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Suppose that f(2) = 2 + a,3® + - + a,3" + -+ is regular in the unit
disc D with [f(2) f'(2)/2] # 0 in D, and further let « > 0 and k2 > 2. If
37 1 Re{(l — a)z[f'()If ()] + A1 + 2LF"(2)[f(2)])}| d9 < km for z € D, then
f(2) is said to belong to the class M1 [«, k]. This class contains many of the
special classes of regular and univalent functions. The authors determine the
Hardy classes of which f(2), f'(2) and f”(2) belong and obtain growth estimates
of a,.

1. INTRODUCTION

In a recent paper [3] we have determined the Hardy classes to which
f(2) and f'(z) belong when f(2) is in U, , the class of functions of bounded
argument rotation. Recently, Coonce and Ziegler [1] have investigated some
interesting subclasses of U}, and it is the purpose of this paper to determine
the Hardy classes of f(2), f'(2) and f"(z) for these subclasses. In addition we
will obtain some growth conditions on the coefficients of the Taylor expansion

of ().

*This work was carried out while the first author was a U.S.A.—Romania
Exchange Scholar.
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2. PRELIMINARIES

DerFiNITION 1. Let f(2) == & 4 @52 -~ = be regular in the unit disc D,
with (f(2) f(2))/is == 0 in D, and further let x >0 and & "= 2. If

//\

P WA O
Re (1 — %+ ‘l+zr,(2)) o <k

for & = re’? € D, then f(2) is said to be in the class MV[a, £].

This class of functions, which was introduced by Coone and Ziegler [1],
contains many of the heavily researched classes of regular and univalent
functions. In fact, for the classes of starlike functions S*, convex functions K,
alpha-convex functions 3, , functions of bounded argument rotation [’
and functions of bounded boundary rotation I, , we have

v

MET0, 2] = S*,
AVl 2] = K,

Mo, 2] = M, |
MV]0, k] = U,
MV B =T,

In their paper, Coonce and Ziegler proved the following two results which
we will need in this paper.

THeoREM A. If f(z) € M17a, k], then f(z) e MVO, &].

THEOREM B. If a > 0, then f(z)e MV[x, k] if and only if there exists
g(z) e MV|0, k] such that

1@ = [+ [ e £ )

For A > 0, we say that a function f(z) = 2 -+ a,3® + 3, regular in D,
belongs to the Hardy class H*if lim,_;- f,, | f(re®®)}* dO exists (and is finite).
In a recent paper [3] the authors investigated the Hardy classes for functions
in the class U, = MV[0, £]. In this paper we extend this result and determine
the Hardy classes for functions in the class MV[«, &], when « > 0.

In what follows, we denote by g(, k; 2) any function of the form

8(r, & 2) == [3(1 — = FR) 2R ()] 0D,
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where 7 is a real constant and s(z) is a starlike function. Note that g(r, ; 2) €
MVT0, k] and is an extremal function for many problems in this class. In
addition, we denote by f(«, 7, k; 2) the function obtained from (1) by letting
&(z) be the function g(k, 7; 2) and we interpret f(0, 7, k; 2) to be the function
o(r, k; 2).

We require the following lemmas:

LemMa 1. If f'(2)e H* (0 <A < 1), then f(2)e HNOU=" (H=, the class
of bounded functions, if X = 1).

Lemma 2. If f(x)eH* (0 <A <1 and f(2) =2+ a,2®+ -, then
a, = O(n1/A-1),

Lemma 3. If g(2) € MV[0, k], then g(z) € H* for all X << 2/(k + 2). If in
addition g(z) = g(r, k; 2), then there exists ¢ = €(g) > 0 such that g(z)e
H /24,

Lemma 4. If g(z) e MV[0, k], then g'(2)e H* for all A <2/(k + 4). If
in addition g(2) = g(t, k; 2), then there exists € = e(g) >0 such that
2'(z) € HR/hae,

Lemma 1 is in [2, p. 88], Lemma 2 is in [2, p. 98] and Lemmas 3 and 4
are in [3].

3. H? PrOPERTIES f(2)€ M1[x, k]

The ratio 2«/(k + 2) plays a very crucial role in determining the Hardy
classes for functions in MV «, £] and it is because of this that we have broken
up our results into the following three theorems.

THeorREM 1. If 20/(k + 2) << 1 and f(2) € MV, k] then:

G) f(2)eH" for all A < 2/(k + 2 — 2a),

(i) if f(2) #= f(a, 7, k; 2), then there exists € = (f) >0 such that
f(z) € H®/tk+2=20) e,

Proof. Since the case o == ( has already been proved in Lemma 3 we
restrict our study to the case o > 0.

