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ON IONOSPHERIC AERODYNAMICS* 

V. C. LIU 

The University of Michigan, Ann Arbor 

Summary--This paper presents theoretical methods to determine the gas dynamic and the electrostatic 
effects due to the interaction caused by a rapidly moving body in the ionosphere. The principles of the 
methods are derived from the kinetic theory of collision-free plasma. It is shown that the collective 
behavior of the collision-free plasma makes it possible to use the fluid approach to treat the problems 
of ionospheric aerodynamics. Various solutions to the system of fluid and field equations that have 
direct bearing on the ionospheric aerodynamics are presented and discussed. Physical significances of 
the mathematical results are stressed. Some outstanding unsolved problems in ionospheric 
aerodynamics are elaborated and discussed. 

LIST OF SYMBOLS AND UNITS (EM) 

All symbols are defined in the text. Only those that are 
repeatedly used are listed here. In the description of 
electromagnetic fields Gaussian cgs units are adopted 
throughout. These symbols are compiled in a separate 
group with their corresponding quantities in rationalized 
inks units with conversion factors listed in tandem. 

GROUP A (electromagnetic) 

Gaussian Quantity 
B magnetic induction 
H magnetic field 
c speed of light 
E electric field 
4, electric potential 
e charge on proton 
p. charge density 
J current density 

dielectric constant 
(Co, in free space) 

p. permeability 
(t~o, in free space) 

D displacement 

~r electrical conductivity 
tap plasma frequency 

lq~ Larmor frequency for particle 
of type t~ 

ho Debye shielding length 
e, charge on particle of type a 

GROUP B (mechanical) 
x position 
v particle velocity 
va thermal speed of particles 

of type a 
/o(X, v, t) distribution function of 

particles of type a 
T temperature 
na number density of particles 

of type a 
ma mass of particle of type a 
l mean free path 
v collision frequency 
K Boltzmann constant 
h Planck constant 
p scalar pressure 

pressure tensor 
V flow velocity 
q thermal flux 
p mass density 

mks 
(47r/p.o)'r-B 
(4 ~-p.o)'nH 
(~ot~o) -''~ 
(4rr¢o)'r~E 
(4,n.eo)'1:~ 
e/(47reo) '/~ 
p,/(4~'eo) ''2 
J/(4~eo) 'n 

~//~o 

(4~r/~o)'2D 

a'l(4~rEo) 

l .  I N T R O D U C T I O N  

The advent  of space flight which entails the 
interaction be tween  a rapidly moving,  electrically 
charged body,  e.g. a spacecraft ,  and a tenuous 
ionized gas, e.g. the terrestrial ionosphere  or  the 
interplanetary gas, brings the aerodynamicis ts  to 
bear  with a new aspect  of ae rodynamics - - t he  
ionospheric  aerodynamics . t  This interdisciplinary 
science which combines  gas dynamics with elec- 
t romagnetic  fields poses some distinctive traits of 
its own even though it shares the basic principles of 
plasma physics with studies on electrical discharges 
and nuclear fusion. The research on electrical dis- 
charges in gases dated back several decades to the 
works  of J. J. Thomson  and then I. Langmuir  and 
many other prominent  physicists.  It was Langmuir  
who coined the word "p lasma"  to mean that part of 
a gaseous discharge which contains almost  equal 
charge densities of free electrons and posi t ive ions. 
Intensive studies on plasma began with the realiza- 
tion of possible controlled release of nuclear  fusion 
energy in the earlier 1950s J" Important  contribu- 
tions to the basic understanding of plasma 
phenomena  have also been made by as t ronomers  
and geophysicis ts  in their studies of the solar 
activities <2~ and of the a tmospher ic  electricity.  °> A 
new incentive to the study of space plasma was 
added in the late 1950s when the solar wind in the 
interplanetary space was d i scoveredJ  4~ 

The speed of a spacecraft ,  of course,  varies but 
its typical value is mesothermal  which means it lies 
intermediate  be tween  the thermal speeds of  am- 
bient ions and electrons;  specifically, it satisfies the 
fol lowing condit ions:  (KTj/m~) 'rz "~. V~ ~ (KT, Im,) '12. 
The typical values of these thermal speeds in the 
upper  ionosphere  of  the earth are 1 and 100 km/sec  
respect ive ly  while a representat ive  speed of an 
artificial earth satellite is of the order  of  10 km/sec.  
The fact  that the motion is hyper thermal  with 
respect  to the ambient  ions and almost  stationary to 
the swiftly moving thermal e lectrons tends to cause 
separat ion in the flow field. This,  however ,  is re- 

*Prepared through the support of NASA Grant t Also known as electrogasdynamics or simply ab- 
NGR23-005-094. breviated as EGD. 
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strained by the natural tendency of the plasma to 
preserve electrical neutrality, i.e. to have a minimal if 
not zero charge separation. These contrasting influ- 
ences on a mesothermally moving plasma force it to 
develop local charge separation that confines to a 
distance of the order of a Debye shielding length 
(AD) in the absence of an external magnetic field) ~ 

It is of interest to investigate further the nature of 
the disturbances of particles and felds caused by a 
charged body in rapid motion. It is commonly 
known by an aerodynamicist that there is fluid 
disturbance in the vicinity of a moving body. If the 
disturbed fluid is of the charged species, electric 
current can be induced whenever a differential 
motion of the oppositely charged particles prevails: 
in other words, there will be induced field of charge 
separation present. An electric field will influence 
the motions, hence the distributions of the charged 
particles which, in turn, further affect the field. This 
inherent coupling effect of particles and field almost 
invariably plays a primary role in the problems of 
ionospheric aerodynamics. We shall see that this 
particle-field interaction is governed by a system of 
coupled nonlinear equations. It is in the unravelling 
of this nonlinear coupling effect that various 
schemes of mathematical approximations have 
been introduced in the contemporary studies of 
ionospheric aerodynamics. Unfortunately, some of 
those approximations are not justifiable for the 
problems at hand and the consequences are particu- 
larly serious for those cases where the nonlinear 
coupling of particle and field is inherent with the 
problem, such as the near wakeJ 5~ A contemporary 
belief that a bad approximation can be compen- 
sated by a numerical iteration of a nonlinear system 
is not necessarily valid because the iteration pro- 
cess in question may not always converge. Thus a 
self-consistent solution of particle and field dis- 
tributions may not be obtained as expectedJ s~ 

Another aspect of the ionospheric aerodynamics 
that could be of eminent interest to the aerodynami- 
cists concerns with the method of formulation of 
the problems, to wit, the particle versus the fluid 
view of the problems. It is to be reminded that the 
flow medium, namely the ionosphere, is very tenu- 
ous; the mean free paths of the ambient particles, 
based on some binary collision cross sections, are 
much larger than the size of the body in motion. 
Had the particles of flow been neutral species, the 
particle approach, i.e. to use the Boltzmann equa- 
tion of kinetics, will be naturally adoptedJ 6~ With 
charged particles, the long-range nature of the 
inter-particle forces leads to their collective be- 
havior in a collision-free plasma hence makes it 
much more amenable to the fluid approach* which 
is comparatively simpler. It must, however, be 
noted that with the use of a fluid approach, those 
plasma phenomena which are associated with the 

* Also known as the continuum approach. 

microscopic velocity distribution of the particles 
will be lost through the preliminary averaging pro- 
cess over the velocity space from which the mac- 
roscopic equations of flow and field have been 
formulated. A case in point here is the Landau 
damping of collison-free plasma oscillations which 
disappears when the fluid approach is used. The 
justification for the use of a fluid approach can be 
strengthened by citing the successful continuum 
theory of bow shock resulting from the impinging 
of solar wind on the terrestrial magnetosphere. On 
the other hand, the elucidation of the collision-free 
shock transition process which is obviously a prob- 
lem of kinetics, is beyond the reach of the fluid 
approach. 

