
can be written in two-dimensional cylindrical coordinates as 

1 O(ru) Ov 
D -  - -  + = 0, (3) 

r Or ~z 

Ou 1 O(ru 2) O(uv) 0¢ [02u 10u u 02u] 
o ,  . . . . .  + + ' 

r Or Oz Or r Or r 2 Oz 2] (4) 

Ov 1 O(ruv) O(v 2) 0¢ [02v 1 Ov 02v] 
0t 4 - -  + . . . . .  t- v + - (5) r Or Oz Oz ~ r  2+ r~r  az 21 Oz. 

An equation for the pressure at any time is obtained by differentiating (3), (4), and (5) 
with respect to t, r, and z, respectively, and eliminating time derivatives of u and v, giving 

02~b 1 O~b 02¢ . aD 
Or 2 + r ~r + ~z 2 + I = - Ot + vV2D' (6) 

where 

/ =  1 02(ru 2) 2 02(ruv) 02(v 2) 
r 0r ' ' ' ' 5 -  "~ - -  + (7) r OrOz ~ z  2 " 

Although the divergence D is identically zero in the continuous problem, its finite-difference 
counterpart will not necessarily be zero, in which case corrective action must be taken by 
suitable modification of the pressure field. The indicated derivatives of D provide the appro- 
priate adjustment. Thus, (6) can be viewed as a predictive equation for the incompressibility 
condition. 

Boundary conditions at the solid surfaces, free surface, and inlet must be prescribed for 
(4), (5), and (6), together with initial conditions for (4) and (5). Initially, the cylindrical 
cavity is empty and the fluid in the inlet tube is at rest. Subsequently, all velocities at solid 
boundaries remain zero. Symmetry of velocity relative to the centerline is assumed and in 
the inlet region the velocity distribution is taken to be parabolic. The solid surface and inlet 
boundary conditions for (6) are obtained from (4) and (5) which relate the normal pressure 
derivatives to the body and viscous forces. The implementation of these concepts in terms 
of a finite-difference methodology is summarized briefly in §3, as are the free-surface 
boundary conditions. 

Several assumptions made in developing the above model warrant review and justification. 
The assumptions fall into two categories, namely, those that can be precisely satisfied by a 



54 THOMAS G. SMITH and J. O. WILKES 

suitable design of the experiments and those that, without a great deal of difficulty, can not. 
The latter are dealt with in the remainder of this section. 

It has been assumed that a parabolic velocity profile exists at z = 0 and t = 0. There are 
at least six factors to consider in justifying this assumption. First, the time required to 
accelerate the fluid in the inlet tube from rest to a steady-state velocity profile must be 
calculated. Using the analysis of Szymanski, as presented in Schlichting[ 18], the acceleration 
time is typically less than 10 per cent of the total duration of a given experiment. However, 
for those experiments involving the lower viscosity fluids, the acceleration time becomes 
relatively quite large, and at high inlet velocities this effect may then exert a noticeable 
influence on the overall fluid mechanics in the main cylindrical tube. Second, at low Reynolds 
numbers, the interaction of the flow fields upstream and downstream of z = 0 is thought 
to cause a departure from parabolic flow within the inlet tube near z = 0 (see, e.g., Richard- 
son[17]; Tillett[21]. The details of this disturbance are presently not well understood but 
it is known experimentally (Goren and Wronski[8]) that an increase in jet diameter can 
occur. In the present problem, gravity tends to increase the diameter and is undoubtedly 
the dominant force in this respect. Therefore, the use of a parabolic velocity profile at 
z = 0 seems reasonable. The other four effects relating to the parabolic assumption are: 
the pressure drop history during the time interval of the experiment, the length of inlet 
tube required to achieve fully developed flow from an entering non-parabolic profile, the 
length of inlet tube required to dampen out any swirling velocity components, and viscous 
heating effects. Their influence is noted in §4. 