(i) Since f(2)e MV[«, k], by Theorem B there exists a function
g(2) e MV0, ] such that

7@ = [ [ 2],

o
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or

@) = f(R) 1 g(=)H )z (2)
Since f(2)/z % 0 in D, if we let
e = (L7, G

then F(2) is regular in D and satisfies

1 gt 1 f()e

Al
F'(z) = o ljetl o gljatl

If 0 <A < 1, then for & = re®® (0 < r << 1) we obtain

. 27 , ~27 ] g(z)lla A 27 ] f(z)l/uc A
In=["1FErae< || A e+ [T s
_ L) +Ly(r)
T AR
Since g(z) € MV][0, ], by Lemma 3
lim I,(r) exists if Mo << 2/(k 4+ 2). 4)

7ol

Since f(2) € M1 [a, k], by Theorem A f(2) € MV]0, k] and hence, by
Lemma 3,

lim L(r) exists if  Aja << 2/(R 4 2). (5)

r-1—

From (4) and (5) we see that lim,,,— I(r) exists provided that A <<2«/(% - 2),
ie.,

F(z)e H*  forall \ < 2a/(k--2). (6)

Since 2af(k + 2) << 1 we can use Lemma 1 to obtain F(z) e H* for all
A < 20f(k 4 2 — 2a), and hence, from (3), we obtain

f(z)e H  forall A< 2/(k -+ 2 — 24). (7)

(ii) If f(2) %= f(o, 7, k; 2), then g(2) 5= g(r, k; 2) and by Lemma 3
condition (4) can be replaced by

im I(r)  existsif Mo <2/(k -+ 2) + e, (4)

1"
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where ¢ = ¢(g) > 0. In light of (7) we replace (5) by the stronger condition

lim I(r)  existsif Ao <2/(k -+ 2 — 2a). 5"

r-1-

If we set a new positive € less than the
min{e, 1fa — 2/(k + 2), 2/(k + 2 — 2a) — 2/(k + 2}}

then (4') and (5) will be satisfied if Aja << 2/(k + 2) + ¢ and (6) will be
replaced by

F(z)e H  for all A < 2uj(k + 2) + ae. (6"

Since 2af(k + 2) + ae << 1 we can use Lemma 1 to obtain F(2)e H?,
forall A < 2a/(k + 2 — 2a) + e, for a possibly different value of . Combining
this with (3) we have our result.

Tugorem 2. If 2af(k +2) > 1, and f(z)e MV]o, k], then f(z)c H=®
(t.e., f(2) is bounded).

Proof. From (6) we have F'(z)e H* for A < 2u/(k+ 2), and since
2x/(k + 2) > 1 we have F'(z) € H'. Hence by Lemma 1 F(z) is bounded and
consequently, by (3) f(z) is also bounded.

Note that this result is also proved in [1] using a different method.

Tueorem 3. If 2af/(k + 2) = 1 and f(z) € MV]a, k], then
(1) f(z)e H*for all X > 0,
(i) if f(2) #~ f(o, 7, ks 2), then f(2) € H™.

Proof. (i) From (6) we obtain F'(z) € H* for A <1 which, by Lemma 1
and (3), yields f(2) € H* for all A > 0.

(1) If f(z) # f(a, 7, k; 2), then condition (4) can be replaced by
lim, ;- I;(r) exists if A <L 1 + ¢, and in light of what we have shown in (i)
we can replace condition (5) by lim,;_ I,(r) exists for all A > 0. Combining
these results we conclude that F'(z) € H'*<, and consequently F(z) and f(z)
are bounded.

Note that Theorem 3 implies that all functions in MV[a, k], 2o = & 4 2
are bounded with the exception of functions of the form f(a, 7, &; 2).
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4. H" PROPERTIES OF f'(2)

In general, if a regular function belongs to some Hardy class its derivative
need not belong to any Hardy class. We show in the next two theorems that
this is not true for functions in MIw, £].

THeoREM 4. If 2aj(k + 2) << 1 and f(2) € MV, k], then
(1) f'(z)e H? for all A < (2)(k + 4 — 2a)),
(i) if f(2) 7= f(x, 7, k; 2), then there exists € = e(f) >0 such that
f(z) € H2/tkta-2adve,
Proof. The case « = 0 is handled by Lemma 4, so we restrict our study
to the case a« > 0.
(1) Since (f(2)f'(2))/z = 0 in D, we can write f'(2) as
vy 13) [2(3)
J&) = z [f(z) ]’
and if 0 << A <C 1, we have

p2m

16)= [ 1F @ =

125 [

for ¥ =70 <r < 1). By applying Hélder’s inequality with conjugate
indices p and ¢ we obtain

w1t afl(z)
#1]) |Fe

Since f(s)e MV]a, k], by Theorem A we have f(2)e MV[0, k], ie.,

-

o0

P

<

f)
Tz ®

1) < Uozn A ]1/q

2f'(?)
Re 572 ‘dagkm

Hence Re(zf'(2)/f(2)) is an A! function and by a theorem of Kolmogorov
[2, p. 57] (2f '(2)/f(=)) € H" for all n < 1. Hence the second integral in (8) is
bounded as r — 1~ provided that

Ag < 1. %)
By Theorem 1 the first integral in (8) will be bounded as » — 1~ if

Ap < (R 42— 2a). (10)
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The inequalities (9) and (10) will be satisfied if A << 2/(k + 4 — 2a),
p=(+4—20)/(k+2— 2a) and ¢ = (k + 4 — 2)/2. Hence f'(z) e H?
for all A << 2/(k + 4 — 2a).

