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Abstract We study a general formulation of seml-mcluswe two-particle rapidity correlations for 
short-range models We use it to compare with the 205 GeV NAL Bubble Chamber data dif- 
ferent decay distributions for independently em:tted clusters We also comment on non-m- 
dependent cluster production and on semHncluslve correlaUons between charged and neutral 
particles 

1. Introduct ion 

In this work we at tempt  to answer the following question, what kind of  informa- 
tion can be obtained from the study of  semi-inclusive rapidity correlations [1, 2]7 
A first advantage of  semHncluswe correlations has already been pointed out by 
Berger I1 ] if  one restricts oneself to multiplicities larger than ~ 1 ~ ,  it is possible 
to ignore dlffractwe effects (in a two-component  type of  model) This is certainly a 
very interesting point since the way to handle &ffractlon is far from clear We will 
therefore concentrate m this work on the non-dlffractwe component  of  the produc- 
tion mechamsm 

Our first goal is to derwe a general formula for semHncluswe correlations, vahd 
both m muir:peripheral (MP) and m cluster type models By cluster models we mean, 
as is now fashionable [3], production of  independent neutral clusters which decay 
into the observed particles In sect 2 we derwe in a simple and physically transparent 
way a formula first obtained by  Arnold and Thomas [4], which allows us to calcu- 
late sem:-mcluswe correlations from mcluswe ones. We demonstrate exphclt ly the 
equivalence between MP and cluster models which has been recently questioned [5] 

In sect 3 we perform a phenomenological analysis of  NAL [6] and ISR [7] data, 
using slmple versions of  the cluster model. In parhcular we compare various distribu- 
tions of  charged particles within the clusters, and obtain good agreement with the 
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NAL data, and also with the 62 GeV data of  the Plsa-Stony Brook experiment 
In sect 4 we comment about neutral charged correlations from the point of  

view of  independent cluster models Finally, in sect 5, we look at the case of  non- 
independent clusters Tins section is rather technical. However, we point out the im- 
portant fact that the combined knowledge of  topological cross sections and seml-in- 
cluswe correlations gtves a clue as to the cluster multiplicity distribution Our most 
Important theorencal and phenomenologlcal points are summarized m sect 6 

2 Semi-inclusive correlations from inclusive ones 

Let us first derive a general formula for semi-reclusive correlations, winch depends 
only on the short range nature of  the correlations, namely on the fact that the width 
of  the multlphclty distribution P(n) Is of  order (-if):. We define as usual the semi-In- 
clusive and inclusive one and two particle distributions 

1 don 1 do 
Pn (y) : o n dy ' P (y) =o dy ' 

1 d2°n 

Cn(Y 1,y2 ) = On dYldY 2 Pn(Yl ) Pn(Y2) , 

1 d2o 
C(Yl,Y2) - p (y l )  p(y2) o dYldY 2 

From the obvious relation 

d2o _ ~ d2°n 

dYldY2 n dyadY2 ' 

we derwe the following general expression for C(y I ,y2  ) 

C(y 1 ,y2)  = ~ P ( n )  Cn(Y 1 'Y2) + ~ P ( n )  (pn(Yl) - p ( y l  )) (pn(Y2)-O(Y2)) 
n n (1) 

At ultra-high energy, only the first term in (1) will survwe, since the second term 
is of  the order of  1/if, as we explain in more detail below Moreover, since the corre- 
lanons are assumed to be short range, we can replace 

c n 

by Ch-, with an error of  the order of  1/K, so that 

C(Yl 'Y2 ) : Ch (Yl 'Y2 ) + O(1/n-).  (2a) 

In order to generahze this result to arbitrary values of  n, we modify the multiphclty 
distribution in the following way 
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_ znp(n) 
+ (3) 

In the case of  the MP model, z is to be interpreted as the square of  the coupling con- 
stant and by convention the physical value corresponds to z = 1 For  cluster models 
eq. (3) has only a formal meaning, but  m each case we can define z-independent one 
and two-particle densltles, as well as z-dependent moments  h-(z) and f2(z)  I f  we 
choose z m such a way that n is precisely equal to h-(z) *, we can generahze (2a) to 