It is readily found that the flow and pressure fields are governed by the Reynolds number, 
Re = dV/v, the Froude number, Fr = V2/dg z, and by the diameter ratio d/2a. Since the 
solution is a function of two dimensionless groups, Re and Fr, having certain parameters 
in common but to a different power, there is obviously no gain in generality in using dimen- 
sionless equations. 

3. THE N U M E R I C A L  P R O C E D U R E  

3.1. System of vrid points 
The basic cell concept dictates the construction of the grid point network. For a given 

cell, the field variable and indexing arrangement is illustrated in Fig. 2. The cell concept 
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Fig. 2. Field-variable and indexing arrangement for cell (i,j). 
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was used by Welch et al.[22] and has been proposed as being necessary to insure mass and 
momentum conservation (Williams[23]). 

Figure 3 represents the region of interest in terms of a rectangular mesh of these cells. 
The ranges of coordinates are 0 <_ r <_ a, 0 <_ z <_ L and the cell dimensions are 

r = a / ( M  - 1), z = L / ( N  - 1), 

where M and N are integers. A cell (i, j) is such that its edges farthest from the origin have 
radial and axial coordinates 

r = (i - 1) Ar, z = ( j  - 1) Az, 

respectively. The indices i and j refer to the cell center. Cell boundaries are designated as 
i + 1/2, i - 1/2, j + 1/2 and j - 1/2. To facilitate the application of boundary conditions, 
the entire computational region is surrounded by either border ceils or inlet cells as shown 
in Fig. 3. 
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Fig. 3. Arrangement of cells for the finite-difference calculations. 

3.2. The f ini te-di f ference equations 

In the following FDA to (3), (4), and (5) the superscript locates the time level and, when 
omit ted,  n is implied: 

1 
Di. g = ~ [(ru)i+ ,/2. g - (ru)i_ ,/z, j] ~i. j+ 1/2 --Az~)i. j -  1/2 , (8) 
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Truncation errors for these equations are of order (Ar) 2, (Az) 2, and (At) 2. Averaging of 
adjacent variables is obviously required for points where these variables are not explicitly 
computed. For example, 

( U U ) i _ I / 2 , j _ I / 2 =  i - 1 / 2 . j  1 1/2.J 1 V,.j l/2 di-l)i _ 1/2 

2 

If existing fields of u, v, and ~b are known at time level n, then (9) and (10), when applied 
to each cell in turn, are immediately appropriate for the calculation of new velocities at 
time level n + I, provided that all cells involved are full of fluid. The computation of 
velocities in surface and border cells will be discussed in §3.2 and §3"3. After calculating the 
velocities at an advanced time level, the new pressure field corresponding to this velocity 
field is calculated. This is accomplished using the FDA to (6), rearranged as follows: 
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Here to is a relaxation parameter. The variables needed in (11), together with their location, 
are shown in Fig. 4 for a general cell (i,j). 
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Fig. 4. Locations of the variables involved in the FDA of the presssure equation. 

3.3 Solution technique and stability. 
One of the main complications of the physical problem being considered is that it 

involves a free surface whose location must always be known. As mentioned previously, 
a computational device for dealing with free-surface problems in general has been devel- 
oped and proven effective for several interesting cases (Harlow and Welch[9]). The tech- 
nique as applied here is to simulate the introduction into the inlet stream of a number of 
initially regularly spaced massless marker particles, which are subsequently allowed to 
move at the local fluid velocity. The advancing free surface can then be located between 
pairs of cells, one of which contains particles and the other of which does not. These par- 
ticles, whose motion describe the trajectories of the actual fluid, thus reveal to which cells, 
at any given time, the surface boundary conditions should be applied. This is the only 
manner in which the marker particles influence the computations. The procedure by 
which particles are created, identified, and moved, together with methods for the identifi- 
cation and relabelling of cells, are very detailed. The necessary steps for the problem at 
hand are too voluminous for presentation here and can be found in Smith[19]. 