It is the intent of the present review to discuss 
both methods of approach particularly the connec- 
tion between them. Several applications of these 
methods to the ionospheric problems of interest 
will be presented. The topic of plasma diagnostic 
probes which is a very important subject of the field 
is excluded here because there have been several 
recent reviews on plasma probes. '~'7' 

The presentation includes primarily theoretical 
studies of the problems of interest. Efforts are 
made to elucidate the physical essence of the 
phenomena using the simplest mathematical tools 
we are acquainted with. The description of experi- 
mental results is kept to a minimumt partly because 
of the scarcity of laboratory experiments that really 
meet the requirement of a collision-free plasma. 
The in situ observations from space probes are 
indeed plentiful. Unfortunately, these measure- 
ments of aerodynamically related quantities for 
purposes other than the interest of aerodynamics 
are inadequate to be used for elucidating the 
physics of fluids in question. In fact, the exposition 
of the need to appreciate the aerodynamic signifi- 
cances in the space research and teaching is the 
primary motivation of the present paper. 

2. NATURE OF THE EARTH'S IONOSPHERE 

The atmosphere of a planet is characterized by 
several parameters: the temperature,  the density, 
the chemical composition and the degree of ioniza- 
tion. These properties vary with increasing altitude 
above the planetary surface. The density of an 
atmosphere decreases continuously with increasing 
altitude and is related to the temperature of the 
atmosphere by the hydrostatic equation and the 
equation of state of the atmospheric gas in ques- 
tion. It is well known from statistical mechanics of 
gases that a mixture of gases with different molecu- 
lar masses, such as the atmosphere when left undis- 
turbed to itself for a sufficient length of time, would 
diffuse through each other and attain an isothermal 

t Additional references on the contemporary studies of 
plasma, both theoretical and experimental, are available in 
ref. 5. 
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equilibrium in which each constituent gas is distri- 
buted exponentially according to Dalton's law, 
whereby the lighter gases will predominate in the 
higher altitude and the heavier ones in the lowerfl  ~ 
The atmosphere near the ground level is constantly 
disturbed by the atmospheric circulation and tur- 
bulent mixing. This keeps the atmosphere 
homogeneous in composition until about 105 km 
above the Earth, according to the sounding rocket 
observations, where the diffusive separation of the 
constituent gases commences.  It has been found 
that at this altitude, called the turbopause, where 
the molecular diffusion begins to dominate over the 
turbulent diffusion, the atmosphere starts to distri- 
bute according to Dalton's law. At an altitude of 
about 200 km atomic oxygen, produced by photo- 
chemical dissociation of the molecular oxygen, 
takes over from the molecular nitrogen as the main 
constituent, only to be superseded by helium and 
then hydrogen. The Earth indeed has an outer 
hydrogen atmosphere, but not below 1000km or 
SO. ~9~ 

From experiments on radio transmission, it was 
found that ionized layers, conducting electric cur- 
rents and reflecting radio waves, must exist in the 
upper atmosphere of the Earth. These layers are 
called the ionosphere which contains free electrons 
and ions. Accurate soundings of these layers has 
been made possible by means of radio-echo techni- 
ques. In fact, the structure of the Earth 's  lower 
ionosphere had been indirectly measured long before 
the space age. None the less, extensive direct 
measurements of the ionospheric parameters,  the 
density and temperature of electrons and ions, from 
the use of sounding rockets and spacecrafts con- 
solidate our knowledge of the earth 's  ionospherefl  ~ 

The ionospheric layers are designated by letters 
D, E and F, subdivided when necessary. The 
boundary between the D and E regions is generally 
taken to be at 90 km altitude and that between the E 
and F regions at 150km. The upper ionosphere 
merges without clear-cut distinction into the mag- 
netosphere, a tenuous region extending out to dis- 
tances of several earth radii. The magnetosphere 
contains ionized gases and energetic charged parti- 
cles trapped in the earth 's  magnetic field: besides 
the MeV particles of the "Van Allen" radiation 
belts, there are the lower energetic particles that 
cause auroral displays when they are dumped into 
the upper atmosphere near the poles. "°~ 

It has long been established that the solar ioniz- 
ing radiation is primarily responsible for the pro- 
duction of the ionosphere. Measurements by 
rocket-borne detectors have convincingly shown 
that the ionizing UV- and X-radiations from the sun 
are sufficiently strong and are absorbed at the 
appropriate altitudes to produce the D, E and F, 
layers. At times, and particularly in high latitudes, 
the energetic particles bombard the atmosphere 
from above and produce ionization in the ionos- 
phere. Various processes exist to annihilate the 

ionization by recombination of positively and nega- 
tively charged species in the ionosphere. The elec- 
tron concentrations in the ionospheric layers are 
essentially controlled by the balance in production 
and loss of ionization. As an example, it is known 
that F~ and F2 layers are produced by the same 
photon radiation; the electron density in the F2 
layer is, however, greater even though the radiation 
is relatively weakly absorbed. The compensating 
factor is that the recombination of electrons and 
ions in the F2 layer is much slower. This steady 
state theory holds except at night. In the lower 
ionosphere the balance between production and 
loss is complicated, particularly below the tur- 
bopause where the small-scale eddies and wave 
motions keep the atmosphere well mixed. On the 
other hand, at altitudes higher than 250 km, trans- 
port processes including effects of wind and electric 
field become important. At much higher altitude, the 
Earth's magnetic field plays a conspicuous role in 
determining the structure of the ionosphere. Elec- 
trons and protons enter the atmosphere from above 
spiralling down magnetic lines of force and give rise 
to auroral emissions and ionization. The same lines 
of force extend outwards to form part of the 
boundary of the magnetosphere, m'~-'' 

Typical electron density vs. altitude at mid- 
latitude is shown in Fig. 1 for the purpose of 
illustration. It is based on the midlatitude ionos- 
pheric measurements "°~ and intended to demon- 
strate that the D-layer almost disappears at night, 
and the Ft and F,. layers come close to merging. 
Curve "I"  corresponds to minimum of sunspot 
cycles while "II" ,  maximum of sunspot cycles. 
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FIG. 1. Ionospheric profile of the Earth at mid-latitude. 
T--minimum of sunspot cycle. 
'IF--maximum of sunspot cycle. 

3. K I N E T I C  P R O P E R T I E S  O F  I O N I Z E D  GASES 

Although an ionized gas is a gaseous mixture, it 
behaves kinetically very different from that of the 
neutral molecular species. Many of these properties 
peculiar to the ionized gases have important bear- 
ings on the understanding of ionospheric 
aerodynamics. We shall discuss them in the 
following. 
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3.1. Electrical Neutrality and Shielding Effect 

An ionized gas may be composed of several 
components: positively and negatively charged 
ions, free electrons and also neutral atoms and 
molecules. Each of these component species can be 
characterized by its concentration and temperature. 
In the simplest case all the ions are atomic species 
with single positive charges, and neutral molecules 
are fully dissociated into neutral atoms. The ionized 
gas thus contains only three components: free 
electrons, ions and neutral atoms; it contains no 
surplus charge of either kind, that is to say, the total 
amount of positive charge contributed by the ions 
will be closely equal to the total amount of negative 
charges contributed by the electrons, hence the 
state of the gas is electrically neutral. To preserve 
this electrical neutrality-status has been a unique 
characteristic of an ionized gas. It is of interest to 
see how the charged particles react when a local 
deviation from charge neutrality is forced upon the 
gas. 

