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Abstract We study a general formulation of semi-inclusive two-particle rapidity correlations for
short-range models We use 1t to compare with the 205 GeV NAL Bubble Chamber data dif-
ferent decay distributions for independently emitted clusters We also comment on non-in-
dependent cluster production and on semr-inclusive correlations between charged and neutral
particles

1. Introduction

In this work we attempt to answer the following question. what kind of informa-
tion can be obtamed from the study of semi-inclusive rapidity correlations [1, 2]?
A first advantage of semi-inclusive correlations has already been pointed out by
Berger [1] if one restricts oneself to multiplicities larger than ~ 7, 1t 1s possible
to ignore diffractive effects (in a two-component type of model) This 1s certainly a
very interesting point since the way to handle diffraction 1s far from clear We will
therefore concentrate 1n this work on the non-diffractive component of the produc-
tion mechanism

Our first goal 1s to derive a general formula for semi-inclusive correlations, valid
both n multiperipheral (MP) and 1n cluster type models By cluster models we mean,
as 1s now fashionable [3], production of mdependent neutral clusters which decay
mnto the observed particles In sect 2 we derve in a simple and physically transparent
way a formula first obtained by Arnold and Thomas [4], which allows us to calcu-
late semu-inclusive correlations from mclusive ones. We demonstrate explicitly the
equivalence between MP and cluster models which has been recently questioned [5]

In sect 3 we perform a phenomenological analysis of NAL [6] and ISR [7] data,
using simple versions of the cluster model. In particular we compare various distribu-
tions of charged particles within the clusters, and obtain good agreement with the

* Permanent address Service de Physique Théorique CEN Saclay
** Permanent address Faculté des Sciences, Université de Nice
+ Work supported by the US Atomic Energy Commaission



334 F Hayot, M Le Bellac, Semi-inclusive rapidity correlations

NAL data, and also with the 62 GeV data of the Pisa-Stony Brook experiment

In sect 4 we comment about neutral charged correlations from the pomnt of
view of independent cluster models Finally, n sect 5, we look at the case of non-
independent clusters Thus section 1s rather technical. However, we point out the im-
portant fact that the combined knowledge of topological cross sections and semt-n-
clusive correlations gives a clue as to the cluster multiphaity distribution Our most
important theoretical and phenomenological points are summarized 1n sect 6

2 Semi-inclusive correlations from inclusive ones

Let us first dertve a general formula for semi-inclusive correlations, which depends
only on the short range nature of the correlations, namely on the fact that the width
of the multiphcity distribution P(r) 1s of order (n )2 We define as usual the semi-1n-
clusive and 1nclusive one and two particle distributions

do
-1 n _ldo
pn(y) Un dy B p(y) o dy s
d%o
Cn(yl’yz) o dyldy _pn(yl) pn(yz) ’
d2

From the obvious relatlon
2
0y Y
dydy, , dyy

we derve the following general expression for C( Yy yz)

C(yy,75) = LP(M)Cy(1,79)+ 20 P() (0,(01) — () (8, () —P ()

n n (1)

At ultra-high energy, only the first term mn (1) will survive, since the second term

1s of the order of 1/n, as we explain in more detail below Moreover, since the corre-
lations are assumed to be short range, we can replace

ZP@)C,
by C, with an error of the order of 1/n, so that
C(ry)) =Cr () +00/R) . (2a)

In order to generalize this result to arbitrary values of n, we modify the multiplicity
distribution 1n the following way
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P(n)~ P, () = 2" P(n)

222" P(n)
In the case of the MP model, z 1s to be nterpreted as the square of the coupling con-
stant and by convention the physical value corresponds to z =1 For cluster models
eq. (3) has only a formal meaning, but in each case we can define z-independent one
and two-particle densities, as well as z-dependent moments 7 (z) and fz(z) If we
choose z 1n such a way that # 1s precisely equal to 7 (z) *, we can generalize (2a) to

C(r,,77,2) =C, (1,5, n =T (2)) + O(1/n) (2b)

We have checked numenically, for example m the case of cluster models with p-p
clusters (see sect 3), that the O(1/n) error in (2b) 1s typically of a few percent and
never exceeds 15% even for low values of # and low energies In the case of the cluster
model considered 1n ref. [1] our result 1s even exact.