One of the distinguishing features of the present work is the concern with high-viscosity 
fluids. In this respect, if the FDA to the continuous equations had been developed using a 
standard explicit formulation, the time step would have been restricted to At _< (/~Lx)2/4v 
to suppress a strong numerical instability characteristically exhibited by the diffusion terms. 
For the present investigation, where viscosities as high as 60 poise are tested in the experi- 
mental program, the above stability criterion represents a serious computational limitation. 
An implicit alternating direction method has been considered but appears to present 
unnecessary computational complications when used in conjunction with the MAC ap- 
proach. Instead, the Dufort-Frankel explicit technique, which is unconditionally stable 
for linear partial differential equations, is used in formulating (9) and (10) in the expecta- 
tion that a less restrictive stability criterion will result for the nonlinear problem. On the 
other hand, since variables at three time levels are now involved, it is possible for a parasitic 
solution to develop, leading eventually to a weak instability known as time splitting (Platz- 
man[16]). 

Note that use of the Dufort-Frankel method requires the retention of the friction terms 
in their complete form, vV • (Vw) rather than their simplification, using incompressibility, 
to vV x (V x w). 



58 THOMAS G. SMITH and J. O. WILKES 

The convective terms in (9) and (10) have been written in the total derivative form to 
control nonlinear computational instability. This, together with limiting the time-step 
increment to At < Az/] Vmax], insures stability (Williams[23]) because aliasing is controlled 
(see also Welch et al.[22]). Note that precise momentum conservation (Fox[6]) is prohibited 
in cylindrical coordinates. 

In a rearranged form (see (6)), (11) is essentially a predictive equation for OD/Ot, the rate 
of change of the divergence. One might expect that the desired rate of change of this quantity 
would be zero. However, a different approach is necessary. We first recognize the fact 
that the existing Di , j  at time-level n may be finite (i.e., continuity is not perfectly satisfied 
by the finite-difference solution), and force Di,j- toward zero by proper adjustment of the 

~ l) "+ ~ - D~,j) /At  is taken as - Di , j /A t  in formulating new pressures. Therefore, (~ DId t) i, j - ,--i, j 

(11). This procedure is required to prevent the growth of D and consequent instability. 
Further, it has been shown that when (11) is solved iteratively, as it is here, the convergence 
criterion for the solution can be relaxed considerably by retaining the remaining artificial 
divergence terms, thus reducing computation time. To further minimize the time needed to 
solve (11), we have accelerated convergence by using the method of successive over-relaxa- 
tion (Carnahan et al. [3]). The optimum value of the relaxation parameter, co, having a 
value between 1 and 2, can only be found heuristically for the present problem and in fact 
varies as the computational region changes, i.e., as the free surface advances. A value of 
1.6 proved adequate for a majority of the cases, requiring between 5 and 50 iterations for 
a satisfactory degree of convergence. 

3.4 Boundary conditions 

The following strategy is employed in administering the free-surface boundary conditions. 
First, it is required that D =- 0 for surface cells. Satisfying continuity is especially important 
at the surface because of the absence of a pressure (as computed by (11)) in such 
cells to compensate for finite values of D. When a surface cell has only one free side (the 
most important case) it is possible to calculate three of the four surface cell velocities using 
(9) and (10). The fourth velocity, the free surface velocity, is then computed from (8) thus 
insuring D = 0. 

For most of the flows considered here, surface cells with two or more free sides occur 
much less frequently than those with one free side (this is accounted for by the fact that in 
the MAC method all surface cells are considered to be completely full even if they are only 
partially full) and, consequently, the particular procedure used for multiple free-side cells 
has a relatively minor effect on the overall velocity field. 

The results presented in §5 show that for the type of flow under consideration, the pres- 
sure in a free surface cell can be assigned the value of the external pressure, namely zero. 
The basis for this is that the relatively large tube diameter, approximately 1 cm, reduces 
surface tension effects to a minor role, especially for higher viscosity fluids at reasonable 
velocities. Additionally, the results of calculations which included the influence of normal 
viscous stress on the surface cell pressure were not significantly different from those that 
neglected this effect. 