C(Yl 'Y2' z) = Cn(Y 1 'Y2 '  n = h- (z)) + O(1/n)  (2b) 

We have checked numerically, for example m the case of  cluster models with p-p 
clusters (see sect 3), that the O(1/n)  error m (2b) is typically of  a few percent and 
never exceeds 15% even for low values of  n and low energies In the case of  the cluster 
model considered m ref. [1] our result is even exact. 

At fimte (NAL and ISR) energies, we have to take into account the second term 

111 eq (1) I f  we assume that p(y) and Pn(Y) have each a plateau of  length Y 

p(y) =-~ n 

y ' Pn (y) = Y-'  

the second term m (1) is found to be equal to (fi +f2)/Y 2, where f2 is the second 
Mueller's moment  Generahzmg to arbitrary z we finally get our basic equation (first 
derived by Arnold and Thomas [4]) 

Cn(Yl 'Y2 '  n = ~ (z ) )  = C(y 1 'Y2' z) - - ~  (n(z) + f : ( z ) )  (4) 

Before turning to specific apphcatlons let us make a few comments about (4) 
(1) One sees from eq (4) that the semHncluswe correlahon is given by  a function 

depending on y 1 - Y 2  sitting on a constant negatwe background. Tlus background is 
of  the order of  I /Y  and thus disappears at ultra-high energy, but is quanntat lvely Im- 
portant  at present energies Notice that the background term is essentml m order for 
the sum rule 

f d y  1 dy 2 Cn(Y 1 , y2 )  = - n  

to be sansfied In fact integrating (4) over (Yl ,Y2)  gwes for the right-hand side 

f z ( z )  - (-~ (z)  + f2  (z))  = - n  
(11) Experimentally it is found that at NAL energies Cn(O, 0) is close to zero and 

therefore that there exists at those energies an almost complete cancellation between 
the two terms on the right-hand side of  eq (4) Thus there ~s some doubt  whether 
terms of  order 1/Y m Cn can be neglected as argued above before point (I) This seems 
a difficulty unavoidable m all short-range order approaches to sem~--ncluswe correla- 

* In the steepest descent method used by Arnold and Thomas [4] to derive eq (4), the value of 
z such that if(z) = n corresponds to the position of the saddle point 
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tlons at NAL and ISR energies. Indeed, as emphasized in the foUowlng sect:on, it 
would be very tmportant to separate experimentally the two terms in (4) which dif- 
fer by their y 1 - Y 2  dependence, in order to extract valuable information from the 
data 

(111) Eq. (4) apphes to any short range correlation model The MP model does nat  
specify the form of  the functions h-(z) and C ( Y l ,  Y2,  z). The cluster model is shghtly 
more restnctwe" first the correlation length is z-independent and second, as Is clear 
from sect. 3, I fn /n l  IS a non-decreasing function o f n  This last behavior may turn 
out to be different in specific versions of  the MP model, but there does not seem to 
be any fundamental difference between the MP and cluster models as far as seml- 
lncluswe correlations are concerned, contrary to what has been asserted by Caneschl 
[5] 

3. Independent cluster models 

We now apply eq (4) to the duster model. We call w(p)  the probabdlty that a 
gwen cluster decays into p observed (charged, or negative) particles, and 3`(z) the 
generatmg function for the cluster decay 

3`(z) = ~ zP w(p) 
p 

Since the clusters are assumed to be independent and neutral, the generating func- 
tion for the total multxphclty dlstrlbut:on G(z) is gwen by [8, 9] 

G(z) = exp { k(3`(z) - 1) } ,  

where k is the average number of  clusters. We then have. 

