Discrete Mathematics 12 (1975) 113-138.
© North-Holland Publishing Company

TRUNCATIONS OF PRINCIPAL GEOMETRIES *

Richard A. BRUALDI
Department of Mathematics, University of Wisconsin, Madison, Wisc. 53706, USA

and

George W. DINOLT
Departmen: of Mathematics, University of Michigan, Dearborn, Mich. 48126, U/S4

Received 17 January 1974
Revised 1 October 1974

We investigate the class of principal pregeometries (free simplicial geometries w'th
spanning simplex) which form an important subclass of the class of transversal prege -
metries (free simplicial geometries). We give a coordinate-free method for imbedding a
transversal pregeometry on a simplex as a free simplicial pregeometry which makes use
only of the ses-theoretic properties of a presentation of the transversal pregeometry. We
introduce the notion of an (r, k)-principal set as a generalization of principal basis and
prove the collection of (r. k)-principal sets of a rank & pregeometry, if non-empty, a.:
the bases of another pregeometry whose structure is determined. An algorithm for con-
structing principal sets is given. We then characterize truncations of principal geometries
in terms of the existence of a principal set. We do this by erecting a given pregeometry
to a free simplicial pregeometry with spanning simplex. The erection is the freest of all
erections of the given pregeometry.

1. Introduction

Our objective when we started to work on this paper was to obtain
an intrinsic characterization of truncations of transversal gecometries. In-
trinsic characterizations of transversal geometries being known w2
thought it would be possible to extend them to this wider class of com-
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hinatorial geometries. Geometricaily, a transversal gzometry is a set of
points on a simplex in real aifine spaze with the points freely situated
en the faces of the simplex but where the vertices of the simplex need
2ot all be points of the geometyy (a free simplicial geometry). Thus a
sruncation of a transversal geometry can be regarded as a set of points
on a simplex which has been freely projected into a smaller dimen-
sional space. In trying to obtain an intrinsic characterization of these
truncations, then, we are faced with the problem of taking a geometry
which is claimed to be a truncation of a free simplicial geometry and
erecting it into a higher dimensional space in such a way that it becomes
¢ free simpliciai geometry and the lower dimensional geometric proper-
ties are preserved. For transversal geometries in general we found this
problem (from this point of view) intractable. Roughly the difficulty in
carrying out the erection is due to the fact that in transversal geometries
not all vertices of the simplex need be points of the geometry so that it
is difficult to krow how to reconstruct the simplex.

The subcluss of transversal geometries which are free simplicial ge-
ometries where each vertex of the simplex is a point of the geometry is
the ciass of principal transversal geometries or free simplicial geometries
with spanning simplex. This class of geometries proved more tractable,
for it is possible to isolate geomietric nroperties of the vertices of the
simplex when the simplex is freely projected into a smaller dimensional
space. These properties can then be used to erect the truncated simplex
into the space it came from ar:«d thus furnish a characterization of trun-
cations of principal transversal geometries.

In &ection 2 we discuss the basic concepts and theorems we need for
the remainder of the paper. Section 3 gives a coordinate-free method to
imbed a transversal geometry on a simplex which makes use oniy of the
set-theoretic properties of a presentation of the transversal geometry.
in Section 4 we introduce the notion of a principal set whose definition
contains the basic geometric properties of the set of vertices of a free
simplicial genme try with spanning simplex when the simplex is freely
projected into a smaller dimensional space. We discuss properties of
principal sets, give an algorithm for constructing them when they exist,
and show that the principal sets re the bases of another geometry
whose structure is determined. In Section 5 we carry out the erection
of @ geometry to a free simplicial geometry with spanning simpiex and
show the erecticn we perform is the freest of all possible erections. We
conclude with some exarnplss illustrating the theorv developed.

Besides considering projecticns from points on the #-race of a free
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simplicial geometry (truncations cf principal geometries), one can also
consider projections from points on smaller dimensional faces. We plan
to investigate this in a subsequent paper.

2. Basic concepts

In this section we discuss bricfly the basic notions of combinatorial
geometries that will be used in the paper.

A finite pregeometry [8] or matroid [13] G(X) consists of a finite set
of points X along with a closure operator J(-) defined on subsets of
points which satisfies the exchange property: for any points x, y and
any subset Pof X, if y € J(PU {x}), y € J(P), thenx € JIPU {3}}. A
set PC X is closed or is a flut of G(X) if J(P)=P. A gecmeiry is a pre-
geometry in which the empty set and points are closed sets. The lattice
of flats of the pregeometry G(X) is a geometric lattice, that is a semi-
modular point lattice. This lattice will slso be¢ denoted by G(X). Since a
geometric lattice satisfies the Jordan—Dedekind -hain condition, each
flat F has a well-defined rank p(F). The rank of P € X is defined by
p(P) = p(J(P)). The rank of G(X) is p(X). The hvperplanes or copoints
of G(X) are the ﬂats of rank p(X) — 1. A proper flat is a flat F with
p(F) < p(X) -

IfFisa ﬂdt and J(P)=F, then P is said to span F. A set of points P is
an independent sct if p(P) = | P|. A basis of the flat F is an independent
subset of F that spans F. An independent subset P of F is a basis of F if
p(F) = |P|. A basis of G(X) is simply a basis for the flat X. A set of _
points P is dependent if it is not independent; minimal dependent sets
are called circuirs. Every proper subset of a circuit is an independent set.
A point x is a loop if {x} is a dependent set. A point x is an isthmus of
the flat F if x is in every basis of F. An isthmus of G(X) is a point that
is in every basis of G(X).

If B is a basis of G(X) and x ¢ B, there exists a unique circuit €, with
x € C, € BU {x}; C, is called a fundamental circuit with respect to the
basis B. A flat F is cyclic if it has no isthmuses; equivalently, a flst F is
cyclic if every element of F is contained in a circuit lying entirely in F.
A pregeometry is determined up to isomorphism by its family of cy:lic
flats and their ranks [6]. If F is any flat of a pregeometry, then the free
part A of F is the set of isthmuses of F; the set F'\ 4 is then a cyclic flat
called the cyclic part of F.

A pregeometry can also be defined in terms of its independent sets,
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rank function, circuits or bases. For instance, a collection € of non-
empty subsets of X is the set of ¢ircuits of a pregeometry on X if
(i} no member of € properly zontains another,

(ii} (Circuit elimination property) C;, C, € C, x € C;\Cy, y € C1 N
imply the existence of C; € € with x € C3 € (C; U Cy)\{y}.

Likewise a collection ‘B of subsets of X is the set of bases of a pre-
geometry on X if

(i) no member of BV properly contains another,

(ii) By, B, € B, x € B;\ B, imply the cxistence of y € B, \ By such
that (By\{xD U {y}eB.