At finite (NAL and ISR) energies, we have to take into account the second term
meq (1) If we assume that p(y) and p, () have each a plateau of length ¥

p(y)=';7 , pn(y)=n7,

3)

the second term 1n (1) 1s found to be equal to (n + 1)/ Y2, where f> 1s the second
Mueller’s moment Generalizing to arbitrary z we finally get our basic equation (first
denved by Arnold and Thomas [4])

(0 ¥y n =A@ =C(¥,75,2) —;}—2 (7 (2) +£,@) o

Before turning to specific applications let us make a few comments about (4)

(1) One sees from eq (4) that the semi-inclusive correlation 1s given by a function
depending on y; — ¥, sitting on a constant negative background. This background 1s
of the order of 1/Y and thus disappears at ultra-high energy, but 1s quantitatively im-
portant at present energies Notice that the background term 1s essential in order for
the sum rule

fdly1 dy, C, (¥, y5)=—n
to be satisfied In fact integrating (4) over (¥, ¥,) gives for the right-hand side
f2(2) = (n(2) +f2(2)) = —n

(1) Experimentally 1t 1s found that at NAL energies C},(0, 0) 1s close to zero and
therefore that there exists at those energies an almost complete cancellation between
the two terms on the right-hand side of eq (4) Thus there 1s some doubt whether

terms of order 1/Y 1 C), can be neglected as argued above before point (1) This seems
a difficulty unavoidable 1n all short-range order approaches to semi-inclusive correla-

* In the steepest descent method used by Arnold and Thomas [4] to derive eq (4), the value of
z such that 7 (z) = n corresponds to the position of the saddle point
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tions at NAL and ISR energies. Indeed, as emphasized in the following section, it
would be very important to separate experimentally the two terms 1n (4) which dif-
fer by their y4 — y, dependence, 1n order to extract valuable information from the
data

() Eq. (4) applies to any short range correlation model The MP model does nat
specify the form of the functions 77'(z) and C(y1, ¥2, z). The cluster model 1s shghtly
more restrictive first the correlation length 1s z-independent and second, as 1s clear
from sect. 3, |C,,/n| 1s a non-decreasing function of # This last behavior may turn
out to be different 1n specific versions of the MP model, but there does not seem to
be any fundamental difference between the MP and cluster models as far as semt-
inclusive correlations are concerned, contrary to what has been asserted by Caneschi

[5]

3. Independent cluster models

We now apply eq (4) to the cluster model. We call w(p) the probability that a
given cluster decays into p observed (charged, or negative) particles, and A(z) the
generating function for the cluster decay

Az)= 20 2P w(p)
p

Since the clusters are assumed to be independent and neutral, the generating func-
tion for the total multiphcity distnibution G(2) 1s given by [8, 9]

G@)=exp{k(\2z)-1) },
where k 15 the average number of clusters. We then have.

H(@) =kzN(2)=k{p),, (52)

H@=k2N @=kp@-1), , (5b)
and the inclusive correlation has the form {10]
Coy)=kipe— DL (4,5,

where P(2) 1s normalized to unity In order to be definite, let us write the formulae
in the case of y1 = 0, assuming that the rapidity distribution 1n the cluster rest frame
1s a Gaussian of width 6, with 6 =07 Then [11]
2 2
PP, )= L v ,
©.) 26T Y
and we find *

* In MP models the Gaussian 1n y should be replaced by an exponential, and the correlation
length may depend on z
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ki{p(p—-1), IS
26/ Y
Let us recall that z 1s to be determined by the equation kz N (z) =n Inorder to

compare (6) with experiment, 1t 1s more convenient to work with the ratio R,,, de-
fined as usual by

C,0.7)=——5 (1+k (p(p—1))+ ©)
Y

Cn(y1’y2)
r, (v ) p,(v,)
Using (6) we find for R,
1 (1 +<p(p—1)>z) +<p(p~1)>z Y o 148’ -
(p), (p), n o 28\/m

R,(y,¥y)=

R, 0. »)=—+

Eq (7) 1s the basic formula which we will compare with the experimental data
It 15 valid for the class of models where neutral clusters are produced independently
The particular case where each cluster decays into a fixed number of particles has
been treated in ref [1] The most important point about eq (7) 1s that R,,(or C, /n)
depends only on the ratio {p(p — 1) )z Kp >Z, and 1t would be extremely interesting
to extract this ratio from the experimental data

As suggested by Berger [1], one can fit R, (0, y) with the formula [12]

2 2
eV /48
r,(0)

where, by comparison with eq. (7), the coefficients 4,, and B,, are given by

(p(p—-1)),

An=1+‘—52f‘, (8a)