-a(z) = k  z 3`' (z) = k  (P)z ' (5a) 

f2(z) = k  z 2 3." (z) = k  (p (p  - 1) )z ' (5b) 

and the mcluswe correlation has the form [10] 

C(y 1 ,y2)  = k  (p (p - 1) )z P(2) ( Y l ' Y 2 ) '  

where p(2) is normahzed to umty In order to be defimte, let us write the formulae 
in the case o f y  1 = O, assuming that the rapidity distribution m the cluster rest frame 
is a Gausslan of  w:dth 6, with 8 ~ 0 7 Then [11] 

p(2) (0, y )  - 1 e - y  2/482, 
26 V '~Y 

and we find * 

• In MP models the Gaussmn my should be replaced by an exponential, and the correlation 
length may depend on z 
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k ( p ( p -  1)) z e_r2/462 
C n ( O , y ) = - ~ 2  ( n + - k ( p ( p -  1))z)+ 28x/-YY (6) 

Let us recall that z is to be determined by the equation kz  ?~' (z) = n In order to 
compare (6) with experiment, it as more convement to work with the ratio R n ,  de- 
Freed as usual by 

Cn(Y 1 , y 2  ) 
Rn (Yl '  Y2 ) = p n ( y  1) pn(Y2) 

Using (6) we find for R n • 

( ( P ( P - 1 ) ) z ~  ( P ( P - 1 ) )  z y e-Y=/482 
1 1+ ( ~ z  / (P)z  26~/7r (7) R n (0, y )  = - n + n 

Eq (7) is the basic formula which we will compare with the experimental data 
It is valid for the class of  models where neutral clusters are produced independently 
The particular case where each cluster decays into a fixed number of  particles has 
been treated m ref [1] The most important point about eq (7) is that Rn(or Cn/n)  
depends only on the ratio ( p ( p  - 1))z/(p )z, and it would be extremely interesting 
to extract this ratio from the experimental data 

As suggested by Berger [1], one can fit R n ( O , y  ) with the formula [12] 

An + B n e -y2/482 
n n ( O ' Y )  = - n  On(0 ) 

where, by comparison with eq. (7), the coefficients A n and B n are gwen by 

( p ( p  - 1) )z 
A n = 1 + (P)z ' (8a) 

1 ( p ( p  - I) )z 
Bn - 26~/rr (P)z  (8b) 

One can then determine from the data the rano ( p ( p  - 1))z/(P )z for each multl- 
phclty Since m inclusive correlations, this ratio is only measured at z = 1, it is clear 
that semi-inclusive correlations provade some important reformation on cluster decay 

We choose to compare three different cases of  cluster decay The first one corre- 
sponds to the decay into a fixed number, P0, of  particles * (for definiteness, we con- 
sider the decay into negatwe particles) This case has already been considered in ref. 
[1] and corresponds to 

( p ( p  - 1) )z 
(P)z = P 0 - 1  , (9) 

• More generally one can take 

w(p) = 1 - a  +a 6 ( p - p o )  , 

where (1 -a )  is the probability that the clusters decay into neutral particles only 
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independently of  z. The second case is that of  the O - O  model [13] Each cluster 
decays into (2rr +, 2rr - )  with a probabil i ty ~ and Into (rr +, rr- ,  2~r 0) with a probabih- 
ty -~ One has 

z = -~ ( -  1 + 4 1  + 8 n / ~ ) ,  

( p ( p  - 1) )z z 
(P)z z + 1 (10) 

Finally we consider that w ( p )  is a Polsson distribution for p / >  1 with parameter P0, 
whale w(0) = 0 * The average number of  particles is then given by ( p )  = P0(1 --e-P°) -1, 
and 

( p ( p  - 1) )z 
(P>z =po z , (11) 

where z IS solution of  the equation 

ePOZ =n ( e P O  1) . Po z 

In order to make a useful comparison we require that all three models give identical 
inclusive correlations, 1 e ,  (p (p  - 1))z/(p) z is the same at z = 1 We then have P0 - 3 -~- 

(mathematical example only v) In (9) and P0 = ½((P) = 1 27) in (11). 
In table 1 we gwe the results of  this comparison with the following values of  the 

parameters" 

/~=lS  Y = 6  

corresponding to the top ISR energy, with an average negative mult :phcity of  5 It 
can be seen from table 1 that the ratio (p (p  - 1))z/(p )z, which is constant in the 
first case, Increases with n an the 00 and PoIsson models. This is m fact a general 
property of  cluster models using the fact that X(z) is a polynomial  in z with posi- 
tive coefficients, it is easy to show that  ( p ( p  - 1))z/(P )z is always an increasing 
function of  z, and thus of  n. 

