
JOURNAL OF MATHEMATICAL PSYCHOLOGY 12, 4-34 (1975) 

Similarity of Rectangles: 
An Analysis of Subjective Dimensions1 

DAVID H. KRANTZ 

University of Michigan, Ann Arbor, Michigan 48104 

AND 

AMOS TVERSKY 

Hebrew University, Jerusalem, Israel 

Two defining properties of psychological dimensions (intradimensional sub- 

tractivity and interdimensional additivity) are introduced and their consequences, 
formulated in terms of an ordinal dissimilarity scale, are derived. These consequences 
are investigated using dissimilarity judgments between rectangles to determine which 

of two alternative dimensional structures area (A) and shape (S), or width (W) and 

height (H), satisfies additivity and/or subtractivity. The results show that neither 
dimensional structure is acceptable, although A x S provides a better account for the 
data of most Ss than does W x H. Tests of relative straightness show that A is the 

least “curved” of the four attributes. Methodological and substantive implications 
of the study are discussed. 

Much work in psychology is based on the assumption that stimuli (e.g., color 
patches, words, geometric figures) are perceived and evaluated in a dimensionally 
organized fashion. In speaking of hue, saturation, and brightness as dimensions of 
color space, or of potency as a dimension of semantic space, it is typically assumed 
that these dimensions serve as organizing principles in the perception and the 
evaluation of colors or words. Despite its intuitive appeal, the precise content of this 
assumption is far from clear, particularly because the notion of psychological dimension 
is used in the literature in several different senses. How, then, does one test the hypo- 
thesis that a particular variable (specified physically or inferred via some model) 
acts like a subjective dimension ? To answer this question, one needs a theory that 
specifies the formal properties of psychological dimensions-properties that are 
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empirically testable and that can be used to diagnose whether a particular variable can 
be properly regarded as a psychological dimension. 

The theoretical study of the foundations of multidimensional-scaling models of 
similarity data (Beals, Krantz, & Tversky, 1968; Tversky & Krantz, 1970) has isolated 
two basic properties of subjective dimensions: interdimensional additivity (l), and 
intradimensional subtractivity (2). To formulate these properties, let x = (x1 ,..., x,), 
Y = (Yl ,*-*, yJ denote two stimuli that vary along some n attributes, and let 6(x, y) be 
an ordinal-scale measure of the dissimilarity between x and y. It is assumed that 
for anyx fy 

%Y) = qy, x) > qx, 4 = S(Y,Y). 

That is, 6 is an ordinal distance measure: it is symmetric in its two arguments, and it is 
minimal between a point and itself. Using this index, interdimensional additivity 
asserts that the contributions of different dimensions to the overall dissimilarity 
between x and y are combined so that 6(x, y) is monotonically related to the sum of 
terms &(xi , yJ, where xi , yi are the (nominal-scale) values of x and y on the ith 
dimension, and & is a symmetric real-valued function taking the value 0 when xi = yi 
and positive values for xi # yi . That is, 

where F is a strictly increasing function of one variable. Intradimensional subtractivity 
says that the contribution of any one dimension to dissimilarity depends on the absolute 
difference of resealed (interval-scale) measures on that dimension, i.e., 

%%Y) = F[l fi(xd -fdYA-~ I f&n) -fJYdl, (2) 

where F is a function of n variables, strictly increasing in each variable taken separately, 
and the f’s are “psychophysical functions” that rescale the nominal variables x1 , 
x2 ,..., x, to interval-scale variablesf,(x,),f,(x,),...,f,(x,). 

The above equations describe two natural algebraic properties of subjective dimen- 
sions: additivity across dimensions, and subtractivity along each dimension. Both 
properties are assumed in practically all multidimensional-scaling models of similarity 
data. They can be regarded, therefore, as defining properties for subjective dimensions; 
that is, subjective dimensions are expected to satisfy at least one of these properties. 

The purpose of the present study is to demonstrate in detail the testing of (1) and 
(2), on the basis of ordinal dissimilarity judgments of individual subjects, in order to 
diagnose subjective dimensions. For this purpose we consider four physical properties 
of rectangles, width (IV), height (H), area (A = WH), and shape (S = W/H), as 
possible candidates for subjective dimensions. In particular, we compare two alter- 
native dimensional (product) structures, W x H VS. A x S, to determine which, if 
either, satisfies additivity and/or subtractivity. 
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FIG. 1. Photograph of the 17 rectangles used as stimuli, with corresponding numbers. 
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FIG. 2. The 17 rectangles of Fig. 1 are plotted in log width x log height orthogonal coor- 
dinates. The grid of &-45” lines constitutes log area x log shape orthogonal coordinates. Note 

that the 17 rectangles are a symmetric subset of a 5 X 5 A x S factorial design. The value of 
S = W/H of the central stimulus (17) is 3.72 and the ratio between the adjacent levels along 
the Wand H factors is 1.30. For example, the ratio of the heights of 16 to 9 equals the ratio of 
the heights of 16 to 17 which equals 1.30. 
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The stimuli were black rectangles on a light background. The 17 rectangles used 
are shown in Fig. 1. In Fig. 2, each rectangle is represented as a point in a W x H 
coordinate system. The levels of W and H are equally spaced on a logarithmic scale 
(see caption of Fig. 2 for numerical values). This spacing results in a simultaneous 
logarithmically spaced A x S factorial design, shown by the broken lines at 45” to 
the W, H axes in Fig. 2. 

The physical equivalence classes (lines of constant W, H, A, or S in Fig. 2) 
correspond to psychological equivalence classes, to a high degree of approximation. 
There is little if any illusion in perceived W, H, or S: two rectangles of different area 
that are geometrically similar (equal S) look to be the same shape. A substantial area 
illusion does exist: tall rectangles look bigger than shorter one of equal area. To avoid 
this, we chose all our rectangles to be squat: the largest H value was smaller than the 
smallest W value. For physical A-equivalence classes, no systematic variation of 
perceived area was observed, within this range of squat shapes. 

Our stimulus set thus gives us the larger part of a 5 x 5 factorial design in perceived 
A x S, and, simultaneously, a 3 x 3 and a 2 x 2 factorial design in perceived W x H 
(with 4 outlying points, stimuli Nos. 1, 3, 5, 7). Using these stimuli, we collected 
replicated dissimilarity judgments for pairs of rectangles and tested interdimensional 
additivity (I) for the A x S and the W x H factors, and intradimensional subtrac- 
tivity (2) for “lines” of constant A, S, W, or H. 

Additional tests of these properties, using schematic faces as test stimuli, are 
described in Tversky & Krantz (1969); for another test of (1) and (2) using rectangles, 
see Wender (1971). 

THEORY 

Notation 

Throughout the remaining sections, we refer repeatedly to Fig. 2. Readers will find 
the notation, predictions, and discussion much easier to follow and to remember if the 
geometric language is followed through Fig. 2. 

For convenience we refer to A levels as a, a’, a”, etc., instead of xi , yr , etc. The A 
level of rectangle i may also be denoted at times by ae ; hence, from Fig. 2, a, = a2 = 

a3 , ag = alo = all , etc. Similar notation is used for S, W, or H levels. 
The rectangIe with area a and shape s will be denoted as; thus, i = a,si = h,w, . 
It is also convenient to introduce a notation for pairs of A levels, S levels, etc. We 

refer to pairs of A levels as A intervals, and denote the four atomic A intervals as 
A,, A,, A3 > A,, proceeding from low area to high area. Thus, A, = (a2 , alo), 
4 = (a0 ,alJ = (alo , al,) = (a 11 , ar2), etc. Combinations of adjacent intervals are 
denoted by combined subscripts; e.g., A,, = A, + A, = (a, , a,) = (a, , aI,) = 
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, a& etc. The other combined A intervals are A,, , A,, , A,,, , A,,, , and A,,, = 

I:, a,) = (a, a ) = (a3 as). Similar notation is introduced for S intervals, 
proceeding fro; liast to dost extreme shape: S, = (ss , sJ,..., S, = (s12 , s4), etc. 
Likewise, HI ,..., HI234 , and WI ,..., W,,,, refer to H and W intervals, with HI = 
(h, , h,,), etc. and WI = (wl , wJ, etc. 