We can also define a pregeometry on X using the submodular ine-
quality satisfizd by the rank function p: p(AU B) + p(A N B) < p(A)

+ %),

Two pregeometries G'(X) and G2(Y) are isomorphic if there is a bi-
jecticin /: X - Y such that A is an indepenident set of G 1(X) if and only
if f{A) is an independent set in G*(Y).

There are several waye to obtain new pregeometries from given ones
which we shail make use of. If G(X) 1s a pregeometry with closure J
and ), € X, then if we define for 4 € X, Jo(4) =J(4) N X, then Jy is
the ciosure operator of & pregeometry on X, which is denoted by G(X)
and called the restrictior: of G(X) to Xy or the subgeometry on X . Let
Gl(X) and G*(Y) b pregeometries on disjoint sets X and Y. Then the
direc! sum G} (X)® 5%(}) is the pregeometry G(X U Y) whose indepen-
dent sets are all unisns of an independent set of G!(X) and an indepen-
dent set of G2(Y). if G(X) is a prezeometry ofrank r and k < r, then
*hose flats of G(X) whose ranks are notequaltok, k+ 1, ...,r — 1 form
a geometric lattice of r:nk & which is denoted by Gy(X) and called the
k-truncation of G(X). A set A = X is an independent set of G ,(X) if
and cnly if A is an independent set in G(X) and | 4| € k. If G(X) is the
free geometry on X, ? (X), where cvery set is independent, then 2;,(X)
is the pregeometry with every set of cardinality at most k independent.

if G(X) is a pregeometry of rank k and r > k, then a pregeometry
G'(X) of rank r is ar. r-er=ction of G(X) provided the %-truncation of
G'(X) is G(X). While a k-truacation of a pregeometry is unique, an r-
erection need not be.

Given a pregeometry G(X) with closure operator J, let kX be any non-
negative integer. A subset D of X is k-closed [ 7] if and only if it con-
tains the closures of all its j-element subsets for all j € k. The collection
of k-closed subset; of G{X) form a lattice which need not be geometric
{7]. The k-closure of D, J,(D), is clefined to be the smallest k-closed set
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containing D. If p € J (D), it need not be the case that p € J(D') for
some k-element subset D’ of D. In [7], Crapo shows that a set D is
k-closed if and only if D N F is closed for all flats F of rank k and proves
the following interesting theorem.

Theorem 2.1. A set B of subsets (called blocks) of the point set X of a
rank k pregeometry G(X) is the set of copoints of a (k + 1)-erection of
G ifand only if
(i) each block contains at least one basis of G(X);
(i) each basis is contained in a unique block ;
(iit) each block is (k — 1)closed.

Crapo introduces a partial order on the collection consisting of the
(k + 1)-erections of the rank & pregeometry G(X) and G(X) as follows.
Let G1(X) and G2(X) be two (k + 1)-erections of G(X) with sets of co-
points B! and B2, respectively. Then G1(X) < G2(X) if and only if
each copoint of B! is contained in a copoint of MW2. Crapo shows that
using this partial order the collection of (k + 1)-erections of G(X) form
a complete lattice with a least element which is called the free
(k + 1 )erection of G(X). It is not difficult to see that an independent set
of any (k + 1)-erection of G(X) is an independent set of the free
(k + 1)-erection. Thus the free (k + 1)-erection contains all other
(k + Y)-erections as rank preserving weak map images (see {8] for defi-
nitions). It may happen that a pregeometry has no non-trivial erection;
for example, three pairwise intersecting lines in the plane can net be
erected to a rank 4 geometry.

An important class of pregeometries are the transversal pregeometries
[9]. These are defined as follows: Let (4, ..., A,) be a family of sub-
sets of a set X. A set T is a transversal (partial transversal) of (A,, ..., A,)
if there is a bijection (injection) ¢ : T - {1, ..., n} such that x € 4 4,

(x € T). Hall’s theorem [10] (see 2lso [12]) asserts that (4, ..., 4,,) has
a transversal if and only if \U;c; A;| = il| for all I € {1, ...,n}. The col-
lection of partial transversals of (44, ..., A,;) are the independent sets of
a pregeometry on X, called a transversal pregeometry. If a transversal
pregeometry G(X) has rank &, then there are k sets. say Ay, ..., Ay, such
that the independent sets of G(X) are precisely the partial transversals
of (4, ..., Az) (see [5]). Such a family is called a presentation of G(X).
The sets X\ A...., X\ A are flats of the pregeometry G(X) (see [3]). If
Cis a circuit of G(X), then |[{i: CNA; # O} =pl) = |C} — 1 {see, e.g.,
(4.



118 R.A. Erualdi, G.W. Dinolt | Truncations of principal geom._ ~jes

Finally a fundamental transversal pregeometry [ 1] (see also [2]) is a
pregeometry G(X) for which there is a presentation (4;: 1 € i< /) and
a basis B such that i{i: b € A}l = 1 for each b € B. Since B is a basis,

6: 8- {1,.., k} defined by a(b) =i if b € A4, is a bijection. A basis I}
with this property is called a fundamental basis. Since the sets X\ .4,

(1 < i < k) are flats and have rank & — 1 (because {(X\A4;)Nn Bi=k - 1),
they must be hyperplanes.

3. Imbedding transversal pregeosneiries on simplices

An r-siniplex S in real affine space R”-1 is the convex hull 4(8) of a
set 5={ry.. ., r,} of r affinely independent points which are termed
vertices. A k-face (1 € k < r) of an 1-simplex is the convex huil of a set
of k vertices. A point x in th: r-simplex S is on the k-face determined
by a set F of k vertices if x is ir. the convex hull A(F) of F but not in
tl:e convex l:ull of any proper subset of F. If X is a {inite set of points
in A(8), ther, using affine independznce we obtain & combinatorial ge-
ometry G(X) on X with closure operator J; if it is permitted to repeat
points, then G(X) may only be a przgeometry. Let a point x in X be on
the face A(F). Then x on A(F) is said to be freely situated with respect
to the prezeometry G(X) provided ihe following is true: For each set
PC X with » ¢ P, x € J(P) if and only if A(F) N X € J(P). The prege-
ometry G(X) is called free simplicic! with spanning simplex B provided
B € X and every point of X is {reely situated on its face. In su:ch a pre-
geometry, only the vertices may be repeated (doubled). A pregeometry
is termed free simpliciai if it 1s 2 restriction of a free simplicial prege-
omeiry with spanning simplex B (soine of the vertices may be deleted).

Let G X} now represent any pregeometry on a set X with no loops. A
basis B of Gi4) is a principal basis if subsets of B span all cyclic flats
{wquivalently 2 closures of circuits). A pregeometry with a principal
basis is called a principal pregeometry. Brylawski [6] has proved the
equivalence of the following three statements: ,

{1} G(X) is isomorphic to a free simplicial pregeometry with spanning
simplex B;

(it} G(X; is a principal pregeometry with principal basis B;

(iii) GCX) is 5 fundamental transversal pregeometry with fundamental
basis B.

