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ABSTRACT 
The energy equation for the laminar flow of an incompressible, viscous 
fluid induced by the axial oscillation of an infinite flat plate is 
solved by the Laplace transformation technique. Temperature oscilla- 
tions of the fluid at steady periodic state are analyzed for all 
Prandtl numbers. It is shown that the oscillation of the plate could 
change both the fluid temperature and the heat transfer rate appre- 
ciably. Results may also be applicable for a compressible viscous 
fluid. 

Introduction 

Some earlier works on aerodynamic heating have been s-mm~rized in refer- 

ence i. Emmons [2] has considered the problem of an insulated flat plate of 

infinite extent started impulsively from rest in a viscous, incompressible 

fluid. The same problem has been treated by Bryson [3] for a plate with a 

surface temperature that varies as a given function of time. Ostrach [4] has 

analyzed the effect of the surface oscillations on heat transfer by comparing 

with those for the case of conduction at a stationary surface with the same 

initial temperature potential. 

This paper determines how the axial oscillation of a flat plate can change 

both the fluid temperature and the heat transfer rate. Analytical results, also 

applicable for compressible fluids, are obtained through the operation of 

Laplace transform on the equations governing the laminar transport of heat and 

momentum in an incompressible viscous fluid. 

Analysis 

For the laminar flow of an incompressible, viscous fluld induced by the 

axial (longitudinal) oscillations of an infinite flat plate, the momentum equa- 

tions, assuming constant physical properties, reduce to 
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~u ~2u 
Tf = ~ (i) ~y2 

where u is the velocity parallel to the plate, t is time, ~ is the kinematic 

viscosity, and y is the coordinate normal to the surface. The associated 

boundary conditions are 

u (0,t) = u cos~t 

u (~,0) -- 0 

where U is the amplitude and ~ the frequency of the oscillation. 

The appropriate energy equation is 

8T ~2T ~ ~u 2 

~y2 P 

where T is the temperature, a is the thermal diffusivity, C 
P 

(2) 

(3) 

(4) 

is the specific 

(7) 

Substituting equation (7) into equation (4), 

That is, the oscillating surface is maintained at some uniform temperature T s. 

The temperature at infinity may be any finite value. 

The problem defined by equations (i), (2) and (3) for the momentum diffu- 

sion gives 

u = U exp(-n)cos (mt-n) 

where q is defined as (~/2~)i/2y. 

the energy equation becomes 

~O = i ~28 + exp(-2n)[l-sin 2(T-q)] (8) 
~T 2Pr ~q2 

in which 8 = (T-Ts)/(U2/2Cp), T=~t and Pr is the Prandtl number. 

By means of Laplace transformation, the solution of this linear second- 

order differential equation (3) with the boundary conditions (5) and (6) is 

obtained. The inverse transformation of the resulting equation yields 

1 8(n,T) = i - erf [(Pr/2)i/2n~i/2] -exp(-2q) + ~ exp[2(~/Pr-~)]. 
Pr/2 

i erfc[Tl/2/(Pr/2)i/2-(Pr/2)I/2n/T]- ~ exp[2(T/er +q)]. 

erfc[Tl/2/(Pr/2)i/2 + (er/2)i/2n/T] + i I exp[-(2Pr)i/2n]. 

heat at constant pressure. The associated boundary conditions are 

T(O,t) = r s (5) 

T(~,t) = r (6) 
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cos t2[T-(Pr/2)l/2n] } -exp(-2n)cos[2(T-B)] 

- if exp(_e~)sin[(2Pre)i/mn] ede 
o e 2+4 

I + exp (_eT) sin [ (2Pre) i/2n] ed~ 
o e2+(4/Pr) 2 

(9) 

Although the solution given by equation (9) was developed for an incompressible 

viscous fluid with constant properties, it is equally applicable for a compres- 

sible viscous fluid as discussed in references 3 and 4. 