For simplicity, consider a fully ionized gas con- 
taining free electrons and singly charged ions only. 
Let an isolated positive point charge (Ze) be intro- 
duced to the gas. In equilibrium, the spatial dis- 
tribution of the electrons is given by the Boltzmann 
distribution:* n, = n~ exp (ecb/KT) where ~b(x) is 
the field potential due to charge imbalance. Ignoring 
ion motiont and letting the site of the charge 
particle (Ze) be the origin of a spherical coordinate, 
the Poisson equation becomes 

1 0 ~ r  (r2~)  :-4~[en~-en~exp ( ~ ) -  ZeS'x'J 
4 zrn~e 2 

= KT +47reZS(x) (3.1) 

at distances such that ec~(r)/KT ,~ 1 where 8(x) is 
the Dirc delta function. The solution to eqn. (3.1) is 

~b(r) = ---Zeexp ( r  - ~ )  (3.2) 

where ;to = (KT/4~rn~e2) m is known as the Debye 
shielding length (or simply Debye length), being 
first derived by Debye in his electrolyte theory. 

Notice that the potential (3.2) is a shielded 
Coulomb potential field where ;to is the effective 
cut-off distance; it gives the magnitude of the 
sheath thickness within which charge neutrality 
may not be valid. The above analysis shows that the 
response of the charged particles to the extraneous 
charge (Ze) is to create a potential field to shield the 
influence of its charge imbalance. The physical 
interpretation of the shielding effect is that the elec- 
tric field tends to polarize the gas while the thermal 
motion of the charged particles tends to weaken the 
polarization. As a consequence, shielding of the 

* Also called the Maxwell-Boltzmann distribution. 
t If ion distribution is also taken to be Boltzmann, the 

Debye shielding length becomes 1/~/2 times smaller. 

field occurs at some finite-distance (hD) which in- 
creases with temperature (T) and decreases as the 
number density (n~) increases. If we imagine that 
all the positively charged ions in the gas behave as 
the above-mentioned point charge, each of them 
must have a shielded field of its own. A quiescent 
ionized gas in equilibrium thus has a lumpy (grainy) 
structure where hD defines the size of the grained- 
ness. The above disclosure has an important bear- 
ing on the dynamics of ionized gases: the fact that 
the potential between charged particles is the 
shielded Coulomb rather than Coulomb field means 
that the effective range for the binary collisions is 
significantly shorter, hence the Boltzmann collision 
integral for the charged particles is no longer di- 
vergent as with Coulomb interactions. "3~ 

The parameter ND =--n~A~ is a measure of the 
maximum number of charges that bunch together. 
It is basic to the concept of plasma that the 
concentration of the charged particles in an ionized 
gas is sufficiently large for their motions to be 
dominated by their cooperative electromagnetic 
interactions. To fulfill the above-mentioned defini- 
tion of a plasma we may specify the conditions as 
follows: 

n~h ~ ~> 1, AD "~ L (3.3) 

where L is a length characterizing the dimensions 
of the plasma. These conditions are also sup- 
plemented by that of charge neutrality in the defini- 
tion of a plasma herein discussed. 

3.2. Multi-mode Oscillations and Waves 

With the induced electrostatic and magnetic 
fields acting as restoring forces, various types of 
oscillations and waves may be initiated by distur- 
bances in a plasma. Furthermore,  on account of the 
particle bunching discussed in Section 3.1, the 
induced fields can provide a means of coupling 
between the particles so that they can participate 
in, and influence, coherent wave propagation even 
in a collision-free plasma. The nature of the restor- 
ing forces depends on the types of disturbances, 
e.g. the effect of charge separations is restored by 
electrostatic forces and the displacement of plasma 
as a whole can be restored by the "elastici ty" of the 
magnetic lines of force which are displaced with 
the conducting plasma. In addition, a plasma, just 
like any other gas, exhibits elasticity towards pres- 
sure changes. Owing to the presence of these 
possible restoring actions, the initial disturbance of 
whatever cause may lead to the appearance of 
various oscillations and waves. We shall draw 
attention here only to some of the basic modes of 
plasma oscillations. 

It is convenient to treat the response of the 
plasma to an electromagnetic field by the use of a 
dielectric tensor (e). In so doing, we can separate 
the dynamical part of the problem from the part 
concerned with the electromagnetic field equations. 
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The Maxwell equations for a disturbed elec- 
tromagnetic field can be written as follows: 

VxB=lO_EE+47r J_  1 0D 
c 8t c Ot '  (3.4) 

1 0 B  
V x E . . . .  (3.5) 

c or" 

The oscillatory motions of the plasma particles 
depend on the fields to which the particles are 
subjected; the only fields that need considera- 
tion in eqns. (3.4) and (3.5) are the small perturba- 
tions. Any static, external fields present will 
only affect the dielectric properties of the plasma 
through the equation of motion. To complete the 
set of the above equations we must have Ohm's law 
to connect the current with the electric field: 

J = o" • E (3 .6)  

where ~ is the conductivity tensor, or equivalently 
we may introduce the dielectric tensor to connect 
the displacement vector (D) with the electric field: 

D = ~ • E.  (3.7) 

If the system in question is homogeneous spa- 
tially and all perturbed quantities have time depen- 
dence proportional to exp (- i tot) ,  we may intro- 
duce Fourier transforms of variables in the above 
equations and considering variation of the form 
exp [i(k.  x - to t ) ] ,  we may replace the differential 
operators (O/Ot) by - iw and V by - ik to obtain the 
Fourier transformed system of the electromagnetic 
field equations which, after the elimination of 
variable B, becomes 

2 
k X ( k x E ) + ~ - r E  " E = 0 .  (3.8) 

C 

Equation (3.8) describes the basic behavior of 
plane waves in a plasma in the (k, to)-space. 

3.2.1. Collision-.free p l a s m a  h igh- f requency  osci l la-  
t ions in a weak  magne t i c  field 

If the range of oscillation frequencies is suffi- 
ciently high, we can discuss the electrostatic and 
electromagnetic waves with the assumption that the 
ions play no essential role other than to provide a 
background which assures the existence of an 
equilibrium, quasi-neutral state. We also ignore the 
particle collisions and external magnetic field in the 
present cold plasma approximation. 

The electric current is 

lie 
J = - - - v  (3.9) 

C 

where the electron velocity can be determined from 
its equation of motion in a homogeneous medium 

av 
m~-~- = - eE. (3.10) 

Equations (3.9) and (3.10), after Fourier trans- 
form, become 

ine" 
J(oj) = E(to), (3.11) 

me c  to 

ie 
v( to )  = - E(to). (3.12) 

meto 

From eqn. (3.6), after Fourier transform and 
substitutions of eqns. (3.11) and (3.12), we obtain 
the conductivity tensor in (k, to)-space. 

- ine 2 - 
t r=  I (3.13) 

meCto 

where I is the unit dyad. From (3.7), after Fourier 
transform and some algebraic manipulations, we 
obtain 

where 

t =  1 -  I (3 .14)  

denotes the electron plasma frequency. 
The wave equation (3.8), after substitution of 

(3.14), becomes 

k x (k x E) +-C-r 1 -  E = 0  (3.16) 

which can be rewritten after the field E is separated 
into longitudinal and transverse components, with 
respect to the wave vector k, i.e. E = E, + E~ in the 
following form: 

k X [ k x ( E i i + E i ) ] + ~ .  1 -  ( E L I + E ~ ) = 0 .  