From the fact that transversa! pregeometries are precisely the restric-
tions of fundamental transversal pregeom:atries, it follows that ihe fol-
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lowing two statements are equivalent:

(iv) G(X) is a transversal pregeometry;

(v) G(X) is isornorphic to a free simplicial geometry.

Some related results are due to Ingleton [11]. The method that
Brylawski uses to identify a transversal pregeometry with a free simplicial
geometry is algebraic (coordinates) and.the connection between the geo-
metric definition of a free simplicial geometry and the algebraic represen-
tation remains in the background. We offer here a coordinate-free algo-
rithm for identifying a transversal pregeometry with a free simplicial
geometry which, as in [6], uses only the set-theoretic properties of a pre-
sentation of the transversal pregeometry.

Let G(X) be a transversal pregeometry on X of rank r with presenta-
tion (A;: i€ l), whereI={1,...,r}. Set F; = X\ A; (i€ I). Let S be ap»
r-simplex in R”~! with vertex set B = { Pis - Dy} We label the k-face of
S spanned th- points p; , ..., p;, with the set I\ {i}, ..., it }.

Algorithm for determining a free simplicial pregeometry isomorphic to
the transversal pregeometry G(X)

(0) (Preliminary step) For each subset /; of / with |/;| =r — 1, con-
sider N;¢ 1, Fi- If this intersection is empty, then we adjoin to X a new
point xy and put this new point in the set A, if /\/, = {k} (equivalently,
Xo € F; if and oruy if i € I)). The resulting set of points (X and the new
points) is denoted by X° and the resulting pregeometry G(X?) is a trans-
versal pregeometry with presentation (A, ..., 4,) such that the restric-
tion of G(X?) to X is the given pregeometry G(X). (Note that we have
not altered the notations for 4,, ..., A,, F,, ..., F, even though new points
have been added to these sets.)

(1) Consider each I; € I with |/] =r — 1. Identify each point in
Njey, F; with the vertex of § whose label is /; . In case N, F; contains
more than one peint, each of these points is identified with this vertex:
this is the only time two different points of X can be identified with the
same point of the simplex S.

(k) Consider each subset [, € [ with [/} | =r - k and the set of all
points which are in ;¢ f, F; for some [y but not inf¢, F; for any /; with
I < k. Linearly order these points x,, ..., X,. For 1 <j < there is 2 unique
subset [ () of cardinality r — k with x; € N e, (H ;. Suppose Xy, ..., Xg.
(s € t) have already been identified with points of the simplex S. Pick @
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point on the face of S with label /;(s) in such a way that this point lies
in an affine flat spanned bv peints of the simplex previously identified
with points of X (this ir.cludes all such points obtained in steps (1), ...
(¢ — 1) and those identifiad with x, ..., x;_; in the present step) if and
only if the affine flat contains the face of the simplex with label [ (s).
For the same reason given at the end of step (2), such a point can be
found.

L)

(r) Consider all points in X9 not previously considered in steps
(1), ... ( - 1). (These points form a subset of the isthmuses of G(X?).)
Lirearly order these as vy, ..., x, and as in previous steps we identify
these points with points on the face of S with label 9 (i.e.. the interior
of 8.

The preceding algorithm identifies points of X© with points of the
simplex . The points of the simplex S so identified will also be denoted
by X¥°. The pregeometry on X0 determined by affine independence will
be denored by G'(X9) and its closure operator by ..

Theorem 3.1. G'(¥0) is a free simplicial pregeometry with spanning sim-
plex B.

Procf. Let P& X © with x € J'(P) but x & P. We choose P minimal with
respuct to these properties so that P is an independent set and {x}U P is
a circuit. Let it be that x is on the face F of the simplex. We show that
x is f'reely situated on F. If x is 'y vertex, this is clearly so; thus we may
assume x js not a vertex.

First suppose that x is the last point in {x} U P that was chosen in the
algorithny. If F € J'(P), then according to the algorithm when choosing
x on F we would not have chosen x to be in J'(P). Hence F & J'(P).

Now suppose ¥ # x is the last point in {x} U P that was chosen in the
algo-ithm. If ¥ were a vertex, then every point in P U {x} (in particular,
xYwould he avertex. Thus y is not a vertex. Suppose F ¢ J'(P). We may
choose a # with the above properties for which the clement v (last ele-
ment of {x} U P chosen in the 2lgorithm) is minimal with respect to the
lirear order of choosing points in the algorithm. Let y be on the face
F*. By the prec:cing argument (with y replacing x, F* replacing F,

P =(P\{}) U [} replacing P), we conclude that F* S J'(P*) = J'(P).
Since BN F* corsists of the vertices of F*, (B F*) u { y} is a circuit
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of G'(X). Applying the circuit elimination axiom to the two circuits
Pu {x}, (BN F*)u {y} where y is in both of these circuits but . is only
in the first, we obtain a circuit C* with

xeC*ES@P\{yHuBn FHU {x}.

Thus every point in C* is chosen in the algorithm before y. But
x € J'(C*\{x}) and y ¢ C*\{x}. Hence by the minimality restrictions we
have imposed, F & J'(C*\{x}) = J'(C*). But since {x', F* C J'(P),

JPN{YHU BN FYU {x})=J(P),

hence F € J'(C*) € J'(P) and this is a contradiction. The theorem is
proved.

Theorem 3.2. G'(X%) = G(X9).

Proof. We prove the theorem by showing that every circuit of G'(X?) is
a dependent set of G(X9) and that every circuit of G(X?) is a dependent
set of G'(X9).

Let C be a circuit of G'(X?) with |C| = k so that C has rank
p'(C)=k —1in G'(X%. Let x € C. Since, by Theorem 3.1, G'(X%) is a
free simplicial geometry and since x € J'(C\{x}), x € C'\{x*, it follows
that F* C J'(C\{x}) =J'(0), where x is on the face F*. Thus

u FCJeo.
xeC

Hence U, (B N F*) € J'(C), so that
k=1=p(0)>] U (BnF")|.
xel

But C € J'(U,c (B N F¥))since x € J'(B N F¥) so that

ngC(Bﬂ F"‘)l? p(C)=k — 1.

Hence Uy (B N F*)I =k — 1 and C is contained in the (k — 1)-face
of the simplex with vertices BN (Uyc cF*) = {p;,. ... Py, }- Let
J=1I\{iy, ..., ix_y} so that [J =r — k + 1 and C is a subset of the
(k — 1)-face with label J. According to the algorithm, C & N ; F; so
that Cn (XO\F;)= Cn A; = @ for all i € I. Hence in the transversal
pregeometry G(X ), p(C)<r - |11 =k — 1 and C is dependent.