At solid surfaces the boundary conditions are applied by means of the border cells shown 
in Fig. 3. The velocity and pressures in these cells are calculated using the boundary condi- 
tions stated in §2 and by insisting that D - 0. The full prediction equations for velocity 
and pressure can then be applied, without modification, near the boundaries. This avoids 
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a complicated redefinition of these equations at and near the boundaries and is the reason 
for using border cells. 

A complete development and listing of the finite-difference form of the boundary condi- 
tions is given by Smith[19]. Because of the many details involved, only the key guidelines 
are presented above. 

4. THE EXPERIMENT 

The equipment for the unsteady state experiments is depicted in Figs. 5 and 6. Certain 
elements of this equipment have been tested by means of preliminary experiments and 
proven satisfactory for measuring the fully established velocity distribution in Poiseuille 
flow. Steady-state velocities on the order of 5 cm/sec can be determined to within 5 per cent. 
Unsteady free-surface flows present five additional difficulties: particle acceleration should 
be accounted for, velocities in two directions must be measured, flow calibration is more 
complicated, the free surface must be contended with, and a movie camera rather than a 
still camera is employed, leading to various difficulties. 

The experimental method basically involves illuminating, from the side, particles having 
a high reflectance, viewing against a dark background, and photographing with a 16-mm 
movie camera. Subsequent measurements are made directly from the negatives. 

Since the duration of the experiments is less than l0 sec, temperature control is unnecess- 
ary. Furthermore, viscous heating effects in the inlet tube are calculated to be negligible 
for the velocities, viscosities and diameters under consideration. Regarding this, Goren 
and Wronski[8] conclude that a point temperature rise of up to 5°C is allowable before 
the viscosity variation significantly affects the velocity distribution (see also Gerrard 
et al. [7]). 

Dimethylpolysiloxane liquids having nominal viscosities of 1, 10, and 60 stokes are 
employed. Viscosities at various shear rates up to 200 reciprocal seconds are measured 
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Fig. 5. Equipment flow diagram for the unsteady-state experiments. 



60 THOMAS G. SMITH and J. O. WILKES 

FLOOD ~ ? 

II-i I IIH\ (~ ~)) SOURCE II 
_ _  COLLIMATING LENS j 

A°sr":2: 

M 

ADJUSTABLE 
CLAMP 

ELEVATION 

I ~ ~ P R  ECISIO N SCALE 

MAIN CYLINDER h665  cm I.D. 

ALIBRATION MARK 

OW CORNING 
210 LIQUID, I0 POISE 

~ LEVELING SCREWS 

INLET TUBE 
0 . 4 6 6  cm I.D. 

Fig. 6. Optical system. 

with a Weissenberg rheogoniometer using the most viscous liquid. The behavior is Newton- 
ian for this range of shear rates. 

During a given experiment, liquid is forced from a reservoir into an open-ended glass 
cylindrical tube having an inner diameter of 2.565 cm. Due to the large volume ratio of 
the reservoir to the cylindrical cavity, the pressure-drop history during a run is constant. 
Therefore, once a fully developed velocity profile has been established, the flow rate will 
remain constant. The lower end of the open-ended tube fits into a machined acrylic base 
plate. Precision-bore glass inlet tubes of inner diameter 0.466 and 1.665 cm are located 
concentrically in an appropriate base. The vertical alignment of the inlet tube and main 
tube is verified prior to each experiment. The inlet tube is 24 cm long, sufficient to insure a 
fully developed velocity profile (cf. Schlichting[18]) together with the damping out of any 
swirl velocity components (cf. Talbot[20]). No swirling is detected during the experiments. 

Glass spheres in the range of 200-300 mesh serve as the tracer particles. A high-reflectance 
nacreous pigment in the form of extremely thin platelets has also been tried as a tracer, 
but is not successful unless used in a low viscosity liquid such as water. The difficulty is 
that the shear forces in the very viscous liquid orient all the particles perpendicular to the 
light beam, thus eliminating the possibility of any detectable amount of light being reflected 
in the direction of the camera. 