Using this notation, pairs of stimuli can be given explicit A x S or W x H nota- 
tions, e.g., (1, 2) = S,, = W,H, ; (9, 13) = A&3,, = W,, , etc. Note that we use 
seven levels of W and H, but introduce notation only for the four main intervals and 
their sums. Hence, not every pair has a W x H notation, e.g., (10, 9) although every 
pair has an A x S notation. Also note that as many as three different pairs of rectangles 
may share the same notation in A x S or W x H intervals, e.g., W, = (8, 15) = 
(9, 17) = (2, 11). To take another example, the notation A&?,, refers to both (1, 17) 
and (2, 8). These two pairs form the vertices of a square, 1, 2, 17, 8, in Fig. 2, with 
diagonals (1, 17) and (2, 8). Similarly, A 1234S112 indicates the rectangle in Fig. 2 with 
vertices 1, 2, 6, 7, and diagonals (1, 6) and (2, 7). 

Interdimensional Additivity 

We first state the testable consequences of interdimensional additivity for the specific 
case of A x S dimensions. The theory for W x H dimensions is parallel and needs 
no separate statement. 

The first two sets of predictions from Eq. (1) are actually derivable from a generaliza- 
tion of that equation. We rewrite Eq. (1) in the newly introduced notation as 

S(as, a’s’) = F[f$(a, a’) + #(s, s’)]. (1’) 

Its generalization, the equation of decomposability, is 

S(as, a’s’) = F[$(a, a’), #(s, s’)]. (3) 

In Eq. (3), F becomes an arbitrary function of two variables, strictly increasing in each 
variable separately, rather than a strictly increasing function of their sum. In both 
Eqs. (1’) and (3), 4 and # are symmetric functions of the two nominal variables, taking 
the value of 0 for a = a’ or s = s’, and positive values otherwise. The additive com- 
bination rule of Eqs. (1) or (1’) . 1s re ace in Eq. (3) by some other combination rule, pl d 
determined by the particular function F, but dissimilarity can still be decomposed into 
the contributions of two dimensions. 

The two types of predictions based on Eq. (3) are called equality predictions and 
ordering predictions. The equality predictions are easily summarized in terms of the 
interval notation introduced above: any pairs designated by the same interval notation 
have equal dissimilarity. Thus, the three A, pairs, (9, 16), (IO, 17), (11, 12), yield the 
prediction 

S(9, 16) = S(10, 17) = 6(11, 12), 
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while the two A1,S,, pairs, (I, 17) and (2, 8), yield the prediction 

S(1, 17) = S(2, 8). 

The latter type of prediction is called a diagonal equality prediction. Inspection of 
Fig. 2 shows six triples of the former type for A, six for S, and six diagonal A x S 

predictions. 
The ordering predictions may be summarized as follows: any ordering of several A 

intervals is preserved by adding any one S interval to each of them, and vice versa. 
For example, if A, > A, (i.e., S(10, 17) > S(2, lo)), then A$, > A,& and A,& > 
AIS, (i.e., S(9, 17) > S(2, 9) and S(ll, 17) > S(2, 11)). 

EQUALITY PREDICTIONS. To show that equality predictions follow from Eq. (3), 

consider two diagonal pairs, (as, a’s’) and (as’, a’s). We have #(s, s’) = #(s’, s) by 
symmetry. Hence 

S(as, u’s’) = F[$(u, a’), I)($ s’)] 

= wa, 4, vv, 41 
= S(us’, u’s). 

A similar argument proves that S(us, u’s) is independent of s, using the fact that 
#(s, s) = 0, independent of s. 

ORDERINGPREDICTIONS. To show that ordering predictions follow from Eq. (3), 
suppose that A intervals (a, a’) and (a”, a”‘) are ordered in a certain way, e.g., 

S(us, u’s) > S(u”s, d’s) 

for some s (hence, by equality, for every s). From the fact that F is strictly increasing in 
the first variable, we infer that 

$(a, a’) > &zv, 8). 

Hence, for any common S interval (s’, s”), we have (by monotonicity of F in the first 
variable) 

F[+(u, a’), #(s’, s”)] > F[$(u”, a”‘), #(s’, s”)], or 

S(as’, u’s”) > 6(&s’, a”~“), as asserted. 

The two types of predictions described above (equality and ordering) do not exhaust 

the testable consequences of Eq. (1’). Another class of predictions, which do not follow 
from decomposability (Eq. (3)) 1 a one, are called cancellation predictions (Krantz, Lute, 
Suppes, & Tversky, 1971). In this paper we do not test these predictions directly. 
Instead, we consider the pairs of rectangles as elements in an incomplete 11 x 11 
factorial design whose factors are A intervals and S intervals. This design is shown in 
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the matrix of Table 1. Each of the 92 pairs in our final design is entered in the appro- 
priate cell, and each cell contains zero to three pairs. Pairs occupying the same cell 
should have equal dissimilarity (equality predictions). Thus, the ordinary equality 
predictions are represented in the first row and first column, where one of the dimen- 
sions has a zero interval, and the diagonal equality predictions are represented in the 
six cells having two pairs apiece. 

TABLE 1 

The 92 Experimental Pairs Arranged in an A Interval x S Interval Matrix 

9,lO 10,ll 132 9, 11 2, 3 1, 3 
OA 8, 16 16, 17 12, 17 4, 12 8, 17 12, 16 4,17 8,12 4,16 4,8 

14,15 13,14 6,7 13,15 $6 5, 7 

Al 2,lO 1,9 2,9 2, 11 3, 11 I,11 3,9 

9, 16 
A, lo,17 8,9 9,17 11,17 4, I1 8, 10 4, 10 

11,12 

15,16 

A3 14,17 8,15 15,17 13,17 4,13 8, 14 4, 14 

12,13 

4 6, 14 7, 15 6, l? 6, 13 5, 13 7, 13 5, 15 

1, 8 1, 17 2,4 
Al, 2, 17 2, 16 2, 12 2, 8 3, 17 

3, 4 

9, 15 9, 13 

43 10,14 11,15 

11,13 

7, 8 6, 8 5, 17 

44 6, 17 6, 16 6, 12 7, 17 4, 6 

495 

A 123 2, 14 1, 15 3, 13 1, 13 3, 15 

A 234 6, 10 7, 9 5, 11 7,ll 5,9 

1, 7 1, 5 

A 123~ 2, 6 3,l 

3, 5 
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Additivity (Eq. (1’)) is tested by trying to find scale values $(AJ, $(Aij), etc. and 
#(S,), I,+(&~), etc., such that the ordering of dissimilarities between cells is the same as 
the ordering of sums of scale values. The ordering predictions, implied by Eqs. (1’) 
or (3), state that the orderings in any two columns coincide and the orderings in any 
two rows coincide. If equality and ordering hold, then additivity of the matrix is equiv- 
alent to the conjunction of all possible cancellation conditions (see Krantz, et al., 
1971, Chapter 9). The actual test of additivity, in the face of noisy data, is discussed in 
the results section. 