Now consider a circuit C in G(X %) with |C| = p(C) — 1 = k. Since
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GiX0) is a trarsversal pregeometry with presentation (A;. .. . 4,), if
K={i:CNnA; =0}, then |K|=r - k+1.Hence CS F; = E " A; for all
i€ K, so that " G Mo g F; and C is a subset of the (k — 1)-face of §
whose latel is K. This means that C is a dependent set of G':X%). The
proof is completed.

Corollary 3.3 A transversal pregeometry is isomorphic to a free simpli-
coal pregenimetry.

Proof. This follows from Theorems 3.1 and 3.2 and the fact that G(X)
is the restriction of G(X'?) to X while G'(X) is the restriction of G'(X?)
to ..

We conciude this section by remarking that there is considerable latitude
in carrying out the algorithm. Because of Theorem 3.2 all yield isomor-
phic free simplicial geometries.

4. Principal s:ts

In this section we investigate a generalization of the notion of a prin-
cipal basis, that of a principal set. As we will see in the next section, a
principal set is precisely the resuit of a principal basis when a principal
geometry is truncated. Before defining principal sets we would like to
have cne siinple property of principal bases. We have defined a principa!
basis of & pregeometry to be a basis whose subsets span all cyclic flats.
As a consequence of the next lemma we have that subsets of principal
bases also span the intersection of cyclic flats.

Lemma 4.1. If B is a basis of a pregeometry G(X) and subsets of B span
Jlats Fy, ..., Fy. then a subset of B spans Fyn\ .0 F,.

Proof. Suppose ¢ = 2. We have that p(F;) = |Bn F;| fori=1i,2. Since
BritFyuFy)spansJ(F U F,)and B is an independent set,
plF U Fy} =B n{F;uF,)l. By the submodular inequality,

a(F 0 Fy) < p(Fy) v p(Fy) — p(F{UF,)
=IBNFHIBNF,)|— BN (F UF,)|
=IBN(Fin Fy)I
% ﬁ(FI N F:zlﬁ.
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We conclude that p(Fy 0 Fy) = BN (F, N Fy)| and thus BN (F; N F,)
spans F'y N F,,
The rest of *he lemma follows by induction.

Let now G'(X) be a pregeometry of rank r on set X with principal
basis 4. Thus G'(X) can be regarded as a free simplicial geometry with
spanning simplex A. Consider an integer Xk with 1 < k& <~ and the pre-
geometry G(X) = GQ,()(X)I which is the k-truncation of G'(X). With
respect to G(X), A has the following properties:

i) 141 =r;

(i) if F is any cyclic flat or the intersection of cyclic flats, then
AN Fspans F,

(iii) every k-element subset of A is independenc.

By convention, the empty intersection of cyclic flats of G(X) is the col-
lection of ist' aiuses of G(X).

Property (ii) is a consequence of the definition of principal basis, the
fact that every proper cyclic flat of G(X) is a cyclic flat of G'(X), and
Lemma 4.1. Property (iii) is a direct consequence of the definition of
k-truncation. In the presence of (iii), (ii) is equivalent to:

(ii') A contains a basis of every cyclic flat and 4 contains the free
parts of the intersections of cyclic flats.

We also note that if F is a proper flat of G(X) which is either cyclic
or the intersection of cyclic flats, then F N A4 is a basis of F.

For any pregeometry G(X) of rank & and integer r > k, a set A having
properties (i), (i) and (iii) is called an (r. k)principal set of G(X). For a
pregeometry G(X) we denote by Fr(G(X)), or simply Fr(G), the set of
all points which are in the free part of the intersection of some collection
of cyclic flats. By our convention the set of isthmuses of G{X} is a sub-
set of Fr(G). Also every (r, k)-principal set contains Fr(G), according to
(ii’). Before proving several properties of (r, k)-principal sets, we derive
the following lemma.

Lemma 4.2. Let x be a point of the pregeometry G{X) with x ¢ Fr(G).
Then there is a unique smallest cyclic flat F,, which contains x.

Proof. Suppose /. ..., F, are all the cyclic flats containing x (there must
be at least one since x can not be an isthmus of G(X)). Then the flat
Fin .0 F,=FJA, where F is the cyclic part. Since x € Fr(G), x ¢ 4
and thus x € F. Then F = F is clearly the unique smallest cyclic flat
containing x.
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Theorem 4.3. Let A be an (r. k)-principal set of a pregeomeiry G(X).
Let x € A aad suppose that x € Fr(G). Let y € X\ A. Then {AMx}) U {y}
is an (r, k\-principal set if and only if F,= F, .

Prouf. Since y € A and Fr(G) € A4, F,, is defined.

(a) Suppose (A\{r}) U {y}is an (r, k)-principal set. First consider the
case F, = X. Suppose that F;, # X, so that F, is a proper cyclic flat and
thus x e Fy. ThenF,n4= F N (A\{x}) is a basis of F),. But also
F, oA, {xhHu {v”b) is a basis ofl v, and since y € F), thlS is a contra-
c*zausen Thus F y =X =F,. Now consider the case wrvnn F, is a proper
cyclic fiat. Since F, N 4 is a basis of F, containing x and since
Foov(Aavixbhu{ }‘r) is also a basis of I, , we conclude that y € F, and
th.m that F, C F. By symmetry we also conclude that ¥, € F v+ 50 that
Fo=F,.

(&) Now suppose F, = F,. We need to prove that A" = (A\ {x}) U {}
satisfies the defining properties (ii) and (iii) of principal sets. We first
show every k-element subcet of A’ is independent. First consider the
case Fy, = F,, = X. Then e only circuits containing y have cardinality
k + 1. Hence in this case svery k elenmnt subset of 4’ is independent.
Now cansider the case where F, = F, is a proper cyclic flat. Suppose
there were a circuit Cwithy € CC Al and |C1 < k. Then J(C) is a proper
cyclic tiat containing » so that F, S J(C). Now 4 n J(C) is a basis of
J(CY. Since Cv{y} is a subset ofA and is also a basis of . I(C)

AN JET)=CN{y}. Since A 1 F,, is a basis of F, ulF, € J(C), we con-
clude that AN Fy, = AN J(O) = C\{y] But thenx (S A NFy=ANF,
and thusx € C. "l his is. a contradiction. and every k-clement subset of
A’ is irdependent.

We have ieft to show that subsets of 4’ span all proper cyclic flats.
This will guarantee that subsets of 4’ span the intersection of cyclic
flats since x 2 Fr{(G ). Thus let F be a proper cyclic flat. If x € F, the
conclusion is obvious, s0 assume x € F. We need only show thaty € F,
for then since 4 N I7 s a basis of F and every k-element subset of A’ is
mdep«ezndcﬁt, 4’0 Fi=|ANnF and A'N Fis a basis of F. So consider
Fyen i Since x §Fr(G), F, CF. Since F, =F,, y€ F, . Thusy € F.
The p*ogf of the theotern is now Lompietc

lemma 4.4. Let Ay and A, be (r, ky-principal sets of the pregeometry
LX) Far proper cyclic flats Fy, . F,,
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0 (_UlF,-)ﬁA!ll= (.UIF:') ”Azil
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(ii) (,f x.igiFi) nAl= ! (X\ _I;JIF,-) n A._,}.