Aﬂ
R,(0.9)=——T+B,

1 ‘ee=1D)
no28\r (P,

One can then determune from the data the ratio {p(p — 1) ),/{p?, for each multi-
plicity Smce 1n inclusive correlations, this ratio 1s only measured at z = 1, 1t 1s clear
that semi-inclusive correlations provide some important mformation on cluster decay

We choose to compare three different cases of cluster decay The first one corre-
sponds to the decay 1nto a fixed number, pg, of particles * (for definiteness, we con-
sider the decay into negative particles) This case has already been considered in ref.
[1] and corresponds to

{p(p-1)),

@, Pl ®

* More generally one can take
w(p)=1-a+as(p—pg) ,
where (1 —a) 1s the probability that the clusters decay into neutral particles only

B (8b)
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mdependently of z. The second case 1s that of the p — p model [13] Each cluster
decays into (2n*, 27~) with a probability § and into (7%, 7—, 270) with a probabuli-
ty 2 One has

2=4 (- 1+ VTH8)

<p(p_1))z_ z 0
@, T (10)

Finally we consider that w(p) 1s a Poisson distribution for p = 1 with parameter pg, )
while w(0) = 0 * The average number of particles 1s then given by {p )= po(1—eP0) 7,
and

{p(p—1)),
{p),

where z 15 solution of the equation

=DPy? (11

pozep°z=%(ep°~—1) .

In order to make a useful comparison we require that all three models give identical
inclusive correlations, 1 ¢ , {p(p — 1)),/{p), 1s the same at z = 1 We then have p, =%
(mathematical example only') in (9) and p = F¢pY=127)m(11).

In table 1 we give the results of this comparison with the following values of the
parameters-

k=i, Y=6,

corresponding to the top ISR energy, with an average negative multiplicity of 5 It
can be seen from table 1 that the ratio {p(p — 1), /{p},;, which 1s constant in the
first case, increases with # i the pp and Poisson models. This 18 1n fact a general
property of cluster models using the fact that A(2) 1s a polynomial 1n z with posi-
tive coefficients, 1t 1s easy to show that {p(p — 1)),/{p ), 1s always an increasing
function of z, and thus of n.

Table 1 illustrates the importance of extracting from the data the ratio
(p(p—1)),/(p),, since 1t appears that this quantity 1s rather sensitive to the proper-
ties of cluster decay, whereas R,,(0, 0) 1s much less so, because of cancellations aris-
ing from the presence of the 1/n term i eq (7)

We now consider the experimental data which are available from a 205 GeV NAL
bubble chamber experiment [6], and also from the Pisa-Stony Brook experiment [7]
at /s = 23 and 62 GeV. The lower energy ISR and the NAL data, which are at the
same center-of-mass energy, are inconsistent with each other. We have chosen to

* w(0) 1s the probability for the cluster to decay into neutral particles only Hence our choice
of w(0) 1s somewhat arbitrary
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Table 1
(p(p — 1)Kp)and R;C(O, 0) as a function of n c for the three cluster decay models under con-
sideration

n, 8 12 16 20 24
w(p) = cc

R 031 018 013 010 008
5(p —po) n

i”(f—p“)ll) 184 2 212 218 224
pp model

Ry’ 027 018 014 012 010

‘—p((%l-)l 170 2 224 236 262
Poisson
dist ch 024 018 016 013 012

In the case w(p) = 6 (p — po) the ratio {p (p — 1) ¥/(p) = 2 independently of n. The value of n
chosen to evaluate R, from eq (7) was n = ne — 2 The choice of the parameters % and Y corre-
sponds to the top ISR energy Our comparison is made here for charged particles, in order to
compare our values for ch with the ISR results

compare the models with the NAL results, which are given 1n terms of rapidity for
each well defined multiplicity.
The parameter Y 1s evaluated using the equation

-R;7(0.0)
06

05 {
04

03}

|
|

2 3 4 5 6 7n_

Fig 1 A plot of —R; 7 (0, 0) versusn__, where R; ~ (0, 0) 1s the semi-nclusive correlation
function for two negatively charged particles with zero rapidities We compare the 205 GeV
NAL data with the following models for cluster decay (1) fixed number of negative pions, (1)
p-p model, (i) Poisson distribution (see sect 3 for more details) As the three models give prac-
tically identical results, we have drawn only one curve
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- n o~
Y= loydoidy ~

while ¥ =27 15 determined using the “non-diffractive” value [14]%_ =33 of 7i_
It 15 seen from fig 1 that R, ~ (0, 0) 1s satisfactorily described by the models We
have also calculated the correlation for charged particles ch (0, 0) and find that 1t
1s essentially zero for all # (more precisely R;°(0, 0) lLies between 0 and 0 02), in
agreement with the data. The limited statistics and the small length of the rapidity
plot do not allow to make an analysis of the y dependence