After a sufficient time has elapsed to allow the distribution of tempera- 

ture to become purely periodic, and the influence of the initial distribution 

has passed away, y/2(at) I/2 which is Y/2 will be very small and equation (9) 

reduces to 

Pr/2  = 1 - exp( -2n)  + e x p [ - ( 2 P r ) l / 2 n ]  (2-Pr)  exp -2 [2-(2Pr)1/21 n 

t } F 
l cos[(2Pr)l/2nl -exp|~[2-(2Pr)l/2lnl cos2n~ 

The first two terms on the RHS of equation (i0) express the mean value of 

the temperature oscillations. The amplitude and phase lag of the temperature 

oscillation may be obtained from equation (i0) as follows: 

Amplitude of the temperature oscillation 

= exp[-(2Pr)i/2n]2-Pr I i + exp[ -212-(2Pr)I/2]n ] 

~i/2 
-2 exp{-[2-(2Pr)i/2]n } c°s{ [2-(2Pr)i/2]n } " (ii) 

Phase lag of the temperature oscillation 

= tan-if sin[(2Pr)i/2n]-exp {-[2-(2Pr)i/2]n} sin2~ 1 

cos[(2Pr)i/2nl-exp { -[2-(2Pr)i/2ln } cos2n 
(12) 

Results 

Equation (i0) illustrates that the frequency of the temperature oscilla- 

tion is twice that of the plate oscillation. The mean values of the tempera- 

ture in dimensionless form as shown in Fig. i increases exponentially to unity 

in the direction normal to the oscillating plate. For fluids having small 

Prandtl numbers, these mean values of the temperature approach unity at a dis- 
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tance closer to the plate. The amplitude of the temperature oscillation ex- 

pressed by equation (ii) and graphically illustrated in Fig. 2 is a function 

of Pr and has a maximum at a certain distance from the surface of the plate. 

As the Prandtl number increases, the maximum value of the amplitude decreases 

and its location is shifted away from the plate. The temperature oscillation 

has its maximum at a physical time when the cosine term in equation (i0) be- 

comes unity. 

The temperature oscillation expressed by equation (I0) is graphically il- 

lustrated in Figs. 3 and 4 for a fluid having Pr=2. Figure 3 shows that at 

any instant the fluid temperature takes its mean value periodically with re- 

spect to dimensionless distance Y. 

This phenomenon may be revealed by the investigation of equation (12). 

The investigation of equation (12) also shows that at any instant the fluid 

temperature oscillates with increasing period in Y for a fluid having Pr less 

than 2, and with decreasing period in Y for a fluid having Pr less than 2. 

Mean temperature gradient over a period of 2~/~ may be obtained by in- 

tegrating the equation resulting from differentiating equation (i0) with re- 

spect to y with respect to time from any instant t to t + 2w/~ and dividing 
o o 

the result by 2~/~ 

8_~8 =Pr exp (-2n) (13) 
~n 

The heat flux to the surface over a period of 2~/~ is 

q/A = ~U 2 (~)i/2 
- 2 (14) 

The amount of heat transfer expressed by equation (14) is entirely due to 

the aerodynamic heating and is also equal to the work done per cycle in os- 

cillating the surface. 

References 

i. R.W. Truitt, Fundamentals of Aerodynamic Heating, The Ronald Press Co., 
New York (1960). 

2. H.W. Emmons, Note on Aerodynamic Heating, Quart. Appl. Math., 8, 402-405 
(1951). 

3. A.E. Bryson, Note on Aerodynamic Heating with a Variable Surface Tempera- 
ture, Quart. Appl. Math., i0, 273-276 (1952). 

S. Ostrach, Note on the Aerodynamic Heating of an Oscillating Surface, 
NASA Tech. Report No. 3146 (1956). 

. 



Vol. 2, No. 1 AERODYNAMIC HEATING 55 

107 ~--O I I__ 

0.8 I 

o;, ,o 

o~ i , ~ 0 2 ~ .  y3 5 

FIG. 1 
Mean values of temperature oscillation 
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FIG. 2 

Amplitude of temperature oscillation 
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FIG. 3 

Temperature oscillation of fluid with Pr=2 
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FIG. 4 

Temperature oscillation of fluid with Pr-2 