4

Proof. Since F. ..., F, are proper cyclic flats, for each §# K {1, ..., 1},

(N g F) N Ay is a basis of 1, ¢ F; (j = 1,2) and hence

() n ] (25}
ik

| ieK
From the inclusion-exclusion principle we conclude (i) holds. From (i)
and the fact that | 4| = | 44| we conclude (ii) also holds.

.

Theorem 4.5. L2t A, A, be (r, k)-principal sets of the pregeometry
G(X). Let x € A\ A,. Then there exists v € Aj\ A such that both
(AN {xD U {y}and (AN {yD U {x} are (r, k)principal sets.

Proof. Since x v' A,, x € Fr(G) and thus F), is defined. First suppose
F, = X. Applying (ii) of Lemma 4.4 to the collection of all proper
cyclic flats of G(X), we conclude there exists y € A,\ 4; with y in no
proper cyclic flat of G(X). For this y, F, = X. By Theorem 4.3,

(A MxPD u{y}and (45\{y}) U {x} are both (r, k)-principal sets.

Now suppose F,, is a proper cyclic flat. Since F, N A4, is a basis of
F, and since x € F,, N (4,\ A,). there exists y € F, N (A,\ 4,). Since
¥ €A, y¢FriG)andF, is defined. Since F), € Fy. F, is a proper
cyclic flat. We conclude that

U FN(ANA)D)=(4,\NA )N F_.
yEANANNFy y (4, 1)=(4; 1 X

From (i) of Lemma 4.4 and the above relation we obtain

u F,n(A\NA5)| = U F. 0 (A,\Ay)
yEANAYOFy g Ay 2)! iyE(Az\An)»nfx d 2ol

=|(A2\A1)0Fx|
=[(ANAy) N Fl .

On the other k-and, since for each y under consideration F, € F,, we



126 R. A Briglii. G. W. Dinols / Truncations of principal ; eometries

have shan

U 1!:}‘m("!l\A;’)gf:‘xH(AI\AZ)"
¥ E(ANAYNF, il

We ¢onclude these last two seis are equal and thus that there exists a
Ve E(ANNAD N F withx €F, n (A)\ A,). For this yg. F, < F,, so
that Fy == F, yo- From Thcorem 4.3 we obtain that (4,\{x}) U { v} and
(A3 \{ Ve DU Lx} are (r, k)-principal sets and the theorem is proved.

As i Tpal theorem concerning general properties of (r, k)-principal
sets, we have the following.

Theorzm: 4.6, Let G(X) be a pregeometry which has at least one (r, k)-
princizal sei. iex P(G) be the ii:tersection of all (r, k)-principal sets and
let C(43) eoual X \CUF F a preper cyclic flat).

(iy If shere is an (1, k)-princinal set which contains C(G), then
PG C(G ) U F1G).

(1iy Ozherwise, P(G) = FK(G)

Proof. By definition, Fr(G) € F(G). From (ii) of Lemma 4.4 applied to
the colle ction of all proper cyclic fiats, we conclude that one (7, k)-prin-
cipal set contains C(G) if and ¢aly if all do. By using Thecrem 4.3, we
obtain thuat if there is an (r, &)-principal set not containing C(G), then
given an element v € C(G) there is an (r, k)-principal set not containing
v. Thus it suffices to show that if x € Fr(G) but F, is a proper cyclic
flat, thsen there is an (7, k)-principal set not containing x.

Coasider such an x. Let 4 be an (7, k)-principal containing x: sirce
£, isaproper cyclic flat, A N F, is a basis of F,. Since F, is a cyclic
flat, there 2xists y € F,\ (4 N F,.) such that the fundamental circuit C
of y with respect to the basis 4 N F,, of F,, contains x. [f 4 N F,_ were
not a stbsset of C, then J(C) would be a cyclic flat containing x properly
contained in F,. Thus C=(ANF,)U{y}. Since y € F,, F, € F,. Since
AN T, isabasis of F, and ANF, S AN F,, the fundamental circuit of
- owith respect to the basis AN F, y of F, must be C. We conclude tha:
AN i, = A0 7, indthas that 7, = F,. By Theorem 4.3, (A \{x}) v ()}
's an (r. kpprincipal set and this principal set does not contain x. This
arowes thee thesiem.

Theorem 4.5 has as a consequence that the collection of all (r,k)-prin-
cipal sets of a pregeometry G(X), if non-emipty, aie the hases of another
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pregeometry on X. The isthmuses of this pregeometry are determined
by Theorem 4.6.

The previous theorems contain information concerning properties of
(r. k)principal sets. We now describe an algorithm which produces an
(r, k)-principal set of the pregeometry G(X) =t rank k if one exists.

Algorithm for (r, k)-principal sets

(0) Set Ay equal to Fr(G). If some j-element subset of Ay (j < k) is
dependent, we stop and the construction fails. If not, we proceed to
step (1).

(1) Let Fbe acyclic flat of rank ¢. Then |F N A, 1<t If
IFN A, 1<t weselectt — |[FN A,_;| pointsin F in such a way that
these points along with the points in F N A4,_, are a basis of F. We do
this for each cyclic flat of rank 7. The set of points so selected along
with the points in 4,_; form a set A,. If some j-element subset of A,
(j < k) is dependent, we stop and the construction fails. Otherwise we
proceed to step (2 +1).

* 8.

(k) If YAy _{1 > r, the construction fails. If | A;_;| = r, the construc-
tion is complete and successful. If |4, ;| < r and X is not a cyclic flat,
the construction fails. If | A4, _;| < r, X is a cyclic flat and
| X\C(GY < r — | Ag _4l, the construction fails. Otherwise we select
r — | Ag_,l points from X \ C(G) so that these points along with the
points in A; _, form a set A, ; the constructicn is then complete and
successful.

Theorem 4.7. The pregecmetry G(X) cf rank k has an (r, k)-principal
set if and only if the previous algorithm can be successfully completed
in which case A, is an (r, k)-principat set.

Proof. We have two statements to prove.

(a) Ay is an (r, k)-principal set. Surely | Ay | = r and since Fr(G) C A,
subsets of A, span all proper cyclic flats and their intersections. Since
every k-element subset of A;_, is independent and since no point of
AR\ Ay is in a proper cyclic flat, every k-element subset of Ay is
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independent. Since r > &, A; contains a basis of X. Thus A is an
{r, k)-principal set.