Table 1 illustrates the importance of  extracting from the data the ratio 
( p ( p -  1))z/(p )z, since it appears that this quanti ty IS rather sensitive to the proper- 
ties of  cluster decay, whereas Rn(O, 0) IS much less so, because of  cancellations aris- 
ing from the presence of  the 1In term in eq (7) 

We now consider the expermaental data which are available from a 205 GeV NAL 
bubble chamber experiment [6], and also from the PIsa-Stony Brook experiment [7] 
at ~/s = 23 and 62 GeV. The lower energy ISR and the NAL data, which are at the 
same center-of-mass energy, are inconsistent with each other. We have chosen to 

* w(0) is the probablhty for the cluster to decay into neutral particles only Hence our choice 
of w (0) is somewhat arbitrary 
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Table 1 
1) )/(p ) and RnCC(0, 0) as a function o f n  c for the three cluster decay models under con- (p (p 

slderatlon 

n c 8 12 16 20 24 

w ( p )  = ce 
a ( p _ p o  ) R n 031  0 1 8  013  0 1 0  0 0 8  

( p ( p  - 1)) 
1 84 2 2 12 2 18 2 24 

(P)  
pp model 

C C  R n 027  0 1 8  0 1 4  0 1 2  0 1 0  

( p ( p -  1)) 1 70 2 224  236  262  
(P)  

Polsson 
dlst R cc 0 24 0 18 0 16 0 13 0 12 

n 

In the case w (p) = a (p - P0) the ratio (p (p - 1) )/(p ) = 2 independently of  n c The value of  n 
chosen to evaluate R n from eq (7) was n = n c - 2 The choice of the parameters k and Y corre- 
sponds to the top ISR energy Our comparison Is made here for charged particles, in order to 
compare our values for Rn cc with the ISR results 

compare the models with the NAL results, which are given in terms of rapl&ty for 
each well defined multlphclty. 

The parameter Y is evaluated using the equation 

O6 

O5 

O4 

0 3  I 

i 
02 ~ 

o 

o 

-R~-(O,O) 

i ~ _ _  J_ 

"v- z 3 4 5 6 7n_ 

Fig 1 A plot of - R  n -  (0, 0) versus n , where R n -  (0, 0) is the semi-reclusive correlation 
function for two negatively charged particles with zero rapldltles We compare the 205 GeV 
NAL data vclth the following models for cluster decay (1) fixed number of negative plons, (11) 
p-p model, ('tti) Polsson distribution (see sect 3 for more details) As the three models gwe prac- 
tically identical results, we have drawn only one curve 
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Y = ( l i e )  do/dy ~ 3.85 , 

while k = ¼ ~_ is determined using the "non-diffractive" value [ 14] ~_ = 3.3 of  ~_ 
It IS seen from fig 1 that R n -  (0, 0) is satisfactorily described by the models We 
have also calculated the correlation for charged particles Rn cc (0, 0) and find that it 
is essentially zero for all n (more precisely RCC(0, 0) lies between 0 and 0 02), in 
agreement with the data. The hmited statistics and the small length of  the rapidity 
plot do not allow to make an analysis of  the y dependence 

It turns out that the models also gwe a satisfactory description of  the X/s = 62 
GeV Pisa-Stony Brook data (see table 1), but the disagreement of  the NAL and ISR 
results at x/s = 23 GeV must be explained before one can draw any conclusions 
However, a complete analysis at the top ISR energy would be extremely useful since 
one may hope to separate the two terms m Rn (eq. (7)) 