A similar matrix, for W x H dimension, is shown in Table 2. Since not every pair 
was assigned a W x H notation, the matrix contains only 62 of the 92 pairs. (Inclusion 
of the missing pairs would have complicated the analysis considerably by adding seven 
extra Wand seven extra ti intervals.) 

TABLE 2 

62 of the Experimental Pairs Arranged in a W Interval x H Interval Matrix 

2,9 8,9 2, 8 
ow 3,ll 11,17 15,17 7,15 3,17 11,15 7, 17 3, 15 7,ll 3,7 

4, 13 6, 13 4, 6 

WI 1,9 1,2 1,s 

8, 15 2, 17 9, 15 

W, 9, 17 2, 3 9, 11 8,17 7,s 3,9 7, 9 
2,11 

6, 15 11,13 6, 17 
W3 13,17 3,4 4, 17 13, 15 6, 7 3, 13 7, 13 

4, 11 

W.4 5, 13 4, 5 5, 6 

WI, 1, 17 1,ll 1, 15 1, 3 1, 7 

6, 8 2, 6 
W2, 9, 13 4, 8 

294 
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The axiomatic analysis of interdimensional additivity (Tversky & Krantz, 1970) 
has shown that, in the presence of some technical smoothness conditions, the properties 
expressed by the equality and ordering predictions are not only necessary, but 
sufficient, for decomposability (Eq. (3) with some function F), and the addition of 
one or two simple cancellation conditions guarantees interdimensional additivity. 
Hence, these predictions provide a thorough test of Eqs. (1’) and (3). 

Intradimensional Subtractivity 

If we specialize Eq. (2) for A x S dimensions, it becomes 

S(as, a’s’) = IT f(a) - f(a’>L I g(s) - &‘)ll. (2’) 

Clearly, this is a special case of Eq. (3), with 

+(a, a’> = I f(a) - fW)l, ?k 4 = I g(s) - &‘)I * 

(Note that 4, Q, th us defined, are symmetric and take positive values for distinct 
variables if and only iff and g are one-to-one.) Thus, testing Eq. (2’) means testing 
Eq. (3), via equality and ordering predictions, plus testing that the functions 4, + have 
special forms as absolute differences. These latter tests can be carried out by fixing the 
value of one dimension, say, holding s constant and varying a. Thus, any tests which 
we develop here apply to any array of stimuli which are hypothesized to vary in only a 
single subjective dimension. For example, these tests apply to some cases of uni- 
dimensional unfolding (Coombs, 1964). 

Consider, then, any set of stimuli (denoted a, a’, b, b’,...) hypothesized to vary on 
only one dimension. We now derive predictions from the following model: 

W 4 = F[I f(a) - f@)ll- (2”) 

If the stimulus array is really one-dimensional (i.e., Eq. (2”) holds), then betweenness 
can be inferred from dissimilarity: we define b to be between a and c (denoted a j b I c) 
if @a, c) is larger than both S(a, b) and S(b, c). 

In most experimental applications, however, the betweenness relations are known 
a priori. In the present study, the a priori relations are inferred from Fig. 2. If these 
expectations are confirmed in the data, then the necessary betweenness axioms 
(Tversky & Krantz, 1970) are automatically satisfied. 

We use the betweenness relation to formulate further testable conditions. Suppose 
that a I b / c and a’ I b’ I c’. Then the additivity of adjacent absolute differences implies 
that if 6(a, 6) > 6(a’, b’) and 6(b, c) 3 (b’, c’), then S(u, c) > S(a’, c’). We refer to 
these as monotonicity predictions (see Krantz et al., 1971, Chapter 4). Not all six 
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stimuli need be distinct. A minimal test of this type is depicted in Fig. 3, 
using 4 stimuli, with a = c’, a’ = c. 

FIG. 3. Test of monotonicity based on four stimuli: if 6(a, b) > 6(a’, b’), then 6(b’, c’) > S(b, c). 

Thus, necessary conditions for a set of stimuli to be unidimensional are that the 
relation of betweenness is well-behaved, and that adjacent intervals are additive, in 
the sense of the monotonicity condition. Tversky and Krantz (1970) showed that, with 
continuity, these conditions are also sufficient. Closely related results were obtained 
by Suppes and Winet (1955). 

Note that the additivity of adjacent intervals discussed above is much weaker than 
the additivity of dissimilarities, 

qa, b) + S(b, c) = qa, c). 

The above equation, of course, is satisfied in the representation by absolute differences 
of scale values: if a 1 b 1 c, then 

I f(4 - f(b)1 + I f(b) - f(c)1 = I f(4 - fW 
But 8 is only monotonically related to this additive measure, and so the observable 
constraints on 6 are considerably weaker. 

The final property to be tested is derived from the assumption of a metric with 
additive segments (Beals et al., 1968). This model postulates that any two stimuli 
form part of a unidimensional array, or additive segment. Practically all multidimen- 
sional-stalling models used in practice-the Euclidean and Minkowski power metrics 
-have this character, since distances are additive along all Euclidean straight lines in 
these models. If dissimilarity of rectangles is to be represented by a metric with additive 
segments, then one might well hypothesize that lines of constant A, S, W, or H are 
particular additive segments. 

To evaluate this hypothesis we use a condition akin to monotonicity, called relative 
straightness. Suppose, for example, that a, b, c are three stimuli differing only in A 
and that w, X, y are three stimuli differing only in W. If the pattern of dissimilarities is 
such that a I b ( c, w / x I y, 8(a, b) < S(w, x), 6(b, c) < 6(x, y), but 8(a, c) 3 S(w, y), 
then we say that W is curved relative to A. Relative straightness coincides with mono- 
tonicity if the two triples lie along the same additive segment or dimension. Note that 
unlike monotonicity, relative straightness does not follow from Eq. (2) (intra- 
dimensional subtractivity). 

If for example A behaves like an additive segment (with S constant) but W does not 
(with H contant), then tests of relative straightness should show that W is curved 
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relative to A. If A, S, W, H all behave like additive segments, then no one of them 
should be systematically curved relative to another. In addition, triples lying along 
these lines should be at least as straight as triples selected off these lines; e.g., referring 
to Fig. 2, the triple 2, 16,6 should be curved relative to 2, 17,6. 

An examination of relative straightness simplifies statistical testing by introducing 
a comparative standard. If monotonicity is violated in data, the question of sampling 
error is hard to deal with. But if the two triples are drawn from different hypothetical 
dimensions, the violation is always directional, and one can observe whether there is a 
preponderance of such violations in one of the two directions. 

METHOD 

Procedure 

Subjects (Ss) were presented a series of pairs of rectangles. Before the first session, 
they were read the following instructions: 

In this experiment we will show you pairs of rectangles and we’ll ask you to mark an X 
in the appropriate cell on the scale from 1 to 20, [answer booklet was before subject] 

according to the degree of dissimilarity between the rectangles. 

For example: if the rectangles are almost identical, that is, the dissimilarity between 
them is very small, mark X in a low-numbered cell. If the rectangles are very different 

from one another, mark X in a high-numbered cell. In the same fashion, for all intermediate 
levels of dissimilarity between the rectangles, mark X in an intermediate-numbered cell. 

We are interested in your subjective impression of degree of dissimilarity. Different 

people are likely to have different impressions. Hence, there are no correct or incorrect 

answers. Simply look at the rectangles for a short time, and mark X in the cell whose 
number appears to correspond to the degree of dissimilarity between the rectangles. 

At the beginning of subsequent sessions, subjects were simply reminded that low 
numbers should correspond to low dissimilarity, high numbers to high dissimilarity. 
The words “similarity” and “difference” were scrupulously avoided, as was any 
mention of area, shape, height, width, or any other properties of rectangles. 