() If G has an (r, k)-principal set, then the algorithm can be success-
fully completed. By definition, Fr(G) = A is a subset of every (r, k)-prin-
cipal set. We prove by induction that there is an {r, K )-principal set equal

_to 4. Suppose we have an (r, k)-principal set 4 which contains 4, _,
{t< k). Let x € 4,\ 4 and let F be the cyclic flat of rank ¢ which puts
x into A,. Then F, € F. If F, had runk less than ¢, then since F,,n A4, _;
is a basis of F, (F, 0 A,_) U {x]} would be a dependent subset of F,
which is contrary to Jie way in which the algorithm is carried out. Thus
the rank of F is t and F = F. Since then Fy N A, _, is not a basis of
Fy. thereisanelement y € F, N (AN A, ;). For this y, F, = F,,; other-
wise Fy is a flat of rank less than f spanned by AN F, = A, O F y and
(Ay y 7 Fy)u{y} is a dependent subset of 4 of cardinality at most
t < k. By Theorem 4.3, (A\{x}) U {y} is an (r, k)-principal set containing
A,_, Vix}. We may repeat this arzument until we obtain an (r, k)-prin-
ciral set containing 4,. This completes the induction and the theorem is
proved.

Theorem 4.8. Let the pregeometry 5(X) of rank k have an (r, k)-prin-
cipel set. Thea the collection of all ir, k)-principal sets are the bases of
a raitk r pregeometry G'(X). This pregeometry G'(X} is the direct sum
of the free geometry on the set Fr(G) and all the pregeometries Gp(F)
obtaited as follows:

Let F be ¢ cyvclic flat and let F equal the union of all the cyclic flats
of G(Xy which are properly contair-ed in F and Fr(:5). Then

G;:(F) = ?;)(F)—D(F‘)(F' \ P)

Proof. The only comment that nced be made, given the algorithm and
the previous theorems, is that if £ is a cyclic flat of rank ¢, then
PU(A, | F)isa basis of F if aad only if P is a subset of F\ F' with
piFy — p(F') elements.

We conclude this section with two remarks.

(1) If the algorithm can be suc-essfully completed through the
{k — 1)st step, then G has an (r, k)-orincipal set for some r > k. The
minimum such r is given by max‘| 1, _,|, k}. In particular G(X) is a
princinal pregeometry if and only if 14, _{I< k.
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(2) Brylawski [6] gives a method for determining a principal basis
whose verification depends on a certain inequality which he proves holds
for principal pregeometries. Our algorithm when restricted to the case
r =k, appears to be different.

5. Erections of pregeometries with principal sets

In the last section we have seen that if a pregeometry G(X) is the
k-truncation of a rank r principal pregeometry (a free simplicial prege-
ometry with spanning simplex), then G(X) has an (r, k)-principal set. In
this section we show that this property characterizes truncations of prin-
cipal pregeometries. We do this by erecting a pregeometry with an (+, k)-
principal set to a free simplicial geometry with spanning simplex of
rank r. The erected pregeometry that we construct is actually the free
erection of G(X) to rank r in the sense of Crapo [7].

Let G(X) be a pregeometry of rank k with closure operator J and rank
function p, and let A be an (r, k)-principal set of G(X) with r> k. We
construct a collection of subsets of X, called blocks, which we show are
the hyperplanes of a pregeometry G**D(X) with (G**D),(X) = G(X)
and with 4 an (r, k)-principal set of G**V(X). The blocks are of two
types:

(a)J, _ (P) fcr each k-element subset P of A, provided J;_,(P) is
cyclic. These blocks are called cyclic blocks.

(b) The maximal sets of the form H U {x}, where H is a hyperplane
of G(X) and x € X \ H, provided these sets are not contzined in any
block of (a). We note that if J,_, (P) is not cyclic, then Jy, | (F)=H v {x}
where H is a hyperplans and x ¢ H.

The blocks can he algorithmically constructed as follows.

(0) Construct J, _; (P) for each k-element subset P of A.
(1) Construct H U {x}, where H is a cyclic hyperplane of G(X) and
x ¢ H, and take only those not contained in sets of step (0).

(j) Construct H U {x}, where H is a hyperplane of G(J) with exactly
j — 1 isthmuses, and take only those not contained in sets of steps

@), ....(j - 1.
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Lemuna 5.1, This algorithm givey the Elocks as described in (a) and (b)
and ro block properly contains another.

Proof. We need only show that no block constructed in step (j) properly
contains a block constructed in any of the previous step. or another
block constructed in step ().

Suppose that J,_(P) is properly coatained in Hy U {x,, ..., x;} U {x}
where H, U {x,. ..., x;} is a hyperplane of G(X) with A its cyclic part.
Let Py be a (b 1)-element subset of F not containiny x. Then
Jy (Pyy=J(Py)is a hyperplane of G(X) contained in Hy U {x,. ..., x;}.
Hence J(Py) = Hyuixy, .., x;} and |, (P)I 2 1HU {(xqs .es 10 {xH
which ‘s a contradiction.

Now suppose that X v {y,. ..., y;} {»} is proper’y contained in
Hyulxy, .. xjpu{x} where Kiu{y,, ..yiland Hyu{xy, .., -"i} are
hyperplanes of G(X} with Ky and /, taeir respective cyclic parts, and
wherz i < j. Because i <</, p(H) < p(K ). Regarded us a set,

Hyu{xy. .. x;}u{x} has x as an isthmus. Hence K; & H;. Hence
p{K Y p(H ), <o that H; = K| and i =j. But then

(Kﬂ W {}19 ceey Vi} v {."}l = '[11 U {xl, seey x]:'u {x}'

and this is a contradiction.
Lemma 8.2. The blocks are {k — 1Y losed.

Proof. The blocks of the form (a) are (k — 1)-closed by definition. Con-
sider a block of the form A U {x} where H is a hyperplane of G(X) and
x @€ H. Write H =, 0 {x,, .., x;} where H; is the cy :lic part of H. If
i=0. {xy. ... x;} is regarded as empty. Let B={x,, ..., Xj, x} so that B
is the set of isthmuses of the block H U {x}.

Suppose H U {x} were not (k — 1)-closed. Then th:re must exist a
yeHuU{x}and acircuit Cwithye CCHu{x}u{y} and |CI < k.
Suppose there were 2 € B\AC. Then

C=C"{3}S{H,uB)\{z}= Hyu (B\{z}
which is a flat of G(X) of rank 2t most & — 1. Hence

vEH V(BN ZD S H U {x},

a contradiction. Thus B = . Since Hy, J(C) are proper cyclic flats,
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AN CHy G JIODI=IANH | +1AN J(O) - AN H 0 J(O)
=p(H) +1Cl = 1 — p(H, © J(C)).