It turns out that the models also give a satisfactory description of the /s = 62
GeV Pisa-Stony Brook data (see table 1), but the disagreement of the NAL and ISR
results at /s = 23 GeV must be explamed before one can draw any conclusions
However, a complete analysis at the top ISR energy would be extremely useful since
one may hope to separate the two terms mn R, (eq. (7))

385,

4. Correlations between charged and neutral particles

It would be interesting to have some information, not only on the distribution
of charged particles, but also on the distribution of neutral particles within a cluster
To analyze this problem, 1t 1s useful to mntroduce the generating function A(z, zg)
for cluster decay into negative and neutral pions (9)

AGzg)= 2 2P 2" w(p, py) (12)
b, po
Ineq (12), w(p, pg) 1s the probability for a cluster to decay mnto p negative and pg
neutral pions. We will also need the denvatives of A (z, zg)-

m+n

A 232 Az (13)

n

Notice finally that A(z) = A(z, 1) We will first show that 1n the case of independent
cluster production, the average number ng(n_) of 79’5 as a function of n_ must be
an increasing function of n_ The general formula for ng(n_) 1s

nom ) =k AOD(z, 1), (14)

where z 1s again given by eq (5a) Since A(z, z), 1s a polynomal in z and z with
positive coefficients, z must be an increasing function of n_, and ng(n_) must be
an increasing function of z In the case of the p-p model one obtains

noin =tkz=2k(-1+/1+8n [n ) (15)

This expression gives an excellent fit of ng(n_) forn_ <6 at 205 GeV [15] (fig 2)
but fails to reproduce the decrease of ng(n_) when n_ 1slarger than 6 We believe
that this 1s an indication that for neutral clusters the cluster multipheity distribution
1s not Poisson, as will be discussed 1n more detail in the next section
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Fig 2 Comparison of the p-p model with the 205 GeV data on ng(n_), the average number of
0% produced for a given number of » s, 1n the case of independent clusters

We would also like to suggest that the #-dependence of the rapidity correlations
between a negative (or charged) particle and a 70 (in practice a y-ray) at a fixed
number of prongs can give some useful information on the distribution of neutral
particles n a cluster Indeed, one can easily prove the following equation

d?q n{n ) @11
1 n— V) ATV e (e _1
n_o, dy_dy y2 TN ) (P (r_. o) v2 )’ (16)

n

where y_ and y are the rapidity of the negative and neutral particles respectively
The ratio

ALD @, N @)
1s to be iterpreted as the z-dependent average of pp( divided by {p)
ALD (6 1) _ PPy
N@iE o p ),
The inclusive correlation between negative and neutral pions measures this ratio at
z = 1, but the semi-inclusive correlations (16) allow to study its variation with z

In order to illustrate eq. (16), we briefly discuss 3 examples
(1) No correlations between negative and neutral pions within a cluster Then

{p p0>z/<p>z = (po)

independently of z

(11) The cluster decays either mto charged particles only, or into neutral particles
only Then,

{p p0>z/(p)z =0
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(11) The p-p model. Here

2
{ppy),[{p), = P

5. Production of non-independent clusters

If the clusters are not independent, 1 e., if therr multiphcity distribution Q (k)
does not follow a Poisson law, 1t 1s still possible to derive eq. (7) for R;,. Although,
superficially, 1t seems that only quantities related to cluster decay appear 1n R,,, this
1s not true since the relation between » and z [(eq. (5a)] depends on the shape of
Q(k), and therefore on the cluster production mechanism.

Whereas for independent cluster emission only the average number of clusters, a
quantity independent of z, appears i eq (5a), such 1s not the case for non-indepen-
dent clusters. It then becomes difficult to disentangle the contributions of produc-
tion and decay mechanisms to semu-inclusive correlations

However, we believe that 1t 1s still useful to determine experimentally the ratio

(p(p—-1)),
(p),

by measuring the coefficients 4,, and B, 1n relation (8), provided the multiphicity
distribution P(n) 1s available. Indeed, 1f we consider some precise form for w(p) and
assume we know P(n), 1t should be possible, at least in principle, to calculate the
cluster multiplicity distribution Q(k) and then r(n). Therefore, one ought to be able
to express r (n) directly as a function of P(n) and to check whether the predicted
form agrees with the experimental data on r(n).