4. Correlations between charged and neutral particles 

It would be interesting to have some mformatlon, not only on the distribution 
of  charged particles, but also on the distribution of  neutral particles within a cluster 
To analyze this problem, it is useful to introduce the generating function A(z, z0) 
for cluster decay into negative and neutral pions (9) 

A(z, z0) = ~ z p z p° w(p, po ) (12) 
P, Po 

In eq (12), w(p, PO) is the probability for a cluster to decay into p negative and P0 
neutral plons. We will also need the denvatlves of  A (z, z0)" 

~m+r/ 
A (m'n) (z, Zo) - ~z m ~z~) A(z, z0) , (13) 

Notice finally that X(z) = A(z, 1) We will first show that in the case of  independent 
cluster production, the average number no(n_ ) of  7r°'s as a function of  n_ must be 
an increasing function of  n The general formula for no(n_ ) IS 

n0(n- ~ = k A ( 0 ' l ) ( z ,  l) , (14) 

where z is again gwen by eq (5a) Since A(z, z0), is a polynomml in z and z 0 with 
positive coefficients, z must be an Increasing function of  n , and no(n_) must be 
an increasing function of  z In tlae case of  the p-p model one obtains 

~ = ~ k z = { k ( - l + x / l + g n  /-ff ) (15) 

This expression gives an excellent fit o fn0 (n_  ) for n_ ~< 6 at 205 GeV [15] (fig 2) 
but fails to reproduce the decrease of no(n_ ) when n_ IS larger than 6 We beheve 
that tillS lS an indication that for neutral clusters the cluster multxphclty distribution 
IS not Poxsson, as will be discussed in more detail In the next section 
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7 I 

6 

5 

, 4  

3 

n_ 

Fig 2 Compar ison of  the O-P model  with the 205 GeV data on no (n_) ,  the average number  of  
~r°'s produced for a gwen number  of  7t- 's ,  m the case of  independent  clusters 

We would also l~ke to suggest that the n-dependence of  the rapidity correlations 
between a negative (or charged) particle and a 7r0 (In practice a 7-ray) at a fixed 
number of  prongs can give some useful information on the distribution of neutral 
pamcles in a cluster Indeed, one can easily prove the following equation 

1 d2°n - _ n o ( n - ) + A ( l ' l ) ( z ,  1) ( p ( 2 ) ( y _ , y o )  - 1 
(16) 

n_On_ dy_dy  0 r--2 ~ (z) y - ~ / '  

where y _  and YO are the rapidity of  the negatwe and neutral particles respectively 
The ratio 

A (1'1) (z, I)/X' (z) 

is to be interpreted as the z-dependent average o f p p  0 dwlded by (p )  

A(1,1) (z, l) _ (P Po)z 
x' (z) (P 

The mcluswe correlation between negative and neutral pIons measures this ratio at 
z = 1, but the seml-mcluswe correlations (16) allow to study its vanaUon with z 

In order to illustrate eq. (16), we briefly discuss 3 examples 
(1) No correlations between negative and neutral plons wathm a cluster Then 

(P Po)z/(p )z = (Po) 
independently of  z 

(11) The cluster decays either into charged particles only, or into neutral partlcles 
only Then, 

(P P0½/(p )z = 0 
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(111) The p-p model. Here 

2 
<PPo >z/<p>z - z + 1 

5. Production of non-independent clusters 

If  the clusters are not independent, i e., if their multlphclty dlstnbunon Q(k)  
does not follow a Polsson law, it is still possible to derwe eq. (7) for R n . Although, 
superficially, xt seems that only quantmes related to cluster decay appear In R n ,  this 
IS not true since the relation between n and z [(eq. (Sa)] depends on the shape of  
Q(k) ,  and therefore on the cluster production mechanism. 