Subjects were run in groups, usually eight or nine at a time, except when some Ss 
missed sessions and were run in smaller groups in make-up sessions. 

Two sets of Ss were run. Group I consisted of nine seniors from a high school in 
Jerusalem, and Group II consisted of 8 undergraduates at the University of Michigan. 
(The instructions were written in Hebrew for Group I; a literal English translation, 
quoted above, was used for Group II.) Group I was run for seven sessions, Group II 
for ten sessions, each session lasting about forty-five minutes. 

Stimuli were prepared by photographing rectangles cut out of black paper on a white 
background, at fixed reduction. From each, a positive 2 in. x 2 in. slide was prepared. 
To present a pair of rectangles, the two were projected side-by-side on a white screen, 
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using two matched slide projectors. (We did not succeed in making the light 
backgrounds completely identical, however.) Subjects were seated alongside or just 

behind the slide projector, so that there were only minor fluctuations in visual angle 
between sessions or between groups. 

Design 

A total of 92 pairs was presented. These were composed as follows: the 32 pairs 
connected by straight solid lines in Fig. 2 [e.g., (1, 9) (1,17), etc.]; the 44 
pairs connected by straight dotted lines in Fig. 2; the 8 pairs of form (1, 16) (16, 7), 

(7, 14),...; and the 8 pairs of form (1, 15), (15, 5), (7, 13),... . These 92 pairs are shown 

in Table 1. 
For Group I, the first session consisted of one complete run through the 92 pairs, 

in a random order, the results being discarded (by prior design, but unknown to the Ss). 
The remaining six sessions consisted of one and one-half runs (138 trials), yielding a 
total of nine replications per pair.2 The 92 pairs were randomly divided into two blocks 

of 46, denoted A and B. Sessions consisted alternately of A, B, A and B, A, B 
sequences. The nine replications of block A were run in nine d#erent random 
orders, and the same was true of block B. A subject who missed a given 

session ran in a make-up session identical in block-sequence to the one he missed, but 
using new random orders within blocks. (This permitted us to use only two make-up 
sessions, A, B, A and B, A, B, to accommodate all absentees.) 

For Group II, the first session consisted of a complete run through the 92 pairs, in a 
new random order, the results again being discarded. The remaining nine sessions 
contained one presentation each of 70 pairs, plus two presentations of each of 22 pairs 

(consisting of the 22 diagonals of squares in Fig. 2), for a total of 114 trials. Each 
session used a new random order, except that the same pair was never presented twice 
successively within a session. Make-up sessions used new random orders. We thus 

obtained nine replications for 70 pairs and 18 replications for the other 22 pairs. 

RESULTS 

Equality Predictions 

An examination of the mean dissimilarity ratings indicated a systematic departure 
from equality predictions. For example, (1, 3) was less dissimilar than (5, 7) for 15 out 
of 17 Ss, and (4, 8) was intermediate for 13 of those 15, although all are OA x S,,, 

pairs (see Fig. 2). As one goes from (1, 3) through (4, 8) to (5, 7), the level of the 
orthogonal A dimension increases. This finding seemed to be fairly general: any fixed 
interval on one dimension tends to contribute more to dissimilarity as the level of the 

orthogonal dimension increases. 

2 Due to errors, a few pairs were replicated less than nine times for some Ss in Group I. 

480/12/1-2 
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To examine this possibility more closely, we calculated the differences, for each 
interval on one dimension, between mean dissimilarity ratings at successive levels of 
the orthogonal dimension. For example, for S,,,, , we calculated the differences 
8(4, 8) - &I, 3) and 8(5, 7) - 8(4, S), where 8(i,j) denotes the mean of 9 dissimilarity 
ratings of pair (i, j). If these two differences are positive, the trend mentioned above is 
confirmed, while if they are negative, the opposite trend is indicated. 

Table 3 presents the numbers and averages of the positive or negative differences of 
the above type, for A x S dimensions, for each of the 17 Ss. (The Ss from Groups I 
and II are numbered l-9 and 10-17, respectively.) Under the null hypothesis (equality 
prediction), the number and average size of positive and negative differences should 
be equal. 

TABLE 3 

Equality Tests for A x S Dimensions” 

Subject 

Area Shape 

Number Average Number Average 

+ - + + - + 

1 10 2 1.04 0.42 12 0 1.30 
2 I 5 1.63 1.50 8 4 1.33 

3 7 5 0.56 0.56 8 4 0.85 
4 8 3 1.56 0.18 10 2 1.54 

5 6 4 0.72 1.45 11 1 0.73 

6 6 6 1.34 1.42 12 0 2.82 
7 8 4 1.22 0.94 10 2 1.96 

8 8 4 1.72 0.38 8 4 1.26 

9 I 5 0.92 0.85 12 0 0.97 

10 7 5 1.90 0.42 11 1 1.23 

11 11 1 2.86 1.78 10 2 1.14 
12 10 2 1.68 0.97 12 0 1.94 

13 3 9 1.39 0.76 4 6 0.66 
14 7 5 0.59 0.58 7 5 0.62 

15 8 3 0.98 1.24 10 1 1.17 

16 8 4 1.26 0.29 7 5 0.64 
17 6 6 0.65 1.50 8 2 2.95 

Average 1.41 4.29 1.29 0.89 9.41 2.29 1.36 

- 
0.41 

0.72 
0.22 

0.66 
- 

0.78 
0.66 
- 

0.61 

0.42 

0.92 
0.35 
0.99 

0.45 
0.42 

0.54 

a Entries are the number and average of positive (+) or negative (-) differences between 
mean dissimilarities predicted to be equal, for A pairs (S constant) and S pairs (A constant). 
Positive differences indicate tendency for A or S interval to yield more dissimilarity as S or A 

level becomes more extreme or larger, respectively, while negative differences indicate reverse 
tendency. 
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The group data (last row) show that the trend toward larger dissimilarity for a given 
A interval as S becomes more extreme is small but highly reliable (p < .OOl based 
on a sign test alone), while the trend toward larger dissimilarity for a given S interval 
at larger areas is very marked, and, of course, highly reliable ( p < .OOl). The same 
effect is observed in the data of individual Ss. If we compare, for each subject, the total 
number of positive and negative differences (adding together A and S intervals), 

then the equality hypothesis is violated in the hypothesized direction for all but 
S13. Furthermore, despite the low power of the test, the equality hypothesis can be 
rejected at the .05 level, by a two-tailed sign test, for 10 out of 17 Ss. 

TABLE 4 

Equality Tests for W x H Dimensions” 

Width Height 

Number Average Number Average 

Subject + - + - + - + - 

1 
2 

3 

4 
5 

6 
I 

8 
9 

10 

11 
12 

13 
14 

15 
16 

17 

Average 

5 1 1.24 
4 2 1.58 

4 2 0.43 
4 2 0.34 
2 4 0.87 
3 3 1.63 
3 3 0.83 
1 5 1.03 

2 3 0.67 
3 3 1.17 

4 2 0.92 
2 4 1.06 

6 0 0.80 
2 3 0.39 
2 3 0.58 
1 4 1.22 
3 1 0.61 

3.00 2.65 0.90 

1.55 

0.78 
0.80 

0.38 
0.48 

1.20 
0.46 

0.63 
0.16 

0.96 
1.11 

1.28 
- 

0.48 
0.63 

0.56 
0.66 

0.81 

3 3 1.38 0.68 
2 4 3.10 1.49 

2 4 0.44 0.53 

2 4 1.26 0.92 
5 1 0.58 0.19 

4 2 1.37 2.28 
3 3 2.04 0.96 

4 0 1.47 - 
5 1 0.46 0.57 

5 1 1.93 1.55 

6 0 1.53 - 
5 1 1.42 1.11 

0 6 0.88 
4 2 0.50 0.80 

5 1 1.13 0.89 
3 3 0.55 0.39 

4 2 2.79 2.20 

3.65 2.24 1.37 1.10 

a Entries are the same as Table 3 with W and H replacing A and S, respectively. 