Let now G(X\) be the generating function for cluster production

GO =2 W Q(k)
P(n) 1s then given by

1 9"

P(n)=7; o GA@)l, -
zZ

r(n)=

>

(17)
i "1

n 3771

N'(2) G'(AM2) l,=0

On the other hand, 1t 1s easily shown, using for example, the formalism of ref [1],
that
1 9"

Pi(m)y=(p(p—1)), =7 o 2N @6 A, (18)
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(), =3 :~z)\(z)G()\(z))lz o =1 P(n)

Then, replacing A(z) by 1ts expression 1n terms of w(p), P(n) and Pl(n) can be re-
written as

S pw(p) 3P
P(n) = pEl Rn—p) 5 GO\( ) [

n
@—1w(p) 3"
Pl(n)—pzzp’(’n p)‘,”’ = G(MZ))IZ .

Let us now study two relevant examples.

(1) Each cluster decays into either one or two negative particles, as 1s the case for
the pp model

Here A(z) =zw(1) + 22W(2), and Pl(n) 15 determined by the recursion formula

P (n)= 2»:)"((12)) (n—1)P(r—1) — Pl(n - 1) (19)

In the pp model w(l) =% and w(2) =

(11) The cluster decay 152 truncated Poisson distribution, 1e ,w(0) =0 Then
Az)=(1 - Poy-1 (eZp ® — 1) and one finds immedzately from relations (17) and
(18) that.

P (n)=py(n—1)P(n—1),
and consequently

{p(p-1)), n—1Pn-1)
W= Po n Pe

(20)

This formula was first derived by Berger [16]

It 1s thus clear that the experimental determination of the ratio (p(p — 1)), Kp),
1s an 1mportant tool in investigating cluster models While 1ts magnitude relates to the
properties of the cluster decay distribution, its variation with n gives an important
clue as to what extent clusters are produced independently. This vanation 1s strong-
est when clusters are non-independent This point 1s demonstrated 1n figs 3a, b where
1n each case, fig. 3a for the pp model, fig 3b for the truncated Poisson model, we
compare the r(r) obtained on one hand 1n an independent cluster model, as done m
sect. 3, and on the other hand, derived directly from the topological cross sections
To do the latter calculation, we assume a Poisson distribution for negative particles,
1 agreement with experimental data at 205 GeV on the non-diffractive component
[14], and use the expressions given above m (i) and (1)

The previous remarks can also be understood looking at f5, the second Mueller
moment At 205 GeV f =0 for the non-diffractive component [14]. This implies
that f, cluster o negative smce by ntegration of the tnclusive two-particle correlation
we have



344 F Hayot, M Le Bellac, Semi-inclusive rapidity correlations

<plp-1on/<pdn

06 pe model e

04

02

0 2 3 4 5 8 7n.
Fig 3a

0l PP-1>1/<p>n

Poisson moael

06

04

02 e

2 3 4 5 6 Fn

Fig 3b

Fig 3 The ratio (p (p — 1))/{p ) as a function of n (a) The p-p model (b) The Poisson model
for cluster decay The full lines correspond to independent cluster emission, the dashed lines to
a Poisson distribution for negative particles

fy= e (p2 4k (p(p—1)) .

We have checked that a negative value for f2CIuSter leads to an mcrease with n of r(n)
which 1s faster than in the case of independent clusters, except of course, when the
number of charged particles in a cluster 1s fixed Therefore, in general, :n cluster
models R,, 1s expected to fall off with # more slowly than 1/n

6 Summary

We here summarize the main points made n the preceeding sections. We first
established a general formula (eq. (4)), valid 1n all short-range order models, that
expresses the semi-inclusive correlation function in terms of the mclusive one We
then gave the specific form (eq (7)) this formula takes for R,,(0, 0) 1n the case of
neutral cluster models The expression for R,,(0, 0) depends essentially on the ratio
{p(p -1 ) Kp %, which 1s charactenstic of cluster properties A sensitive test of
cluster models therefore consists 1n extracting from the data this quantity However,
though eq. (7) 1s true 1n all cluster models, 1t 1s useful only when clusters are pro-
duced mdependently, in which case the relation between the variable z and the num-
ber n of particles 1s simple. When clusters are not independent, 1t 1s advantageous to
relate (p(p — 1) % Kp ), directly to the topological cross sections. Thus, 1n all cases,
the determination of the ratio {p(p — 1) ), Kp )n, 1n particular 1ts variation with #, is
crucial 1f one wants to learn about clusters, their decay mechanism and their produc-
tion
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