Whereas for independent cluster emlss,on only the average number of  clusters, a 
quantity independent of  z, appears in eq (5a), such is not the case for non-indepen- 
dent clusters. It then becomes difficult to disentangle the contributions of  produc- 
tion and decay mechamsms to seml-lncluswe correlatmns 

However, we beheve that it is still useful to determine experimentally the rano 

( p ( p  -- 1) >n 
r (n)  : (P>n ' 

by measuring the coefficients A n and B n m relation (8), provided the multlphclty 
distribution P(n)  is available. Indeed, ,f we consider some precise form for w ( p )  and 
assume we know P(n) ,  it should be possible, at least m principle, to calculate the 
cluster multlphclty distribution Q(k)  and then r(n).  Therefore, one ought to be able 
to express r (n)  d,rectly as a funcnon of  P(n) and to check whether the predicted 
form agrees wxth the experimental data on r(n).  

Let now G(X) be the generatmg function for cluster production 

G (X) = ~ X k a (k) 

P(n)  lS then given by 

1 O n 
P(n)  - nT Oz n 

1 O n-1  

__ _ _  c(X(z))D,= o 

(17) 

X'(z) G'(X(z))Iz: o n ! azn-1 

On the other hand, it is easily shown, using for example, the formahsm of ref [ 1 ], 
that 

1 0 n z 2 X"(z) G' (X(z))[z=0,  (18) P1 (n) -~ <P(P - 1)>n = n5 az n 
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1 a n 
<p >. = ~ - -  zX' (z)  o ' ( X ( z ) ) l ~ :  0 : n P ( n )  

~z n 

Then, replacing X(z) by its expression m terms of  w(p) ,  P(n) and Pl (n)  can be re- 
wrltten as 

r /  

P(n) = ~ pw(p )  a n -p  G,(X(z))[z=O , 
p=l n ( n - p ) )  Ozn_p 

?l 

Pl(n  ) = ~ _ p ( p - 1 ) w ( p )  0 n -p  a,(X(z))lz=O 
p = 2 ( n -  p) l Oz n_p 

Let us now study two relevant examples. 
(1) Each cluster decays into either one or two negative particles, as IS the case for 

the pp model 
Here X(z) = zw(1) + zZw(2), and Pl (n)  IS determined by the recurslon formula 

2w(2) ¢r n _ 1 ) P ( n -  1) - P l ( n  - 1)) (19) P l (n)  = w(1) tt 

In the PP model w(1) = ~ and w(2) = ~- 
(n) The cluster decay is a truncated Poisson distribution, 1 e ,  w(0) = 0 Then 

)t(z) = (1 - e -P° )  -1 (e zp° - 1) and one finds immediately from relations (17) and 
(18) that. 

P l (n)  = P 0 ( n -  1 ) P ( n -  1),  

and consequently 

( P ( P -  l))n n -  1 P ( n - 1 )  
r ( n ) -  (P)n - P o  n P(n) (20) 

This formula was first derived by Berger [16] 
It is thus clear that the experimental determination of  the ratio ( p ( p -  1))n/(p )n 

is an Important tool m investigating cluster models While its magnitude relates to the 
properties of  the cluster decay distribution, Its variation with n gives an important 
clue as to what extent clusters are produced independently. This variation is strong- 
est when clusters are non-independent This point is demonstrated in figs 3a, b where 
m each case, fig. 3a for the PP model, fig 3b for the truncated Polsson model, we 
compare the r(n) obtained on one hand in an Independent cluster model, as done m 
sect. 3, and on the other hand, derived directly from the topological cross sections 
To do the latter calculation, we assume a Polsson distribution for negative particles, 
:n agreement with experimental data at 205 GeV on the non-diffracnve component 
[14], and use the expressmns given above in (i) and (u) 

The previous remarks can also be understood looking at/ '2, the second Mueller 
moment At 205 G e V , f  2 = 0 for the non-diffractive component [14]. This implies 
that f~luster IS negative since by integratmn of  the inclusive two-particle correlatmn 
we have 
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J <p(pq)>n/<p>n 
06 (9(3 model . . . . . . .  