(3.17) 

Notice that k × Ell = 0 and k x E = 0 by definition of 

EIj and E~ respectively, so that 

(to2_ to2p)E,+(to2 - to'p- c'-k2)E~ = 0. (3.18) 

In the case of the longitudinal mode of oscilla- 
tion, we have E = 0 and Eu ~ 0 and the dispersion 
relation leads to 

to: = to2 (3.19) 

which denotes the plasma electron oscillations; on 
the other hand, when the oscillation mode is trans- 
verse, we have E~ = 0 and El # O. Thus the disper- 
sion relation becomes 

toz = to~ + cZk 2 (3.20) 

which refers to the electromagnetic waves. 
In the electrostatic mode of wave propagation in 

a plasma, negligible magnetic field is generated 
because Ell is parallel to the wave vector implying 
that the curl of the electric field vanishes. It is 
further noted that EjL is nonzero only if to" = to'-p for 
any k; hence all waves in this mode have the same 
frequency. Another noteworthy aspect of the pres- 
ent electrostatic waves is the consequence of the 
cold plasma approximation herein used. It is valid if 
the phase velocity of the waves to /lkl "> o,, the 
electron thermal velocity. If an electron moves 
with a velocity comparable to the phase velocity, it 
sees a d.c. field and hence can resonate with the 

= (4wne2~ m 
top , ~ - ,  (3.15) 
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wave, either gaining or losing energy, even for a 
weak field. Consequently, electron thermal effects 
modify the wave dispersion giving rise to a change 
of phase velocity and to a damping known as 
Landau damping in a collision-free plasma, m~ 

The inclusion of particle collision effect in the 
wave analysis will show that collisions tend to 
damp out the plasma electron oscillations in the 
time of the order 2Iv where v is the collision 
frequency. The electromagnetic waves are less 
sensitive to the collision effect. The reason is that 
its wave energy is carried partly by the plasma 
particles and partly by free space. At high frequen- 
cies, it is carried mostly by the space and thus 
particle collisions are unimportant. 

The effect of an external magnetic field on the 
electrostatic and the electromagnetic waves is very 
complicated. Interested readers should consult spe- 
cial treatise. "4~ 

3.2.2. Low-frequency plasma oscillations 

When oscillations of low frequencies are excited 
in a plasma, both ions and electrons will take part in 
action. If the frequency of oscillation is sufficiently 
low, the thermal motions of the electrons are able to 
set themselves in equilibrium in the electric field 
created by the motion of the ions. A similar proce- 
dure as in the high-frequency case discussed earlier 
can be set up with, however, much heavier algebra 
to determine the dispersion relation for the low- 
frequency plasma waves. "~ We shall not consider 
in detail the mechanism of ion oscillations except to 
note that their propagation through a plasma is 
analogous to the propagation of acoustic waves 
through a gas of neutral particles. If there is thermal 
equilibrium between the electrons and ions in the 
plasma, i.e. if T, = T~, the ion acoustic wave propa- 
gates with a velocity of the order of thermal 
velocity of the ions. In a bi-thermal plasma where 
Te-> T~, the velocity of propagation of the ion 
acoustic wave is found to be of the order of 
(KT,/m~)~2; in other words, the ion wave travels 
with the velocity which the ions would have if their 
temperature were equal to the electron tempera- 
ture. It has been shown in theoretical analysis that 
ion acoustic waves can propagate freely in a plasma 
which has ions much colder than electrons, and are 
rapidly attenuated in an isothermal plasma. So far, 
ourdiscussion on the plasma low-frequency oscilla- 
tions have been limited to the longitudinal modes. 

Among the transverse modes of plasma oscilla- 
tions that have frequency much lower than the 
Larmor frequencies of the ions the Alfven wave 
which is an electromagnetic wave propagating 
along the magnetic lines of force in a plasma is of 
special interest in the ionosphere studies. In the 
idealized, dissipationless plasma, the nature of AlL 
yen waves can be elucidated with the concept of 
frozen fields which means the magnetic field lines 
stick to the plasma fluid and move with the local 
fluid. 

It should be noted that the magnetic field should 
have no appreciable effect on the electromagnetic 
wave field in a plasma if the frequency of oscilla- 
tion is much greater than the Larmor frequency of 
the plasma electrons. On the other hand, if it is 
much lower than the Larmor frequency of the 
plasma ions, assuming for simplicity that the direc- 
tion of propagation is parallel to the direction of the 
constant external magnetic field, the lines of force, 
frozen into the medium, assume a wave-like form 
and bring the plasma into oscillatory motion with 
them. A large proportion of the electromagnetic 
energy associated with the wave is thus converted 
into the kinetic energy of oscillation of the medium. 
The situation is somewhat similar to the propaga- 
tion of elastic waves along a string. If the mass per 
unit length is higher at some point of the string than 
elsewhere, the velocity of the wave is reduced 
accordingly. In the propagation of electromagnetic 
waves in the direction of a constant magnetic field 
in plasma, the lines of force behave like elastic 
strings along which oscillations are transmitted. 
These strings are loaded by the plasma, and there- 
fore the velocity of the wave is reduced. "6~ 

Our discussion on the plasma wave properties 
has been formal in the sense that some of the 
dispersion relations of the waves were formulated 
from the basic governing equations of particles and 
field without questioning the physical basis for the 
existence of wave motions, which are fluid proper- 
ties, in a collisionless plasma. This subtle implica- 
tion is based on the long-range nature of Coulomb 
forces between charged particles whose interac- 
tions is not so much in the nature of a collision as it 
is a reflection of the bunching effect of the so-called 
self-consistent field due to the encounterings at 
large distances. This collective behavior of charged 
particles is one of the fundamental properties of a 
plasma medium and will be more thoroughly dis- 
cussed in the following. 

3.3. Collective Behavior of Collision-free Plasma 

In the earlier studies on rarefied plasma, it had 
been found that there were many anomalous 
phenomena which could not be explained on the 
basis of the classical Boltzmann kinetics, e.g. thick- 
ness of a plasma shock front is appreciably smaller 
than the mean free path of the medium; the plasma 
diffusion flux across magnetic field is abnormally 
high--a phenomenon known as the Bohm diffusion 
after its discoverer. 

Following our earlier discussion of the Debye 
shielding effect on the Coulomb field of a charged 
particle, we note that the statistical effects of 
charged-particle interactions can be conveniently 
classified into two groups: (i) with particle separa- 
tion r < AD their random interactions can be treated 
in the manner of the Brownian motions, i.e. expres- 
sed in the form of the Fokker-Planck "collision" in 
the theory of Brownian motion; m~ (ii) with r > AD 
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the particles have finite correlations, i.e. behave 
collectively, the plasma hence having a configura- 
tion somewhat like a lattice that has a spacing equal 
to a wavelength of propagating plasma oscillations. 
Thus )tD can be identified with the shortest possible 
wavelength of a longitudinal plasma wave. The 
collective behavior of plasma particles due to dis- 
tant interactions is reflected in the self-consistent 
field effect. This finite correlation of particle mo- 
tions accounts for the quasi-continuum nature of a 
collision-free plasma that supports the wave mo- 
tions and even shock fronts. "a~ 

The resonant interactions between propagating 
plasma waves and those particles which have vel- 
ocities close to that of the wave could provide the 
mechanism of damping or growth of the wave 
depending on the particle velocity distribution as 
first discussed by Landau. The case of wave- 
growth which is the cause of a micro-instability of 
the system can lead to the Bohm diffusion 
phenomenon mentioned earlier and the plasma 
turbulence, to cite a few. Since plasma in a magne- 
tic field contains a large number of natural resonant 
frequencies, considering the collective oscillations 
of both ions and electrons, their Larmor frequen- 
cies and several combinations of these, it is one of 
the most challenging jobs in plasma research to 
determine various modes of micro-instabilities, the 
wave-particle interactions, particularly the non- 
linear ones if the wave amplitude grows sufficiently 
large. One particular mode worth noticing is the 
drift wave which can occur spontaneously by an 
instability driven by density and temperature gra- 
dients. "9~ It could be primarily responsible for the 
collision-free shock transition process, a problem 
yet to be solved. 