(i) Iff(2) # f(«, 7, k; 2), then in the proof of (i) we can replace (10) by

M <2k + 2 — 20) + ¢ (107)

and conditions (9) and (10') will be satisfied if A < 2/(k + 4 — 2a) + ¢, for
a possibly different value of e.
Taeorem 5. If 2a/(k + 2) 2= 1, then f'(2) € H* for all A < 1.

Proof. We first consider the case 2a/(k + 2) > 1. By Theorem 2 f(2)
is bounded, say | f(2)| << M, and thus

[ 1rera ="

HORNE NGRS Myr 2| 2f'(z) !
[ 2 ] [ f(2) 9 < [7} Jo f(=) d0.(11)
By our discussion in Theorem 4 we know that this last integral will be
bounded as r — 1- if A << 1.
If 2a/(k 4+ «) = 1, by applying Holder’s inequality on the second integral
in (11) and using Theorem 3 part (i) we obtain our result.

5. H? PROPERTIES OF f"(2)

As was mentioned in §4 a regular function will not in general have a
derivative belonging to some Hardy class. We next show that for functions
in MV[a, k], « > 0, even the second derivative belongs to some Hardy
classes.

TueoREM 6. If 0 < (2u/(k + 2)) < | and f(z) € MV[w, K], then:

1) f"(r)e H*for all X < 2/(k + 6 — 2a),
(i) of f(2) % f(a, 7, k; 2), then there exists ¢ = e(f) >0 such that
f”(z) € H2/Uet6—20)+¢_

Proof. (i) If 0 <C X < 1, then from the identity

oaf"(s) = £6) [(1 — ) LB 4 (FE 4 1)]

~ [0 - ar@ZE + o).
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we obtain

I&)zz‘:ﬂlagf%zﬂ“dﬁ

A

dv

[l —oZEr o (ZE )]

Fit—ap [T 1@ [FEH [ a0 o [T rep

=L(r) + | 1 — «|M (1) + oMy(r).

We apply Holder’s inequality, with conjugate indices p and ¢, to I)(r)
and obtain

sy <[ 1r@pean) ([T - FEL o (FLE ) M)
(12)

By Theorem 4 the first integral will be bounded as r — 1- if
Ap < 2/(k + 4 — 2u). (13)

From Definition 1 we see that

sl -4 (g )

is an /! function. Hence by a theorem of Kolmogorov [2, p. 57], J(«, f) € H”
for all < 1, and thus the second integral in (12) will be bounded as r — 1- if

Ag < 1. (14)

If we apply Holder’s inequality to I,(r) and use the fact that [sf'(z)/f(2)] €
H7 for all < 1, we obtain the same conditions (13) and (14).
The integral I (r) will be bounded as r — 1~ provided that

A< 2k + 4 — 2u). (15)

Conditions (13), (14) and (15) will be satisfied if A < 2/(k + 6 — 2«), and
hence f"(z) € H* for all A < 2/(k + 6 — 2a).
(i) Iff(z) # f(e, 7, k; 2), the inequalities (13) and (15) can be replaced
by stronger results involving € which yield our result.

Note that for « = 0 this coincides with the result [3] for the class ¥ .
Using Theorem 5 and the technique in Theorem 6 we immediately obtain
the corresponding result for 2a/(k + 2) ™ 1
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Tueorem 7. If 2af(k + 2) = 1, then f"(2) € H? for all A < 1]2.

If we apply Theorems 6 and 7 to the class of alpha~-convex functions
M, = MV][a, 2], we obtain the following corollaries.

CoroLLARY 1. Iff(2)e M,,0 <a <2, then
() f'(x)yeH for all x < 1/(4 — w),

(i) if f(=) =~ f(o, 7, 2; 2), then there exists ¢ = e(f) > O such that
f"(2) € HY/@-ar+e,

CoroLrary 2. If f(z)eM,, «>=2, then f"(z)e H* for all X < 1)2.

6. CoErrrFICIENT ESTIMATES
By combining Theorem | with Lemma 2 we obtain the following theorem:

THEOREM 8. Iff(2) = 2 - Y s ays™ € MV[a, K], 20f(k -+ 1) < 1, then

o 0@ for X< 2f(k+2—2v) if k<20 and
» = 0(1) if k<lu<hi2

If in addition f(2) + f(a, 1, k; 2), then

o - {0(n=22) if 2o <k, and
* (D if k<20 <k+2.

From Theorems 2 and 3 and the Cauchy estimate we obtain the following
result.

THEOREM 9. If f(2) = & + Y5 ana® € MV][a, k] and 2a/(k + 2) > 1, or
2a/(k + 2) = 1 and f(3) = f(x, 7, k; ), then lim,,_, a, = 0.

In [1] it is shown that f(2) € MJ[a, k] is univalent if and only if
k < 2 4+ 2a. Combining this result with Theorems 8 and 9 we obtain the
following Theorem:

Turorem 10. If f(z) = = + X aw" € MV[s, K] is univalent and
f(z) # fla, 7, k; 2), then

() lim(ay/n) =0, 2a <k,

(i) lima, =0, k<2
n->w
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