Table 4 presents the same analyses for W x H dimensions. The group data for H 
intervals show a small but reliable ( p < .05, 2-tailed sign test, plus consistent 
difference between size of positive and negative deviations) tendency in the same 
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direction that was observed for A and S intervals. The W intervals show a slight 
tendency in the same direction, which is not statistically significant. The number of 
tests per S for W x H dimensions is only half that for A x S (see Fig. 2) so that 
tests for individual Ss are not sufficiently powerful to justify any conclusions. 

TABLE 5 

Equality Tests for Diagonals in A x S Dimensions* 

Subject 

1 

2 
3 

4 
5 

6 

7 
8 
9 

10 
I1 

12 
13 

14 
15 
16 

17 

Number Average 

+ - + 

2 4 1.24 0.55 

4 2 1.33 0.95 
1 5 0.22 0.45 

0 6 - 2.86 
3 3 1.34 0.62 

4 2 3.19 3.52 

4 2 2.55 0.55 
3 3 0.13 1.21 
3 3 0.45 0.45 

0 6 1.94 
4 2 2.32 1.36 

6 0 3.08 
1 5 0.65 0.75 

1 5 0.28 1.20 
6 0 0.90 - 
5 0 0.60 - 

5 1 1.43 0.83 

* Entries are the number and the average of positive (+) or negative (-) differences between 
mean dissimilarities (predicted to be equal) for the W diagonal and the H diagonal of A X S 
squares (Fig. 2). Positive differences indicate W diagonal larger than H diagonal. Data from 
Ss lo-17 are more reliable, based on double the number of observations (see text). 

The results of diagonal equality predictions are summarized in Table 5 (diagonals 
of A x S design) and Table 6 (diagonals of W x H design). In Table 5, positive 
differences refer to unequal diagonals where the diagonal that is a W interval is larger 
than the H diagonal; in Table 6, positive differences refer to S diagonal larger than A 
diagonal. (Recall that the individual mean dissimilarities for Group II subjects are 
based on 18 replications per pair, for these diagonal pairs, and so are more reliable 
than any other individual means we report.) 
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TABLE 6 

Equality Tests for Diagonals in W x H Dimensions” 

Subject 

Number Average 

+ - + - 

1 2 3 
2 1 3 

3 5 0 

4 5 0 
5 0 5 

6 2 3 
7 4 1 

8 5 0 
9 5 0 

10 4 1 
11 5 0 
12 4 1 

13 5 0 

14 0 5 
15 4 1 

16 0 5 
17 2 3 

0.34 
1.00 

5.01 
5.68 
- 

0.84 

1.54 
4.85 
1.89 

1.88 

5.05 
1.05 

2.01 
- 

1.35 
- 

1.84 

1.03 

2.26 

- 

4.82 
0.78 

0.55 
- 

- 

0.12 
- 

0.50 
- 

8.88 

1.55 
7.45 

2.21 

LI Same as Table 5, with A and H interchanged and Wand S interchanged. (Positive differences 
indicate tendency to perceive S intervals in Fig. 2 design as more dissimilar than A intervals.) 

For Group I (Ss 1-9) the A x S diagonals tend not to depart from equality in a 
systematic way (S4 is the main exception). For Group II (Ss lO-17), with mean dissi- 
milarities more reliable, there is a noticeable tendency to violate the equality prediction 
in one direction or another. Since the direction of the violations is quite different for 
different S’s, we do not report or analyze the group data. 

The data for the W x H diagonals also show departures from the equality prediction 
in one direction or another. More than one-half of the Ss produced the most extreme 
distribution of + and - (i.e., a 5 : 0 split). The probability of obtaining such a number 
of extreme patterns, under the diagonal equality hypothesis, is less than .OOOl. 

Note that diagonals in the A x S design correspond to W or H intervals and vice 
versa. Hence, systematic patterns of violations of diagonal equality predictions in one 
product structure not only cast doubt on its adequacy, but also provide information 
about the relative weight of the factors in the alternative product structure. 
For example, of the nine Ss producing a 5 : 0 pattern in the W x H design 
(see Table 6), six (3, 4, 8, 9, 11, 13) emphasized S at the expense of A, while three 
(5, 14, 16) did the opposite. This classification of subjects was borne out by an 
INDSCAL analysis (see below, Fig. 5). 
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Ordering Predictions. 

The finding of systematic departures from the equality predictions casts doubt on 
the validity of the ordering predictions. The essence of ordering predictions is that an 
ordering of A intervals, say, is preserved by adding any common S interval to them; 
and this implicitly assumes that a pair of A levels defines the same interval regardless 
of the S levels involved. 

Consequently we test a modified version of the ordering prediction, which is more 
likely to obtain, and whose violations shed additional light on the appropriateness of 
A x S or W x H dimensions and on the weighting of A or S for subjects using A x S 
dimensions. The details are complicated and the reader may wish to skip this section. 
The conclusions regarding individuals’ use of A x S dimensions are essentially the 
same as those inferred from the diagonal equality predictions. (Compare conclusions 
column of Table 8 with Table 6.) 

The tested version of the ordering prediction is illustrated as follows. Suppose that 
6(2, 17) > S(6, 17)( see Fig. 2). Instead of adding an arbitrary fixed S interval to each 
of these two A intervals, suppose we restrict ourselves to modifying the common 
stimulus, 17, so as to introduce the same S interval, e.g., by substituting one of the 
stimuli 8 or 4 for 17. By substituting 8 for 17, for example, we are adding the same S 
interval defined by the pair (8, 17) to the two A intervals defined by the pairs (2, 17) 
and (17,6). One might expect that the addition of this common S interval would 
preserve the inequality between the two A intervals. Thus, one predicts that 
S(2,8) > S(6, 8) whenever S(2, 17) > S(6, 17). Th ere are many other such predictions, 
of course. 

A natural alternative to these A x S ordering predictions, for subjects who use 
W x H dimensions and violate A x S diagonal equality, is that the added common S 
interval will reverse or preserve the A interval ordering depending on whether the 
resulting pairs are (H, W) or (W, H). For example, (2,8) is an H pair and (6,8) a W 
pair, while (2,4) is a W pair and (4,6) and H pair. Thus, a subject who uses W x H 
dimensions, with W intervals weighted more heavily than corresponding H intervals, 
would tend to reverse the inequality S(2, 17) > S(6, 17) when 8 is substituted for 17, 
yielding an (H, W) pair of pairs, and to preserve the inequality and even increase the 
disparity when 4 is substituted for 17, yielding a (W, H) pair of pairs. 