4. PARTICLE-SURFACE INTERACTION 

When a charged particle impinges on a solid 
surface, one of several alternatives may happen, 
e.g. it may be neutralized electrically and reflected 
as a neutral particle, thus lost to the population of 
the charged species; it may reflect specularly and 
retains its charge, etc. An incident particle of high 
energy may cause secondary emission from the 
surface. This charge accretion by the surface is one 
of the inputs that determine the resultant surface 
potential of the body in question. '~ 

The study of particle-surface interaction has 
been made difficult by the uncertainties of the 
actual surface condition which is one of the factors 
influencing the nature of particle accommodation. 
An ideal surface may be defined as one with which 
the bulk properties of the material persists to the 
geometric surface. On the other hand, with a real 
surface which is generally finished by mechanical 
grinding, polishing, etc. there exists a surface 
layer, about lO/xm thick, which has usually 
been violently distorted. Hence the use of ideal 
solid surface models for particle accommodation 

study must be done with caution. The adsorption of 
gas by a real surface is another factor that adds to 
the uncertainty of the surface condition. Physically 
adsorbed gas layers attached to a solid surface may 
be removed by moderate heating. Adsorption be- 
havior, from the kinetic point of view, may be 
conveniently described by the sticking probability 
for molecules of the gas striking the surface. Stick- 
ing probability lies in the range 0.1 to 1 for the first 
monolayers and falls sharply as more layers are 
adsorbed. The amount of adsorption quickly 
reaches an equilibrium value which depends upon 
the partial pressure of the adsorbate and the sur- 
face temperature, e.g. with a partial pressure of 
l0 -7 mm Hg of oxygen a clean metallic surface will 
acquire an oxide monolayer in about a minute. 

Fortunately, in an ionospheric aerodynamic 
problem where the surface potential is never larger 
than a few volts, it is a close approximation to 
consider all incident ions neutralized by picking up 
a negative charge of equal amount at impact; 
electrons, absorbed. This assumption is used 
throughout the present study. 

4.1. Equilibrium Surface Potential without 
Photoemission (zo.2~ 

We shall illustrate the attainment of equilibrium 
surface potential (~b,) by using a spherical model of 
radius R in a quiescent plasma in equilibrium at a 
temperature T. To a stationary sphere of zero initial 
surface potential, the incident flux of thermal elec- 
trons is larger than that of thermal ions, assuming 
singly charged. The negative surface potential thus 
acquired on account of the net amount of negative 
charges accreted by the sphere tends to repel the 
electrons and attract the ions. An equilibrium sur- 
face potential (~bs) will be reached finally when the 
thermal electron influx balances the thermal ion 
influx. We have 

8KT ~12 

where A,, A~ denote the effective collection areas 
of the ambient thermal electrons and ions respec- 
tivelyfl °~ An estimation of the equilibrium surface 
potential of a spherical body moving at mesother- 
mal speeds, namely (KTJlmt)'I2~ V=~(KT, Im,) '12 
was madefl  ') It goes without saying that other 
sources of charge inputs such as the photoemission 
of electrons from the surface due to solar radiation, 
the intensive charge flux input ff the body is in the 
radiation belt of the earth, etc., would change the 
equilibrium surface potential. 

4.2. Equilibrium Surface Potential with 
Photoemission (~o.2u 

The photoemission effect upon the surface po- 
tential of a spacecraft  in deep space can be strong 
enough that the equilibrium potential takes a posi- 
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tive value (~, > 0) relative to the ambient plasma. 
Under such conditions, the thermal ion flux be- 
comes negligible. We consider now the extreme 
case with a sphere of radius R that has the thermal 
electron flux in balance with the photoemission 
current Ip,(th,, ~b,.) which depends on the surface 
potential (~b,) and the photoelectric work function 
(~.) 

[8KT'~ 'n ( ecb,) Ip, 
en, ~,-~]-m ) 1 - KTJ = ~R-~" (4.2) 

Equation (4.2) can be solved by a graphical method 
provided the photoelectric work function (4~,.) of 
the body material is given. It has been estimated 
that a positive surface potential larger than a few 
volts is unlikely unless the spacecraft is in the 
radiation belt where extremely intensive radiation 
flux is expected. 

5. KINETIC AND CONTINUUM THEORIES OF 

IONOSPHERIC FLOWS 

The mathematical representation of a gaseous 
motion can be made at various levels of approxima- 
tions. Considering a gaseous motion as a collected 
motion of a large number of particles each of which 
may interact with the others by means of the 
inter-particle forces, a microscopic approach to the 
problem starts with the application of the conserva- 
tion laws of mechanics to the particle motions and 
the use of mathematics of statistics to determine 
mean values of the particle motions that are mac- 
roscopic observables of the flow field. This is 
known as the kinetic approach to the problems of 
flows. On the other hand, a macroscopic approach 
starts with the application of the laws of mechanics 
to the motion of a representative fluid element 
whose macroscopic behavior can be construed as 
giving the average behavior of particles it contains. 
The latter approach is called the continuum theory 
of flow or fluid theory because it focuses attention 
on a fluid element as the starting point. It appears 
that the formal difference between the two- 
mentioned microscopic and macroscopic ap- 
proaches is merely a matter of procedure. There is, 
however, much subtlety in the choice between 
them for the solution of a flow problem. 

If our interest in the upper atmospheric flows is 
restricted to the neutral particle species for which 
the mean free paths are many order of magnitude 
larger than a characteristic length of the moving 
body, a free molecular flow would be expected; the 
kinetic approach is the logical choice because there 
is no meaningful representative fluid element in 
such a collision-free flow. On the other hand, with 
an ionospheric flow where the charged species 
dominate, a quasi-continuum flow prevails even for 
a collision-free plasma because of their collective 
behavior discussed in Section 3.3. Consequently, 
fluid approach to an ionospheric flow becomes 
possible provided certain conditions are met. ~8~ It is 

intended here to formulate the governing equations 
of the system from both the kinetic and the con- 
tinuum points of view emphasizing particularly the 
connection between them. It is expected that in so 
doing we can appreciate how certain plasma be- 
havior peculiar to the microscopic velocity dis- 
tribution have been averaged out and lost to the 
system at the level of macroscopic description of 
the flow. Nevertheless, the asset of simplicity and 
directness of the continuum approach is too famil- 
iar to the aerodynamicists to be enumerated here. 

5.1. Kinetic Equations 

The ionospheric plasma is considered to be com- 
posed only of singly charged and neutral particles 
which interact according to the laws of classical 
mechanics. Inelastic collisions, e.g. charge- 
exchange collision which is possibly important in 
comet gas dynamics, are excluded herein. 