The optical arrangements are identified in Fig. 6, Note that as thin a light beam as possi- 
ble is desirable in order to reduce errors in the measured particle velocities. A beam having 
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a width of 1 mm is found to be the lower practical limit with the equipment available. The 
primary purpose of the negatives obtained using diametral lighting is to determine particle 
velocities. However, when employing this side-lighting technique, the free surface of the 
liquid does not appear acceptably clear on the negative. A backlighting approach is there- 
fore used when free surface profiles are desired. A floodlight is placed behind the glass tube, 
directly facing the camera, thus lighting the entile volume of the fluid rather than only a 
thin plane. 

Figure 6 shows that the open-ended glass tube is surrounded by flat acrylic walls containing 
fluid of the same refractive index as that inside the tube. This is done to minimize refraction 
effects due to the curvature of the glass-liquid interface. Of course, when the free surface 
is photographed, the liquid surrounding the cylinder is removed. The effectiveness of these 
procedures is verified by measurements on photographs of a test grid and by calculations 
made using a full-scale drawing of the surfaces and liquids through which light rays pass 
after having been reflected by a glass sphere in the liquid. Errors in locating the position of 
a particle, due to refraction, are found to be well under 1 per cent. 

Reflections from sources other than the tracer particles, particularly from the surface of 
the main glass tube, are an annoyance. They persist in spite of various precautions. 

Measurements of particle velocities from consecutive negatives is accomplished using a 
comparator, i.e., a low-power microscope equipped with a movable table and having a 
reproducibility of about 10/~m. Thus, for a camera framing rate of 10 frames/sec and magni- 
fication of 0.2, if the particle travels at 5 cm/sec, an error in measured velocity as low as 
1 per cent could be obtained. 

The experimental data are obtained primarily for average inlet velocities V of 2-7 cm/sec. 
The desirability of this range is established as follows. First, in order to eliminate refraction 
errors, the liquid must reach the wall of the main glass tube before any particle velocity 
data can be taken. For slow flows, a considerable time elapses until this occurs. This dictates 
that the digital computer program simulating the flow must run a relatively long time before 
results which can be compared with the experiment are generated. Computer economics 
therefore place one lower limit on desirable inlet velocities. Another independent lower 
limit is set by the accuracy to which small velocities can be measured. This in turn is deter- 
mined by comparator accuracy, camera magnification (in turn a function of the field of 
.view required) and the degree of nonlinearity of the particle acceleration. 

The upper bound on average inlet velocity is determined by one of the two following 
criteria. Inlet velocities large enough to produce a jet prevent measurement of point veloci- 
ties because in this case the liquid never fills the cylinder and refraction errors cannot be 
eliminated. Also, at high velocities, higher framing rates are required to prevent the 
images of the particles from streaking excessively. At these higher framing rates, the intensity 
of available illumination becomes a limiting factor. 

Following the above guidelines, it is estimated, based on a cumulative error analysis, that 
for inlet velocities of 2-7 cm/sec, measured particle velocities are in error by less than 
5 per cent. Note, therefore, that it is not possible to measure particle velocities accurately 
at every location within the liquid because of the wide range of velocities which exist. 

A very accurate technique has been devised to determine the average inlet velocity for 
each individual run, since this is required as input data for the computer program. The 
method avoids direct consideration of viscosity variations from run to run, valve settings, 
pressure dropl or similar factors which would be involved in setting up a general calibration 
technique. Instead, use is made of the negatives themselves, and thus represents, in effect, a 
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new calibration for each specific experiment. A negative well past t = 0 is chosen at which 
time the cylindrical tube is nearly full, thus minimizing measuring errors. The volume of 
fluid in the cylinder is deduced from the photographic negative and is divided by the 
injection time and inlet area, thus yielding V. 

A more detailed description of the various procedures and the experiment and equipment 
design is provided by Smith[19]. 