o4 

O2 

0 i i i i 

2 3 4 5 6 7 n _  
r~g 3a 

08 ! <p(p-1)>n/<p>n . . ' "  

o6 I 

~ POI 

0 4 / / / / J / / f  ¢. 
J J 02 / "  

2 3 4 5 6 7"n- 
Fsg 3b 

Fig 3 The ratio (p (p - 1) )/(p ) as a funct ion of  n (a) The p-p model  (b) The Polsson model  
for cluster decay The full lines correspond to independent  cluster emission, the dashed lines to 
a Polsson dls tnbutaon for negatwe particles 

f2 = f~luster <p)2 + ~  ( p ( p  _ 1)) . 

We have checked that a negatwe value fo r f~  luster leads to an increase with n o f r (n )  
which is faster than m the case of  independent clusters, except of  course, when the 
number of  charged particles m a cluster is fixed Therefore, m general, m cluster 
models R n xs expected to fall off  with n more slowly than 1/n 

6 Summary 

We here summarize the main points made in the preceedmg sections. We first 
established a general formula (eq. (4)), vahd in all short-range order models, that 
expresses the sema-mcluswe correlation function m terms of  the mcluswe one We 
then gave the specific form (eq (7)) thts formula takes for Rn(O , 0) m the case of  
neutral cluster models The expression for Rn(O , 0) depends essentially on the ratio 
<p(p - 1))z/<p )z' whxch is characteristic of  cluster properties A sensltwe test of  
cluster models therefore consists m extracting from the data this quantity However, 
though eq, (7) is true m all cluster models, at xs useful only when clusters are pro- 
duced Independently, m which case the relation between the variable z and the num- 
ber n of  particles is simple. When clusters are not independent, tt xs advantageous to 
relate <p(p  - 1))n/(p )n' directly to the topological cross sections. Thus, m all cases, 
the determination of  the ratio <p(p - 1) )n/<p )n' m particular its varxatlon with n, is 
crucial if one wants to learn about clusters, their decay mechamsm and their produc- 
tion 



F Hayot, M Le Bellac, Semt-mclustve raptdtty correlattons 345 

We wish to thank Ed Berger for st imulating discussions 

References  

[ l l  
[21 
[3] 

[41 
[5] 
[6] R 
[7] G 
[81 W 
[91 M 

[101 P 
F 

[11] A 

[121 L 
[13] F 

[141 R 

E L Berger, CERN preprlnt (1974) TH 1816 
J Ranft and G Ranft, Phys Letters 49B (1974) 286 
A Bmtas, Invited talk at the 4th Conf on hadrodynamlcs, Pavm, CERN prepnnt (1973) 
TH 1745 
R C. Arnold and G H Thomas, ANL prepnnt (1974) HEP 7401 
L Caneschl, CERN preprlnt (1974) TH 1826 

Stager et al,  ANL preprmt (1974) HEP 7369 
Bellettml, Invited talk at the Stony Brook Conf AlP Conf Proc, ed C Qmgg (1973) 
Frazer, R Peccel, S Pmsky and C I Tan, Phys Rev D7 (1973) 2647 
Le BeUac, Acta Phys Pol B4 (1973) 901 

Plrfla and S Pokorski, Phys Letters 43B (1973) 502, 
Hayot and A Morel, Saclay preprmt (June 1973), Nucl Phys B68 (1974) 323 
Blatas, K Flalkowslo and K Zalewska, Phys Letters 45B (1973) 337 
Fod, Invited talk at the 9th Monond meeting (1974) 
Hayot and A. Morel, Nuovo Clmento Letters 7 (1973) 221, 8 (1973) 71 
Singer et al,  ANL preprmt HEP 7367 (1973) 

[ 15] K Jaeger et al,  Results presented at the AlP Meeting on particles and fields, AlP Conf 
Proc, ed H Bmgham (1973). 

[16] E L Berger, private commumcatlon 