5.1.1. Distribution function in the phase space 
(x, v) 

The statistical mechanical state of a plasma can 
be described by separate distribution functions 
each of which denotes a particular species of the 
mixture, e.g. fo(x, v, t) dx dv represents the proba- 
ble number of particle species a in the six- 
dimensional phase space dx dv at time t where a is 
used to designate ions (a = i), electrons (a = e) or 
neutral (a = n). The kinetic equation known as the 
Boltzmann equation for the distribution function 
fi(x,v, t) governing the statistical distribution of 
species a that stream in the phase space (x, v) can 
be written "3~ 

~+v ~ + a . ~  ~ ,  (5.1) 

where a(x, v, t) is the particle acceleration due to 
the Lorentz force e o ( E + v x B / c )  on a particle 
charge eo and possibly the gravitational force if it is 
significant. The electrostatic field E is the self- 
consistent electrostatic field which takes account of 
the distant (collective) part of the Coulomb interac- 
tion while the collision term (~fo/6t)c takes into 
account the near-neighbor interaction of the parti- 
cles. This ad hoc division of the many-body in- 
teraction effect into the long-ranged collective in- 
teraction and the short-ranged discrete collisions 
and the subsequent assumption of the dominance 
of the former contribution must be considered as 
one of the fundamental assumptions of the contem- 
porary plasma physics. 

The self-consistency of the electromagnetic field 
is built into the equation when the field is required 
to satisfy the Maxwell equation of the elec- 
tromagnetic fields (3.4), (3.5) supplemented by 

0 
a - x  ' E = 4~rpc (5.2) 
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and 
0 

- - .  B = 0 (5,3) 
Ox 

where pc is the net charge density. The current J in 
eqn. (3.4) is 

J=Jo,,,+~e~fvf~(x,v,t)dv (5.4) 

where J .... is an externally produced current while 
the second term on the right-hand side of eqn. (5.4) 
represents the current produced by the plasma 
itself. The summation is over various species that 
compose the plasma. A similar equation relates the 
net charge density to the distribution functions: 

pc = ~ eo S.f~dv. (5.5) 

The determination of the term (Sf~/Ot)c in eqn. 
(5.1) that represents the effect of nearby collisions 
has been of considerable interest in the contempor- 
ary plasma studies. It is noted that in the classical 
kinetic equation (5.1) of Boltzmann, the collision 
term has been formulated on the basis of the binary 
assumption which says that encounters in which 
more than two molecules take part are negligible in 
frequency and effect compared with binary encoun- 
ters. The binary assumption has worked out well 
for the dilute gases of neutral particles having small 
fields.* In the analysis of collisions between 
charged particles difficulties arise that stem from 
the long-range nature of the Coulomb force. A 
given particle is subject to the influence of a large 
number of surrounding particles, and all of these 
particle interactions must be taken into account. 
Thus, instead of dealing with the binary collisions, 
we must cope with a many-body problem, for 
which an effective rigorous analysis is not yet 
available. A working hypothesis has been intro- 
duced to approximate this many-body interac- 
tion. "3) Other than the collective effect of distant 
interactions and cumulative effect of interactions 
between a given particle and its neighbors within a 
distance of Debye length (AD) can be effectively 
treated as equivalent to diffusion in velocity space 
(Fokker-Planck Process"3)). 

Consider the plasma particles undergoing ran- 
dom motions, akin to the Brownian motions, "7) as a 
result of a large number of small deflections. It is 
appropriate to describe such a stochastic process 
by the transition probability qJ(v, Av) that a particle 
with velocity v acquires a velocity increment Av in 
time At. For  the Markov Process "7) ~b does not 
depend explicity on time and the distribution then 
evolves according to the relation: 

f o ( x , v , t )  

f f ,(x, v - Av, t - At)~b (v - Av, Av) d(Av) (5.6) 
d 

*Referring to the short-range inter-molecular force 
fields. 

assuming that a time interval At exists, which is 
long enough for a particle to suffer a large number 
of collisions, but short enough so that its velocity 
does not change much. The discrete collision effect 
is 

(Sf.) [f ,(x,v,t)-fa(x,v,t-At)] 
-~- = lira (5.7) 

c ~,-0 At 

To evaluate (SfQ/St)c (5.7), we expand the functions 
under the integral in eqn. (5.6) into Taylor series, 

/~(x, v, t ) =  f d(hv) 

× {so(x,v, r +:o l 
o t  LOV ovj  

+~  AvAv: ' 02f0 [~" a--G~, 2 af° aq'+ a% , + 
av av 

which, after the use of the normalization condition 
for ~, 

f tp d(Av)= 1 (5.8) 

becomes 

3 

where 

1 2 
- - - -  ((Av).fo) + z a_~__~: ( (AvAv) . fo )  

L O V O V  

(5.9) 

(Av) = f $(v, Av)Av d(Av), 

(AvAv) = f $(v, Av)AvAv d(Av). 

The expression (5.9) can be used after ~ is pre- 
scribed for an assumed model of the scattering 
process; its first term gives rise to a slowing-down 
effect and is called the coefficient of dynamic 
friction; its second term has the effect of spreading 
out an initial particle beam thus named the coeffi- 
cient of diffusion. 

A result essentially equivalent to expression (5.9) 
was obtained by Landau "2) who started with the 
Boltzmann binary collision integral and postulated 
that owing to the long-range nature of electrostatic 
forces, the number of collisions resulting in a small 
deflection 0 are much more numerous than those of 
large 0, hence change of particle velocity Av will be 
small for most collisions so that it is reasonable to 
expand the integrand of Boltzmann's collision in- 
tegral in powers of Av and keep the first and second 
powers. A justification for Landau's  procedure, 
which caused some earlier controversies,  can be 
made on the ground that it makes no difference to 
the final result whether the interactions are simul- 
taneous (as a many-body problem) or successive 
(as the summed binary effects). 

The collision effect between charged and neutral 
particles can be adequately represented by the 
classical Boltzmann binary collision integral with 
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the Maxwellian molecular model (interaction force 
law ~ r -~) as, for example, was done by Allis. ~ '  

In the upper ionosphere where the density is very 
low and the atmosphere is strongly ionized, not 
only the effect of the neutral atoms but also the 
complete discrete collision (Sfa/St)~ are negligible 
compared with the collective effect of the distant 
charged particles, eqn. (5.1) can be simplified to the 
collision-free Boltzmann equation with self- 
consistent field, often called the Vlasov equation: 

Ofo of, -~- + v ' 00--~ + a - ~-~ = 0. (5.10) 

5.1.2. Formal solution of  Vlasov equation 

The distribution function f(x, v, t) satisfying eqn. 
(5.10) and a given initial state [o(x,v, 0) can be 
determined formally by the method of characteris- 
tics. Notice that the subsidiary (characteristics) 
equations to eqn. (5.10) in Cartesian coordinates can 
be written 

d t _  dx, dx~._ dx~ dv, dv: dr3 (5.11) 
1 v~ v :  03 a~ a,. a3 

which define the particle trajectories of the 
collision-free plasma. The general solution to eqn. 
(5.11) can be prescribed as follows: 

x,  = x~(I,, 12 . . . . .  16, t); v~ = v,(I , ,  I2 . . . . .  /6, t) 
(/3 = 1,2,3) (5.12) 

where L, I, . . . . .  I,  are the six constants of integra- 
tion. The integrals of motion are 

I a = I ~ ( x , v , t )  ( / 3 = 1 , 2  . . . . .  6). (5.13) 

According to the theory of partial differential 
equations, the general solution to eqn. (5.10) is an 
arbitrary function of the integrals of motion (5.13), 
namely 

f = F ( L ,  I2 . . . . .  /6). (5.14) 

The particular solution to the given initial value 
problem is obtainable by requiring that 
F ( L ,  I: . . . . .  /6) satisfies the given initial distribu- 
tion fo(X, v, 0). 