5. EXPERIMENTAL AND NUMERICAL RESULTS 

The primary objective of the experimental program is to insure that the numerically 
calculated results conform reasonably with the actual physical situation, i.e., that no im- 
portant phenomena have been neglected in the mathematical model and that the computer 
program is free from errors and accurate. Toward this end, a representative sampling of 
the total spectrum of results will be presented. 

The finite-difference computations are performed on an IBM 360/67 duplex multi- 
programming system. The majority of the calculations involve either a 14 x 14 or 14 x 28 
grid and cell dimensions of Ar = Az. For a 14 x 14 grid, with a complete printing of results 
at a given time, the IBM 360 time consumed per time step ranges from 1 to 2 sec. The 
large amount of bookkeeping needed to keep track of the free surface undoubtedly 
accounts for a significant portion of this time. The calculations are generally continued 
for approximately 200 time steps. The computer program consists of 1200 FORTRAN 
statements. 
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Fig. 7. Experimental and numerical surface profiles (/~ = 10 poise, V= 2"06 cm/sec, A = 2.4). 

To convey an idea of the manner in which the fluid flows from the inlet tube into the 
vertical open-ended main cylindrical tube, three numerically calculated surface profiles 
are plotted in Fig. 7 for a liquid having a viscosity of 10 poise. For the times t -- 0.156 and 
0-312 sec the experimental data are also plotted. For this flow, Re = 0.3 and Fr = 0.003. 

A further picture of the flow patterns for this run can be gained by referring to Fig. 8. 
Here, the locations of the marker particles are displayed for t = 0.312 sec. Close examination 
reveals that at the interface between the empty cells and the cells which contain particles, 
the shape of the free surface is outlined (this is the basis for the curves in Fig. 7). The 
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Fig. 8. Marker particle locations (/~ = l0 poise, 17= 2.06 cm/sec, A = 2"4) at t = 0.312 sec, 
showing experimentally determined surface points (0)- 

experimentally determined points which are plotted for t = 0.312 sec on Fig. 7 are again 
shown on Fig. 8. The agreement is generally good. Streaklines are also shown in Fig. 8. 
These are drawn by connecting all marker particles entering the tube at the same radius. 
Note that the curvature of  the leading edge of the fluid becomes appreciable as it progresses 
radially toward the wall. The neglect in the mathematical model of surface pressure caused 
by either surface tension or normal viscous stress may be responsible for the small difference 
between experiment and numerical computation in this region. A method of  accounting 
for surface tension effects in free-surface flow has been published by Daly[4]. For flows 
which require more precise application of the free surface boundary conditions, various 
techniques are available (see, e.g., Hirt and Shannon[10], Nichols and Hirt[14]). 

A time-step of 1/500 of a second is used in these numerical calculations, resulting in a 
value of 2 of  2.4. Here, 

+ At 

is a parameter that can be used to gauge the relative amount of viscous and convective 
momentum diffusion per time step, with some upper limit usually necessary for numerical 
stability. For  example, with the ordinary explicit technique ;t would have to be less than 
about 0"1. Notice that the Dufort-Frankel formulation allows the use of a time step 24 
times larger than this with a corresponding savings in computer time and cost. 

The fluid configuration at a relatively advanced time in the flow of a 1-poise viscosity 
fluid is shown in Fig. 9. For this particular run, which uses a time-step of 1/350 sec, Re = 12.3 
and Fr ---- 0"4. A picture of how the fluid deforms as it moves within the cavity or mold is 
obtained by connecting adjacent inlet particles and observing the subsequent distortion of 
this arrangement. 