But we claim that (C\{3})\ B = D is a basis of H; n J(C); it surely is an
independent set. Suppose there were w € (H; 0 J(C))\ D such that
{w}uU D is an independent set. Since 8 consists of isthmuses of H U {x},
{w}u D U Bisan inCependent subset of J(C), of cardinality equal to
ICl and this is a contradiction. Hence D is a basis of H; N J(C) and

p(H N JC) =iDi=iCI— 1 ~ |BI.
We calculate that
FAOH, IO =pH ) +1CH~1 - (IC! -1 - 1B))
=p(H,) +|B|=k.

But now ./, (4 n (H; W J(())) is a block of the type of Lemma 5.1
since A, J(C) are both cyclic. This block contains H U {x}U {3} and
this contradicts the fact that H U {x} is a block.

Lemma 5 3. For a k-elernent subset P of A with J, _y(P}a block of type
(a),
Jk . ](P) =K,

where K = U(F: F acyclic flat, p(F) < k -~ 1, Fn P spans F).

Proof. The outiine of the proof is as follows. It is clear that K & J;_,(P).
We show that we have equality by proving that K is (k -- 1)-closed, and
we do this by showing that K N H is a flat for every hyperplane H of
G(X).

(i) Let H be a proper cyclic flat of G(X). Letx€ HN K. Thenx € F,
for scme proper cyclic flat F with F n P spanning F. Thusx € H N F,
the intersection of two cyclic flats, so that x dependson (I N F)n A.
Hence (H N K)N A spans at least all points in H N K. Now let y depend
on H N K, so that y depends on (H N K) N A. Since H is a proper cyclic
flat, ANH|=pH) <Kk -~ 1. But (A\P)Nn K =, for otherwise
|F Al > p(F) for some flat F used in the definition of K. Thus
(H N K)n Aisasubset of P of cardinality at most & — 1. Since H is a
flat, y is surely in H. Since y depends on a proper subset of P, y € F for
some F used in defining K so that y€ K. Henceye Hn K, and Hn K
is a flat of G(X).
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(ii) Let H be a hyperplane with at least one isthmus, say H=H, U B,
where B is the non-emp!ty set of isthmuses of H. Suppose y ¢ F n K but
ydependson Hn K=({;n KU (B n K). By (i), Hy n K is a flat. Thus
there isa carcuit Cwith yv€e CE(Hn K)u{y} such that Cn (BN K)# Q.
But then CE€ Hu {3y} so that v & H and C € H. Now C is a circuit in H
containing at least one of the isthmuses in B and this is a contradiction.

Lerama 5.4. Each block contains a basis of G(X).

Proof. The blocks constructed in (a) contain a k-element subset of A
aud thus a basis of G(X). The blocks constructed in (b) are unions of a
hyperplane of G(X) with a point not in the hyperplane and hence con-
tain a basis 0o G(X).

Lemma 5.5. Every basis of G(X) 1s contained in exa-tly one block.

Proof. (1) That every basis is in some block follows easily from the de-
finition of blucks. For, if B is a basis, consider B\ {x} for some x € B.
Then J(B\{x}) is a hyperplane H not containing x and then H U {x} is
either a block or is contained in one. ”

{2y We show that every basis is contained in at most one block by
showing that two distinct blocks intersect in a set of rank at most & — 1.
Case (i). Let Ky =J(Py) and K, = J(P,) be two cyclic blocks where
F,. P, are distinct k-element subsets of A. Since K;Nn A =P; (i=1,2),

{Ky v Ky n AL < k — 1. Now consider x € Ky N K,. Sincex € K,

x € F; where F; is a proper cyclic flat spanned by F; N P,. Likewise
x € Fy where F, is a proper cy clic flat spanned by F, n P,. Hence

x € Fyn Fy where Fy 0 F, is a proper flat spanned by (Fy;n Fy) N 4
€ (Kyn Ky) N A. Thus every point in K; 1 K, is spanned by the set
(K;n K5y A Hence p(Kj N Ky)< k — L.

Case (ii). Let K,, K, be distinct blocks with K, = H U B, a block of
type (a) having B as its non-empty set of isthrauses. Suppose the rank of
Kyt Ky =(K;n Hyu (Kyn B) were equal to k. Then a k-element in-
dependent subset of K| 0 K, equals the union of B with a basis of
Hn K. Since K, has rank &, u basis of . N £} must be a basis of .
But # N Ky is a ilat, since H is a proper flat cf G(X) and K is a block.
Hence Hn Ky = H so that H< K and K, € X;. This is a contradiction.

We are now prepared to prove the main results of this section.
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Theorem 5.6. L et G(X) be a pregeometry of rank k with an (r, k)-prin-
cipal set A. Then the blocks of (a) and (b) are precisely the set of hyper-
planes of a rank k + 1 pregeometry G ®*V(X) where (G¥*D) 4, (X) = G(X)
and where A is an (r,k + 1) principal set of G**V(X).

Proof. That there exists a rank k + 1 pregeometry G**D(X) for which
the blocks of (a) and (b) are the hyperplanes and where the k-truncation
of G**Y(X) is G(X) is an immediate consequence of the theorem of
Crapo and Lemmas 5.2, 5.4 and 5.5. We have left to show that 4 is an
(r, k + 1)-principal set of G®*V(X). For this we need to show that A
spans all cyclic flats of G**D(X) and their intersections, and that every
(k + 1)-element subset of A is independent in G**D(X).

Every cyclic flat F of G**D(X) of rank less than k& is a cyclic flat of
G(X) and hence is spanned by 4 N F. Now consider a cyclic hyperplane
H of G**D(X). Then H =J,_;(P), a block of type (a), where P is a k-cle-
ment subset of A. By Lemma 5.3, such hyperplanes are unicns of proper
cyclic flats of G(X) and the result follows. But likewise the intersection
of cyclic flats of G¥*D(X) are unions of intersections of proper cyclic
flats of G(X), so that for any such intersection D, D N A spans D.

Now consider a (k + 1)-element subset A’ of A. If A" were not an inde-
pendent set in G**D(X), then 4’ spans a hyperplane H of G**D(X).
Write H = H, U [ where H, is the cyclic par: of H. But then

Hyn Al < 1H, N Al = p(H})
and
BN A"l < |Bl,

so that |[H N A’} € p(H,) + |B| = k. But this is a contradiction since
A' € H. This completes the proof of the theorem.

Theorem 5.7. Let G(X) be a pregeometry of rank k. Then G(X) is the
k-truncation of a principal pregeometry of rank r (Z k) if and only if
G(X) has an (r, k)-principal set.

Proof. We have already observed that the k-truncation of a rank 7 prin-
cipal pregeometry has an (r, k)-principal set.