An application of the above result to the study of 
stellar dynamics was made by Jeans. The functional 
relation (5.14) is known as Jeans theorem in stellar 
dynamics. Extensive applications of the theorem 
(5.14) to specify ion trajectories in an electrostatic 
field of sheath and wakes in ionospheric gas 
dynamics were also made. ~5~ The advantage of using 
the theorem (5.14) to the study of collision-free 
plasma over the calculation of assorted ion trajec- 
tories with assumed parameters of field and initial 
conditions is computational. A judicious choice of 
F(I , ,  12 . . . . .  / 6 )  with sufficient number of integrals 
(Ia) not only saves much computations for indi- 
vidual trajectories but makes the numerical 
iterations* much illuminating to gain physical in- 

* Which is almost always needed when the system is 
nonlinear such as the near-wake problem, c~ 

sight because of its relative simplicity in formula- 
tion. 

5.1.3. Particle orbit theory o f  collision-free p lasma 

In view of the equivalence between the Jeans 
theorem approach and the consideration of the 
particle trajectories to treat the collision-free 
plasma as shown in Section 5.1.2. it should be 
possible to replace the Vlasov equation by the 
equations of motion (5.11). As to how effective the 
latter approach is depends on the method used to 
handle the results of particle trajectories thus ob- 
tained in order to formulate the space charge 
density (pc) needed in eqn. (5.2). The job can 
become unwieldy considering the number of essen- 
tial parameters for the determination of the as- 
sorted trajectories. It is for the purpose of efficient 
mathematical classification of the particle trajec- 
tories that an alternative approach has been intro- 
duced ~24~ which uses the Hamil ton-Jacobian equa- 
tion in classical mechanics to describe particle 
motion in lieu of the Newtonian equations (5.11). 
However,  since the wave function of the 
Schroedinger equation which is the counterpart  of 
the Hamilton-Jacobian equation is more accessible 
for describing particle density, it is initially used 
even though the quantum mechanical effect is 
negligible. The transformation of the Schroedinger 
equation to the Hamilton-Jacobian equation can be 
made by the introduction of the W.K.B.J. approxi- 
mation. ~m This approach is found particularly effec- 
tive to treat the interaction problems of mesother- 
mal collision-free plasmas in the absence of magne- 
tic fields ~ where the electrostatic approximation is 
appropriate. 

The Schroedinger equation for an ion of mass m~ 
and charge in steady motion is 

h'V2~(x) + 87r"m,[E, - e~b(x)]~ = 0 (5.15) 

where h denotes the Planck constant; qb(x) the field 
potential; E, the total energy of the particle in 
question. The wave function ~(x) has meaning such 
that Iq, I 2 dx is the probability of finding a particle in 
volume element dx. Thus, if there are n~ nonin- 
teracting identical particles per unit volume, n=rq'l  2 
will represent the particle density at x. Equation 
(5.15) can be used to describe the distribution of 
monoenergetic ions in the problems of mesother- 
mal flows, t24' 

A short-wavelength approximation, known as the 
W.K.B.J. method, t2~) can be introduced to eqn. 
(5.15), we let 

= A exp [iW(x)] (5.16) 

and substitute it in eqn. (5.15) 

h2[(VW) 2 -  iV2W] = 8~r2m~(E~ - eck ) (5.17) 

which, under short-wavelength approximation, re- 
duces to 

h2(VW) 2 = 87&m,(E, - ech). (5.18) 
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Equation (5.18) is the Hamilton-Jacobian equation 
in classical mechanics. W is proportional to the 
action. It can be determined as the formal solution 
to eqn. (5.18) 

w(x) = f 27r (2m')'t"h {E~ - eth [x(S)]} '/2 dS (5.19) 

where S is a parameter in terms of which the ion 
orbits are described. 

It is noted that the mathematical advantage of 
using the Schroedinger equation for the present 
purpose stems from the fact that it is linear for a 
given ~(x). This makes it very convenient to un- 
ravel the nonlinearly coupled system of the 
particle-field interactions under electrostatic ap- 
proximation which will be shown later. 

number density: 

flow velocity: 

pressure tensor: 

5.2. Continuum Equations 

The kinetic flow analysis (Section 5.1) which 
involves the use of distribution functions in a 
six-dimensional phase space (x, v) is not only sad- 
dled with considerable mathematical difficulties but 
also provides too much detailed information on 
plasma particle behaviors which are not needed in 
determining the flow observables:  

no(X,t)= f fodv, 

Vo(×, t) = ~  vLdv, 

(x, t ) = mo f (v - Vo)  (5.20) 

x (v - Vo)/~ dv, 

q ( x ,  t )  = (v - v o )  thermal flux: 

× (v - V. )2f, d v, 

etc. 
It would be desirable to develop governing equa- 

tions of flows that have the flow quantities (5.20) as 
their unknown functions. This is the primary moti- 
vation for introducing the moment form of the 
kinetic equation (5.1). Notice that the flow quan- 
tities (5.20) are the zeroth, the first, the second and 
the contracted third moment respectively of the 
distribution function. 

5.2.1. Transport equation 

In spite of the importance of the distribution 
function which serves as a universal joint to all the 
flow quantities (5.20) of interest, it is sometimes 
found necessary to circumvent the mathematical 
difficulties by forming moments of the terms of its 
governing eqn. (5.1). Physically speaking, it is in- 
tended to transform eqn. (5.1) in such a way that it 
may be possible to calculate the average value of 
any quantity Q(v) without knowing much about the 
distribution function itself. Notice that Q(v) desig- 
nates 

1,v, m ( v - V ° ) ( v - V , , )  or ½ m ° ( v - V ° ) ( v - V , )  2 . . . .  

for number density, flow velocity, pressure tensor 
or thermal flux . . . .  respectively, as given in flow 
quantities (5.20). 

Multiplying both sides of eqn. (5.1) by Q(v) and 
integrating over the velocities of the particles of 
type a, we obtain "~ 

0(n,(Q))0t +O0x " (no ( v Q ) ) -  n , a .  ~ 

aIo 

where an angular parenthesis denotes the average 
over velocity space of the quantity enclosed. The 
term on the right-hand side of eqn. (5.21) needs 
further clarification. It is recalled that (af,/~t)c 
represents the rate of change of f,  due to close 
clllisions, a comparison of eqns. (5.1) and (5.21) 
suggests the moment of the collision term might 
represent the rate of change of no(Q) due to 
collisions. 