The velocity field corresponding to Fig. 9 is displayed in Fig. 10. Two experimentally 
determined tracer-particle velocities for this particular time are available for comparison 
as listed below. Their location is indicated by the two arrows on Fig. 10. 
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showing experimentally determined surface points ( ~ ) .  
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the  magnitude of the experimentally determined vertical velocity component falls near 
the desired 5 cm/sec needed to obtain good measuring accuracy. The experimental and 
numerical values of  v are seen to agree within 5-10 per cent (obviously, it is possible for 
both the experimental and numerical values to be within 5 per cent of  the true velocity and 
show a relative error of up to 10 per cent). Correspondingly poorer agreement is obtained 
for the lower velocities. Considering the overall complexity of the problem, the observed 
agreement, which is typical of  that obtained for other runs, can be considered good and 
serves, together with the surface profile data, to validate the computational technique. 

Note in Fig. 10 that the region near the corner is bypassed and that a large vortex is 
developing. This is in agreement with the computations of  Macagno and Hung[12]. To 
provide a further idea of the behavior of  the velocity field, some radial profiles for u and v 
are taken from Fig. 10 and plotted on Fig. 11. The pressure field corresponding to Fig. 10 
is given in Fig. 12. Recall that the pressure in the surface and empty ceils is taken as zero. 

Proceeding to a run having a considerably higher inlet velocity, Fig. 13 consists of  few 
typical photographs used to measure surface profiles. The surface profiles for the computer 
simulation of this run (not shown) are considerably advanced relative to the experimental 
profiles, indicating that the assumption in the mathematical model of the existence of  a 
known parabolic profile at t = 0 is introducing a larger error at this lower viscosity and 
higher inlet velocity. For this type of situation it may be better to start the numerical calcu- 
lations in the inlet tube. 

A computer simulation has also been performed for the above flow rate but with a viscos- 
ity of  60 poise, thus yielding 2 = 13.0. No numerical instability occurred. 
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Fig. 12. Pressure field at t = 0.38 sec (/x = 1 poise, V =  7.37 cm/sec,  2t = 0.6); units of  pressure 
for 56 are cmZ/sec 2. 

An additional verification of the computer program can be deduced by determining if it 
correctly predicts the conditions for the formation of  a jet. Quite obviously, the definition 
of an unsteady jet in a gravitational field is somewhat arbitrary. Assume for the sake of 
argument that a jet occurs if the fluid loses, due to gravitational force, less than 15 per cent 
of its original momentum while traversing a vertical distance of two cm. Under these 
conditions, the diameter will remain approximately that of the inlet diameter. It can easily 
be shown, using a momentum balance, that a jet will then form for an average inlet velocity 

Fig. 13. Photographs (p. = 1 poise, V = 23.2 cm/sec).  
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of approximately 100 cm/sec regardless, of course, of the viscosity. For a tube diameter of 
1"67 cm, this indicates that Frje , = 5. Both the computer runs and experiments agree with 
this criterion. Various other checks that verify the correctness of the numerical results have 
also been made. 

To further consolidate the concepts discussed above, Fig. 14 represents a series of com- 
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Fig. 14. Time dependent surface profiles: (a) F = 10 poise, V =  2.06 cm/sec (b) F ~ 10 poise, 
i7=2 '58  cm/sec (c)/z = 1 poise, V =  7.37 cm/sec (d)/z = 1 poise, V =  23.2 cm/sec. 

puter generated surface profiles, in the order of increasing average inlet velocity. This type 
of presentation, although interesting, suffers the disadvantage of lacking streakline inform- 
ation. Accordingly, it is difficult to visualize accurately the general movement of various 
fluid segments over a given time span. The marker particles, as used in previous figures, 
alleviated this difficulty. 

Finally, it is of interest to summarize certain observed stability characteristics of the 
numerical solution. First and most important, the strong partial instability of the diffusion 
terms has been inhibited, as evidenced above. This permits the study of highly viscous 
fluids using sensible values for the time step. Second, the computations usually become 
unstable after approximately 200 time steps. The lack of long-term integrability is most 
likely to be due to the weak partial instability alluded to previously as ' t ime splitting.' 
This contention is based on the observation that instability occurs independently of the 
smallness of the time step. A periodic averaging procedure would no doubt have suppressed 
its appearance (Williams[23]). 
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