To test these alternatives, we considered all groups of three pairs of pairs, where one 
pair consisted of two adjacent A intervals, a second pair consisted of a W and an H 
interval obtained from the first pair by changing its common stimulus along the S 
axis, and the third pair consisted of the H and W intervals obtained by changing the 
common stimulus by an equal but opposite amount (on our log scale) along the S 
axis. These tests are referred to as the A ordering predictions. The ordering predictions 
for S, W, and H are defined similarly. For each subject, there were five A and five S 
triples (of pairs of pairs) and six Wand six H triples. 
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For each triple, we computed the difference between the mean dissimilarities for 
each pair of pairs. The three differences were classified in four different ways: 

(i) us violations or noneriokztions, the latter if and only if all three had the same 
sign (since no triple had all three differences zero, a zero difference always led the triple 
to be classed as a violation); 

(ii) according to the pattern of signs in the second and third pairs, with + -, for 
instance, denoting that the second pair yielded a + difference (IV interval greater than 
H interval) and the third pair yielded a - difference ( W interval again greater than H 
interval, since the movement in the opposite direction reverses the character of the two 
intervals), - + denoting the reverse, etc. (note that + -, - + patterns are necessarily 
violations under (i), while + +, - - may or may not be violations, depending on the 
sign of the first difference; zero differences are simply omitted from this classi- 
fication); 

(iii) according to the order of sixe of the dafferences in the second and third pairs, 
where W > H denotes that the (W, H) pair had a greater (algebraic) difference than 
the (H, W) pair (note that any +- pattern, from (ii), is necessarily classified as 
W > H, but that some ++ and - - patterns are also classified as W > H; there 
were no cases of W = H); 

(iv) as close to or far from zero, depending on the average absolute magnitude 
of the three differences. 

These classifications are summarized, for A x S tests, in Table 7. Column 1 gives 
the total A and total S violations (classification (i), with a possible total of five in each 
case); columns 2-5 give the total numbers of + +, + -, - +, and - - patterns for 
A and S triples (classification (ii)); column 6 gives the total numbers of W > H 
(classification (iii) for A and S triples); and column 7 gives the average absolute 
differences (iv) for A and S triples. The last column summarizes some tentative con- 
clusions based on the data. 

Table 8 gives a similar summary for W x H tests. 
It can be seen from Table 7 (~01s. 2-3) that the total number of triples in which 

violations occur is quite large, amounting to 74% of the possible total. On the other 
hand, for seven of the 17 Ss (3, 5, 8, 9, 14, 15, 16) the average absolute differences 
(col. 7) are small (less than or about 1 point on a 20-point scale), and the patterns of 
violations (~01s. 2-5) and of size of difference (col. 6) are unsystematic. For these Ss, 
the order of A intervals and the order of S intervals is essentially a null order: the 
logarithmic spacing on A and S yields approximately equal subjective differences. 
This equality of A or of S intervals is preserved when a common S or A interval is 
added. Thus, the ordering predictions for A x S are substantially confirmed for these 
seven Ss. For two Ss (2, lo), it is difficult to decide whether the ordering predictions 
are violated in a significant way. 
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Eight Ss (1, 4, 6, 7, 11, 12, 13, 17) clearly violate the ordering predictions, in a 
direction consistent with the use of W x H dimensions, with three Ss emphasizing H 
and five emphasizing W. Nevertheless, the absolute differences are not very large for 
these Ss. It seems that the logarithmic spacing is not very far from equal spacing for 
all Ss, with some Ss showing disturbance of this near-null ordering when an additional 
common interval on the orthogonal dimension is added and the rectangle pairs become 
Wand H intervals. This disturbance is not a large effect, but it is sufficient to produce 
systematic violations in about half the Ss. 

A similar analysis of the data in Table 8 shows a very different picture for W x H 
dimensions. The overall percentage of violations is actually lower than for A x S 
dimensions-68 y/o as opposed to 74 %-but the violations tend to be large and highly 
systematic. Three Ss (1, 6, 9) produce a relatively small number of violations, and 
their response pattern suggests a spacing of Wand H which falls somewhere between a 
logarithmic and an arithmetic spacing indicated by “arithmetic” in the last column. 
For these Ss, the ordering predictions cannot be readily rejected. The remaining 14 
Ss seem to violate the W x H ordering prediction in a systematic fashion that is 
compatible with the use of A x S dimensions, with five Ss emphasizing A and nine 
emphasizing S. Furthermore, eight of these 14 Ss show average absolute differences 
that are considerably larger than any of those observed in the A x S tests reported 
in Table 7. In contrast to the latter tests, where even the most clearcut violations 
were small in magnitude, the violations observed in Table 8 are very large indeed. 

We conclude, then, that logarithmic spacing is approximately equal for W intervals 
and for H intervals, though not as good as for A and S intervals; that the great majority 
of Ss (probably 14 out of 17) violate the W x H ordering predictions in favor of the 
alternative based on A x S dimensions, as opposed to eight such violations of the 
A x S ordering predictions in favor of the W x H alternative; and that some 
W x H violations are really large effects, while A x S violations are relatively 
smaller. 

Tests of Monotonicity and Relative Straightness 

As we have shown in the theoretical discussion, one can investigate the relative 
straightness, or curvedness, of subjective dimensions by testing monotonicity for two 
triples that lie on different dimensions. Table 9 presents the number of violations of 
monotonicity in which the row dimension appears curved relative to the column 
dimension, for all Ss. 

The main diagonal in each matrix shows the number of violations within each propo- 
sed dimension, i.e., the number of violations of monotonicity where both triples lie on 
the same dimension. 

A summary of the data of Table 9, for each one of the Ss, is presented in Table 10, 
where -+ denotes the relation of relative straightness (e.g., A + H, W means that both 
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TABLE 9 

Number of Monotonicity Violations in which the Row Dimension Appears 

Curved when Compared with the Column Dimension for each S 

A S H W A S H W A S H W 

Sl 
A 2 4 

s 12 5 
H 14 12 

W 13 12 

s4 
A 3 5 

S 0 2 
H 1 15 

W 2 11 

S7 

rz 3 8 
S 9 1 
H 14 11 

W 4 1 

SlO 

A 0 0 
S 8 0 
H 3 3 

W 9 11 

s13 
A 1 0 

S 10 1 
H 8 5 

W 3 0 

S16 
A 3 0 

S 16 2 
H 7 0 
W 0 0 

2 2 
6 1 

4 10 
7 1 

1 1 
0 0 

0 4 

2 5 

4 I 

1 6 
1 18 

0 2 

1 0 

3 1 
5 0 

8 3 

0 4 

2 9 
0 11 

0 1 

1 2 
0 0 

3 15 
4 3 

s2 

0 
29 

25 
21 

s5 

0 
3 

23 

13 

S8 

3 
0 

0 

0 

Sll 

3 
1 

0 

0 

s14 
5 

0 
0 

1 

s17 
0 

25 

16 
4 

3 9 10 
0 13 I1 

17 6 10 
I1 9 4 

0 0 
4 1 

1 0 

1 5 

0 0 0 
5 12 6 

14 5 8 

9 8 2 

0 2 

1 15 
3 2 

5 19 

0 12 4 

3 0 0 

0 3 1 

0 6 2 

0 1 0 

1 8 17 
2 3 8 

0 1 0 

s3 

0 0 2 0 
0 3 0 0 

22 0 6 8 
42 0 18 8 

S6 

0 5 3 2 
6 4 0 4 

12 17 1 4 
3 7 2 2 

s9 
1 5 2 4 

19 1 2 16 
18 11 0 23 

-I 3 3 4 

s12 

4 0 0 1 

31 3 13 9 
25 3 2 3 

4 0 3 0 

s15 
2 0 1 0 

21 0 6 6 

26 19 4 14 
15 2 1 0 

H and W appear curved relative to A). The symbol > denotes dominance relation 
between dimensions, e.g., S > A indicates that all S intervals are greater than any A 
interval. In this case, of course, the dominated dimension cannot appear curved relative 
to the dominating dimension. 
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TABLE 10 

Summary of the Relations of Relative Straightness for each S 

Subject +: is straighter than > : dominates 

1 A+S,H, W 

2 A-&H, W 
3 A-H-W S > A,H, W 
4 S-+H,W S, H, W > A 
5 A+H,W A,H, W > S 
6 A,S, WA W 
7 W-A,S-H 

8 S, H, W > A 

9 A,W+S-+H 
10 A+S,H-+W 
11 H+S-+W 
12 A+W+H+S 

13 W, A + S, H 
14 H-W-+A A,H, W > S 

15 A+W-+SAH 
16 W,A+H+S H,W>S 
17 A-+W+H-+S 

A further condensed summary of the tests of relative straightness is presented in 
Table 11, which displays the number of S’s for which the row dimension appears 
curved relative to the column dimension. 