Conversely, if G(X) has an (r, k)-principal set A, then successive ap-
plication of Theorem 5.6 produces a rank r pregeoinetry G *(X) whose

k-truncation iz C(X) for which A is an (r, r)-principai sci, thatis, 4 is a
principal basis.
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Before geiting to the next theorems concerning the fiee erection of a
pregecmetry, we introduce some terminology. Let ('(X) be a rank k
sregeametry on X with an (r, k)-principal set 4. Set G(X) = G**D(X),
a pragrometry for which 4 is an (r, k + 1)-principal set, and define
R xy= G""Z’(X ), a pregeometry for which 4 is an (r, k + 2)-prin-
upa! set. In general, if G;_(X) = =G" (X)), apregeometry for which A is
an (~, {)-principal set, is defined for k + 1</ < 7, then we define
G xy = G (X), a pregeometry for which 4 isan (7. 7+ 1)-principal
set. Note that G'”(XVis the pregeometry G*(X)of the proof of
Theorem 5.7,

Lemma 5.8. Given k + | < I < r and the pregeomerry GO(X), if y is an
element of a proper flat F of GX) with v so ¢ an isthmus of F, then
there exists a proper cyclic flat F' of G{X}withy € F' CF.

Procf. f F is a proper flat of G(X), there isnothing to prove. Thus we
may assume F is a rank ¢ flat of GN(X) with k +1 < t < 1. We can as-
sum- & is a cyclic flat of G'P(X) since the removal of the isthnzuses of
Fleavzs a cyclic flat. By Lemma 5.3, the cyclic hy perplanes of G¥*P(X)
are unions of proper cyclic flats of G(X)ard the cyclic hyperplanes of
G X are urions of cyclic hyperplanes of G/ D(X). Hence, by induc-
tion zli cyclic flats of G¢P(X) are unions of proper cyclic flats of G(X).

Lemma 5.9. Let G(X) be a pregeometry ofrank k with an (r, k)principal
set A Let k 4+ | < 1< rand let GO(X)beany pregeometry on X of rank
I wiin (GO 3{,5 (X) = G(X). The following are triee:

(iVLet Gt <!~ Vandlet Fbea flat in G} which is spanned by
2 t-eiggtem subset Pof A. Then if F® is the floe in G"(X) spanned by P,
FSFY

(i Forxe FO xe FI\Fifand only ifx v D is a circuit in G(X)
for cvery k-element subset D of P

Ptm;f . The result is clear if r < & — 1, 50 that we may assume that
I~ i 21t2k Let Pbearelement stibset of 4. L2t 3 € F, the flat in
f“““&’) spanned by P, with y € P. Since y ¢ P, yisnot an istiimus of F.
By Lemma 5.8, there is a proper cyciic fla: F' of G(X) with
y € r" < = F: the flat F' is epanned in G(X) vy subset of P. But then
F' S £Y. the fMat in G%(X3 spanred By P, since (6%) (X) = G(X). Hence
ve FC Since PCFO, FC FO,

Now suppose x € FO butx @ F(thus x ¢ P). Sincex ¢ F, {x}uD
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cannot be a circuit of G(X) for any .» € P with [D| < k. Since each
D € P with [DI = k is a basis of G(X). x U D is a circuit for all such D.
The converse is immediate from Lemma 5.8.

The next theorem contains as a special case the fact that the pregeom-
etry G®*D(X) is the free erection of G(X) to rank k + 1.

Theorem 5.10. Let G(X) be a pregeometry of rank k with an (r, k)-
principal set A.Let k <1< r. Let GYX) be any pregeometry of rank |
whose k-truncation is G(X). Then given any flat F of GW{X) of rank ¢t
(0 < 1 < 1), there exists a flat FO of G%(X) of rank t with F € FO. Thus
GUNX) is the freest pregeometry of rank | which truncates to G(X).

Proof. By Lemma 5.9, any flat F of G)(X) which is spanned by a sub-
set of A4 satisfies the conclusion of the theorem. Also any proper flat F
of G(X} is a flat of G%(X), and the conclusion follows trivially. Since
the flats of G)(X) to which Lemma 5.9 applies includes all cyclic flats
of G)(X), we need only consider flats F of GY)(X) of rank ¢

(k < t < 1) which have at least one isthmus. Consider such a flat /" and
write F = F; U B where B is the non-empty free part of F and the rank
of Fy in G¥(X) is t; < t. Then, by Lemma 5.9, F; € F) where F{ isa
flat of GO(X) wk nse rank does not exceed ¢,. If p® denotes the rank
function of GO(X), we have that F € F? U B so that

pUF) < p(FP U B) < pO(FD) +1BI
<t +IBi=t.

Thus F spans in G%(X) a flat of rank at most ¢, and the theorem is proved.

e
g
h
f d
ak
a <

Fig. 1.
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Fig. 2.

(r, kyprincipal sets of G(X:. Then the rank k + 1 geometries GY(X),
G X) that are constructec from the principal sets Ay, A, respectively
are identical

Corollary 5.11. Let G(X) Le a pregecmetry of rank k with Ay, A, two

We conclude this sectior: with some examples that illustrate the theory
developed.

Example 5.12. Let G(X) be the affine geometry of rank 3 depicted in
Fig. §.

in Fig. 1 only the 3 point lines are illustrated. There are no cyclic
flats of ranks 0 or 1. The cvciic flats of rank 2 are the sets of points of
the 3 point lines: Ly ={a, b.c}, Ly={c,d, e}, Ly={a, f. €},L, ={e. g h}.
We use the aigorithm of Section 4 to determine any principal sets. The
set Ay = {a, ¢, e}. Since there are no cyclic flats of rank 1, 45 =A4,. To
construct A, we need to span cyclic flats of rank 2. The lines Ly, L,. L3
are already spanned by subsets of 4;. Thus we need only choose cne
other point from L4 other than e, say g. Thus 4, ={a, b, e,g}. Then A4,
is a (4, 3)-principal set and & has nc (3, 3)-principal set. The set
As= A, 00k} is a (S, 3)principal set. Excep: for replacing g by &

(Fg = Fy) these are the only principal sets of G(X).

Using the (4, 3)-principal set 45, we can construct a principal gec-
metry GY(X; of rank 4 whose 3-truncation 5'¥P(X) is depicted in Fig. 2
as an affine geometry in 3-spzce. The point k is in the interior of the
simplex spanred by {a. ¢, e, g}.
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Fig. 3.

There are other erections of G(X) in which A4, is a (4, 4)-principal
set or principal basis, but these are less free. These are accomplished by
placing the point k& in the interior of one of the 3-faces of the simplex
so that k is on no three point lines. In Fig. 3 this is illustrated for one of
the 3-faces.

Example 5.13. The rank 4 geometry illustrated in Fig. 4 is an 2xample
of a geometry which has no (r, 4)-principal set for any r > 4.

In the algorithm for constructing principal sets, A; = {a, b, ¢ d. e, f}
and the points a, b, ¢, d form a dependent set, so that the algorithm
fails. Thus no free simplicial geometry of any rank can truncate to this
geometry.
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