TABLE 11 

Number of 5’s for which the Row Dimension Appears Curved 
Relative to the Column Dimension (Based on Tables 9 and 10) 

A S H W 

A 0 0 1 

S 9 - 5 7 

H 13 5 - 10 
W 8 3 4 - 

Table 11 presents a very consistent picture: A is clearly the “straightest” of the 
dimensions, W is second, S is third, and H is the most curved dimension, 
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Additivity Analysis 

By considering pairs of rectangles as elements in an A x S factorial design (Table l), 
or in a W x H factorial design (Table 2), interdimensional additivity can be tested by 
trying to assign scale values to the intervals of the respective (incomplete) design so 
that the ordering of their sums will coincide with the observed dissimilarity ordering. 
In order to keep the ratio of the number of parameters (i.e., scale values) to the number 
of data points (i.e., cell entries) reasonably low, we exclude from the present analysis 
the last row (A,,,,) and the last column (Sr,,,) of Table 1, as well as four rows 

and four columns (Z&s , Hras , Ha= , Hr& of Table 2. Thus, we are left with a 
10 x 10 design in A x S (with 59 nonempty cells), and a 7 x 7 design in W x H 
(with 36 nonempty cells). 

In the presence of sampling error, some violations of additivity are inevitable and 
hence no perfect solution is available. To accommodate this state of affairs, an iterative 
grid search for finding a “best fitting” additive solutions was devised. 

Two sets of constraints, referred to as Model 1 and Model 2 were imposed on the 
solution. Model 1 merely requires that the scale values be compatible with the inclusion 
relation between intervals. That is, if one interval includes another, then the scale value 
of the former should be at least as large as that of the latter. For example, 

etc. Model 2, in effect, imposes intradimensional subtractivity, i.e., the scale value of 
an interval must equal the sum of the scale values of its subintervals. For example, 

4(&J = d(Sd + vVJ, 4(&d = &W + 6%) = d(&) + h%& etc. 
In additivity analysis, three scale values (interpreted as the origins of the two scales 

and their common unit of measurement) can be chosen arbitrarily. Thus, under 
Model 1 we estimate 17 and 11 parameters, respectively, for each (incomplete) A x S 
and W x H data matrix. Under Model 2, on the other hand, only 7 parameters are 
estimated for each of the designs; the other scale values are determined by the above 
equations. 

For each S, a “best-fitting” additive solution (also referred to as prediction) was 
computed on the basis of the observed ordering of mean dissimilarities between the 
pairs of rectangles which correspond to the cells of the respective (A x S or W x H) 
design. In cases where several pairs are located in the same cell (see Tables 1 and 2), 
the overall mean dissimilarity was used to determine the rank order of the cell. For 
each design, separate solutions were calculated for each Sunder each of the two models, 
yielding a total of four solutions per S. Each observed rank order was, then, compared 
with the rank order of the respective additive prediction, and the average absolute 
differences between the observed and the predicted orderings are presented in 
Table 12. 
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TABLE 12 

Average Absolute Differences Between Observed and Additive Orderings 

Design 

AXS WxH 

Subject Model 1 Model 2 Model 1 Model 2 

1 4.71 7.20 1.28 2.43 
2 7.46 8.37 4.12 4.38 

3 10.15 11.51 4.22 5.00 

4 6.63 6.15 4.52 3.75 

5 5.64 4.53 5.28 5.73 
6 5.98 5.94 1.83 2.00 

7 5.55 6.52 3.40 3.26 
8 6.03 7.18 6.08 6.50 

9 7.21 8.10 2.56 2.93 

10 4.59 6.46 2.47 3.69 
11 5.36 6.32 3.53 3.50 
12 7.08 6.78 3.71 4.47 

13 4.66 5.35 4.05 4.72 

14 4.28 4.86 6.68 6.64 

15 5.27 8.25 2.44 2.03 

16 3.15 3.43 5.97 6.38 

17 4.93 5.54 3.00 3.83 

Average 5.81 6.62 3.83 4.19 

Table 12 reveals substantial departures from interdimensional additivity. Unfor- 
tunately, there is no standard procedure for evaluating these statistics, since their 
expected value under the hypothesis of random ordering is not known. An upper 
bound for this value, however, is given by (n + l)(n - 1)/3n which is the expected 

average absolute deviation between two random rankings of n objects. Under the 
random-ranking hypothesis, therefore, the reported statistics are expected to fall below 
20 in the A x S design which contains 59 cells, and below 12 in the A x S design 
which contains 36 cells. Under interdimensional additivity, of course, all the entries 
for Model 1 should vanish. Thus, the data provide evidence against interdimensional 
additivity. 

Since Model 2 is strictly more restrictive than Model 1, the average absolute differ- 
ences should be greater for Model 2 than for Model 1. (The fact that for some Ss 
the deviations relative to Model 2 are slightly smaller than those relative to Model 1 
is due to the fact that the criterion for the construction of the “best-fitting” additive 
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solutions is not equivalent to the minimization of the average absolute difference 
between the observed and the predicted orderings.) In general, however, the differences 
between the two models are relatively small. Thus, the added constraints imposed by 
intradimensional subtractivity did not considerably reduce the quality of the fit, despite 

the large reduction in the number of free parameters. 

Multidimensional-Scaling Analysis 

In contrast to the present approach which investigates in detail the properties 
of some specifiable dimensions, the traditional multidimensional-scaling approach 

attempts to represent the stimuli as points in some multidimensional metric space and 
then to infer and interpret the psychological dimensions on the basis of the resulting 
configuration. It is instructive, therefore, to compare the approaches by applying 
multidimensional-scaling methods to the present data. 

To obtain a representation of the rectangles in a two-dimensional Euclidean space, 
Kruskal’s (1964) M-D-SCAL IV program was applied separately to the dissimilarity 
ordering of each S. The two-dimensional fit was acceptable for most Ss; the average 

stress value (Kruskal’s formula one4) was .lO. (The expected stress under the 
hypothesis of a random ordering is about .28; see Klahr, 1969.) For a more compact 
summary of the data, Carroll and Chang’s (1970) INDSCAL program was employed 
using the resulting M-D-SCAL interpoint distances as input data. This program 
yields a common (Euclidean) group space, and a set of weights “assigned” by each S 
to the dimensions of the space. (The weights, of course, are inferred via the model from 

the dissimilarities rather than estimated directly by the S.) Note that unlike the general 
Euclidean model, the INDSCAL program yields a preferred set of psychological 
dimensions. 

The two-dimensional group space for the present data is shown in Fig. 4. Figure 5 

represents each S as a point in a space whose coordinates are the weights assigned by 
that S to the two dimensions of the common space. Note that the points in Fig. 4 
represent rectangles, while the points in Fig. 5 represent Ss. The actual values of the 
weights are immaterial: only their ratio is of interest. However, the distance between 

each subject point and the origin in Fig. 5 increases with the goodness of fit of the 
model. 

Inspection of Fig. 4 shows that the vertical and the horizontal dimensions, inferred 
via INDSCAL, correspond roughly to A and S, respectively. (Compare Figs. 2 and 4.) 
It also shows that A and S are not orthogonal: the same S interval appears larger, the 
higher the A level. This was the strongest effect observed in Table 3. Figures 4 and 5 

B The solution criterion was the minimization of the sum of squared deviations between the 

observed and the predicted ranks. 
* Both stress formulae one and two were tried; the former yielded a more sensible configuration 

with fewer iterations. 
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FIG. 4. The common space obtained by INDSCAL. Each point represents the location of 
the respective rectangle in the constructed space. The solid and broken lines represent, respec- 

tively, the W x H and the A x S designs (see Fig. 2). 

Horlrontol axis 

FIG. 5. The subject space obtained by INDSCAL. Each point represents the weights 
assigned by the respective subject to the two axes of the common space (Fig. 4). 
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show, in addition, that a logarithmic spacing provides a reasonable approximation to 
the data of most Ss. Moreover, the estimated weights for individual Ss in Fig. 5 are 
consistent with the results of previous analyses. For example, all three Ss (5, 14, 16) 
for which the estimated weights for the vertical dimension far exceed those for the 
horizontal dimension were Ss for which S was dominated by A. Similarly, the three 
Ss (3,4, 8) whose weights exhibit the opposite pattern were Ss for which A was domi- 
nated by S (see Table 10). 

However, the multidimensional-scaling analysis, summarized in Figs. 4 and 5, fails 
to represent some highly consistent and significant patterns uncovered in earlier 
analyses. Such patterns include the increase in the dissimilarity of a given A interval 
as S becomes more extreme (Table 3) and the relative straightness of A when com- 
pared to other dimensions (Table 11). Moreover, some of the observed individual 
differences, e.g., Table 10, cannot be captured merely in terms of differential weights. 

DISCUSSION 

In the present study we investigated two conditions (interdimensional additivity 
and intradimensional subtractivity) that were proposed as defining properties of sub- 
jective dimensions. The purpose of the study was both methodological and substantive. 
The present paper showed in detail how additivity and subtractivity can be tested, for 
specified dimensions, on the basis of ordinal dissimilarity data. It also provided infor- 
mation about the manner in which subjects integrate physical dimensions in a simple 
perceptual task. The major result of this study is the systematic rejection of the tested 
properties, by phenomena that suggest alternative rules for combining dimensions. 

The main reason for the failure of decomposability (Eq. (3)) is the tendency for an 
interval along one dimension to appear larger the higher or more extreme the level of 
the orthogonal dimension. The most pronounced effect of this type, in the present 
study, is the increased dissimilarity for a given pair of shapes as the (equal) area value 
increases. The reader can easily observe this effect by comparing the dissimilarity 
between rectangles 1 and 3 to that between 7 and 5 (see Fig. 1). The analogous increase 
in dissimilarity produced by a given area interval, as shape becomes more extreme, is 
smaller but nevertheless significant. The latter effect was also reported by Wender 
(1971). The data, therefore, reject the hypothesis that area and shape contribute 
independently to the overall similarity between rectangles. They also show that the 
interaction between the dimensions is very orderly and readily interpretable, 

Interaction between perceptual dimensions is probably a widespread phenomenon 
that may take different forms. The experiments on rectangles reveal an augmen- 
tation effect: the perceived difference along one dimension is augmented as the 
(constant) value of the other dimension increases. Augmentation may hold for many 
pairs of well-integrated dimensions. Hue differences, for example, are likely to become 

480/12/I-3 
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more pronounced as saturation increases. For other pairs of dimensions, one may 
obtain a reduction effect: the perceived difference along one dimension is reduced as 
the (constant) value of the other dimension increases. For example, suppose each 
stimulus consisted of a square plus a rectangle; then the dissimilarity produced by 
squares of different area would probably be reduced if the (common) rectangles were 
enlarged, or became more extreme in shape. 

These effects suggest new qualitative principles. Suppose S(as, as’) > 6(a’s, a’s’). 
That is, the shape interval (s, s’) appears larger at area level a than at area level a’. 
One may be tempted to conclude from this observation that a augments shape differ- 
ences more than a’. For this conclusion to be valid, however, the augmen- 
tation ordering of area levels must be independent of the selected shape interval. 
Stated formally, 

qas, as’) > Lyu’s, a’s’) iff ~(us”, ~2s’~) 3 6(a’s”, a’s”). (4) 

This condition states that if one shape interval, say (s, s’), appears larger at level a 
than at level a’ then any shape interval, say (s”, s”‘), must appear larger at level a than 
at level a’. This is the key ordinal property that is necessary for a consistent augmenta- 
tion (or reduction) model. Note that, under decomposability, Eq. (4) holds because 
both inequalities reduce to equalities. 

The results of the present study also suggest the following ordinal property. If a’ 
is between a” and a in area, i.e., a 1 a’ 1 u”, then 

qus, us’) > S(u’s, u’s’) iff S(u’s, u’s’) > 8(&s, a”~‘). (5) 

This equation asserts that the augmentation ordering of area levels (relative to shape), 
must coincide with the natural (betweenness) ordering of the levels. This property, 
which emerged from the results of the present experiment, permits only two types of 
interactions: augmentation and reduction. (Note that, under decomposability, all four 
dissimilarities in Eq. (5) should be equal.) 

Perhaps the simplest functional form that allows for interaction between dimensions 
and satisfies Eqs. (4) and (5) is the following model. Let D(u, a’) = [f(u) -f(u’)12, 

W, 0 = [g(s) - &‘)12, JJ+, a’) = Lf(4 +f(41/2 and M(s, $7 = [g(s) + &‘)I/2 
where f and g are, respectively, the subjective scales for area and shape. Using this 
notation we write 

qus, u’s’) = F[D(u, a’) + D(s, s’) + aM(u, a’) D(s, s’) + paqs, s’) qu, a’)] 

= F[D(a, a’)(1 + pqs, s’)) + D(s, s’)(l + olM(a, a’))]. (6) 

The value of M can be viewed as the location parameter of the respective interval. 
The parameters 01 and /I determine the direction and the magnitude of the inter- 
action between the dimensions. For positive values of cx and /3, Eq. (6) produces aug- 
mentation; for negative values of (Y and /3 it produces reduction. Note that OL and /? are 
independent of each other; area can augment shape while shape may have no effect 
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on area. The above model satisfies decomposability if and only if both 01 and fi vanish, 

in which case Eq. (6) reduces to Euclidean form. Furthermore, it satisfies intradi- 
mensional subtractivity for any set of stimuli that vary on one dimension only. It should 
also be noted that while the functional form introduced in Eq. (6) is more complicated 
than the previous ones, it introduces only two new parameters. 

The presence of interactions between attributes suggests two alternative research 
strategies: (i) to regard natural attributes (such as area and shape) as psychological 
dimensions, and replace Eqs. (1) and (2) by more complicated rules such as Eq. (6); 

(ii) to maintain additivity and subtractivity as essential properties of psychological 
dimensions, and search for factors that satisfy them. The first approach calls for the 
formulation, analysis, and testing of interactive rules for combining dimensions of the 
type illustrated in Eq. (6.) The second approach is adopted, in effect, in most models 

for multidimensional scaling which assume both additivity and subtractivity in the 
computation of distance. The presence of interactions between attributes is reflected, in 
these models, by the nonparallelism of lines consisting of points that vary on one 
attribute only (see Fig. 4), and by the introduction of additional dimensions. 

The choice between the two approaches depends, in part at least, on the purpose of 

the investigation. If  one is concerned with data reduction and convenient display of 
results, the latter approach has some advantages. If, on the other hand, one is primarily 
concerned with the manner in which people perceive and integrate stimuli, the former 
approach seems more appealing. 

Throughout this paper the emphasis has been on the detection of systematic 
departures from qualitative principles, rather than on overall measures of goodness- 
of-fit. This approach led to the rejection of a large class of multidimensional scaling 

models, and suggested a new class of models for future investigation. 
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