It is of interest to observe the analogous relation- 
ship between eqns. (5.1) and (5.21) to that between 
the equations of boundary layers, in fluid 
dynamics, '26' due to Prandtl and yon Karman.* 
Recall that Prandtl 's  equation satisfies pointwise 
the boundary-layer flow field while yon Karman's  
equation, being a moment of PrandtFs equation, 
satisfies the momentum conservation only on the 
average across the boundary layer. The relaxed 
condition imposed in the latter approach to the 
boundary layers makes the solution untenable for a 
unique pointwise description of the flow field. This 
loss of accuracy in flow-field description is compen- 
sated by its mathematical simplicity and versatility 
in applications. The comparison of the cited alter- 
native approaches to the boundary-layer problems 
in fluid dynamics is very much in parallel with that 
of the two alternative approaches (5.1) and (5.21) to 
gas-kinetic problems. While the kinetics eqn. (5.1) 
provides a pointwise description in the phase-space 
(x,v), the continuum eqn. (5.21) obtained as the 
velocity moments of eqn. (5.1) satisfies the trans- 
port of Q(v) on the average in the velocity-space. 
The physical basis for the use of eqn. (5.21) is that 
the time characteristic of the randomizing collision 
effect on the relaxation of an arbitrary velocity 
distribution to its locally near-equilibrium state is 
very small compared with the time constant of the 
hydrodynamic flow. Under such a condition the 
flow quantities (5.20) would be relatively insensitive 
to the microscopic velocity distributions. It thus 
points out the important role played by the molecu- 
lar collision effects. 

There is another thorny question pertaining to 
the moment approach (5.21), namely the closure 
problem of the moment equations. The formal 
development of the moment equations by assigning 

* More properly, known as the yon Karman's momen- 
tum integral. 
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successive order of velocity moments leads to a set 
of equations which contains more unknowns than 
the number of available equations. For instance, an 
(n + l)th moment is, in general, generated in an nth 
moment equation. Various means of closure on the 
basis of physical considerations are introduced to 
obtain a closed set of moment equations as will be 
shown later. 

5.2.2. Conservation equations of a two-component 
"plasma 

A two-component plasma is regarded as two 
interacting fluids, the electron gas and ion gas. They 
interact through collisions as well as the elec- 
tromagnetic field to which both fluids contribute 
and are attached 

Let Q = l ~  m, v in eqn. (5.21) we obtain the 
continuity equation 

0n'~'+ c~ . (n , ,V, , )=0  (a=i,e)  (5.22) 
Ot Ox 

and the momentum equation, after some algebraic 
simplification.'"' 

? V , , + V  aV°)_  ± 
m,,n,,\ at " " -~x  / noe~(E+V° ×B/c)+ox 

• P = o~o (5.23) 

where ,~, represents the momentum transferred by 
collisions from the other component to component 
a. ~:o can be evaluated only after the collision 
model has been specified. "~ 

The eqns. (5.22) and (5.23) for no and V, are 
rigorous consequences of eqn. (5.1) but they do not 
constitute a closed set of equations from which 
n°, Vo can be computed as functions of position (x) 
and time (t). In comparison to the continuity- 
equation and the Navier-Stokes equation of the 
classical fluid dynamics, °~' which are the counter- 
part to eqns. (5.22) and (5.23), except for the 
electromagnetic (external) force and a closure con- 
dition. For a gas of neutral molecules, the corres- 
ponding moment eqns. (5.22) and (5.23) can be 
made a closed set by introducing a particular con- 
stitutive relation between the pressure tensor and 
the rate of strain. Should the constitutive relation 
be linear and the fluid isotropic, the Navier-Stokes 
eqlaation will be recovered from the momentum 
conservation eqn. (5.23) for neutral species pro- 
vided the Stokes viscosity relation* between shear 
and volume viscosities is usedY 7' 

We shall now introduce several closure approxi- 
mations in order to obtain closed sets of equations 
for the flow quantities no, V,, etc. 

(a) Cold plasma hypothesis. In the limit of zero 
plasma temperature, the spread in particle vel- 
ocities vanishes. Hence 

_0_0. ~° -~0 and ~,  - 0 .  
0x 

Equations (5.22) and (5.23), together with Max- 
well equations of the electromagnetic field, form a 
closed set which has been used extensively particu- 
larly in the study of wave propagation in the 
ionosphere, aS' When the cold plasma equations are 
used, it is important that the speed of plasma 
disturbances of interest must be large compared 
with the thermal velocities of the particles. 

(b) Locally Maxwellian hypothesis• If the colli- 
sions are so frequent that the microscopic velocity 
distribution is sufficiently isotropic such that to the 
first approximation a local Maxwellian distribution 
is maintained 

[ mo ]3,,. 
f~(x,v,t)=no(x,t) 2~rKT~x, t) 

× e x p {  ma[v-V.(x,t)]]2s<T.(x, t) (5.24) 

under the condition (5.24), the contracted third 
moment q, i.e. the thermal flux and the off-diagonal 

Components of the pressure tensor Po vanish. The 

pressure tensor, in fact, becomes P, = poI where 

is the unit dyad (I=e,6, ,e , , )  where the scalar 
pressure po = noKTo. 

Letting Q = mow in eqn. (5.21) and making use 
of eqns. (5.22) and (5.23) and also condition (5.24), 
we obtained finally an extremely simplified second 
moment equation in the following form:t  

0 5 0 ( +Vo Vx)p° Vo--0 (5.25) 
Replacing 0/0x • V° in eqn. (5.25) by means of the 
continuity equation, we obtain 

( +vo = 0  (5.26) 

with 3'=~ for which is an adiabatic relation 
monotonic gases. 

Equations (5.22) and (5.23) after simplification 
together with Maxwell equations of the elec- 
tromagnetic fields constitute the basis of a popular 
fluid model of a plasma. They bear a strong re- 
semblance to the Euler equations of ideal gas 
dynamics. 

Now suppose there is a strong external magnetic 
field H in the direction of the z-axis. The Larmor 
gyrations of the plasma particles will cause the 
velocity distribution to have cylindrical symmetry 
about the z-axis if the Larmor frequencies are 
higher than the collision frequencies. This is some- 
times taken into account by assuming a diagonal, 
but anisotropic pressure tensor/TM 

(c) Electostatic approximation. If the electric 
field curl-free condition, O/Ox x E --- 0 is valid, there 
is no time-varying magnetic field and a scalar field 
potential ~b(x, t) exists such that E = - 0~b/0x. The 
system of the electromagnetic field equations col- 

* Tantamount to zero bulk viscosity, t Note that all the collision terms vanish. 
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lapses into Poisson equation 

V2q~ = - 47rp~. (5.27) 

Equation (5.27) together with Vlasov equation com- 
plete a mathematical description of a collision-free 
plasma with only electrostatic interparticle forces 
included. This is an important set of equations 
governing many of the problems of interest in 
ionospheric aerodynamics. 

6. SIMILARITY PARAMETERS 
OF IONOSPHERIC MESOTHERMAL FLOWS 

In the studies of many mesothermal aerodynamic 
problems of the ionosphere where the plasma in- 
teraction near the moving body is of interest, the 
electrostatic approximation of the equations of 
flows (Section 5.2.2(c)) is valid. The magnetic field 
effect is small because the Larmor radii of ions are 
usually much larger than the characteristic size of 
the body. Under the mesothermal flow condition, 
the thermal electrons maintain a quasi-equilibrium 
state in spite of the moving body, hence the 
magnetic-field effect on the plasma interaction 
through the Larmor electron gyrations is not impor- 
tant. The physical picture of the steady state 
plasma interaction due to a mesothermally moving 
and negatively charged body of characteristic size 
R in the ionosphere can be viewed as follows. The 
ions, which are significantly disturbed from their 
equilibrium distribution, move among electrons 
which are essentially in a Maxwell-Boltzmann dis- 
tribution: n, = n~exp [e~b/KT] where the field po- 
tential ~(x) is due to charges both on the body and 
of the space. It is of interest to determine the 
particle and field distributions in the disturbed zone 
of particle-field interaction. 

6.1. Dimensionless Transformations of the Govern- 
ing Equations 

The equations governing the above-mentioned 
plasma interaction consist, as usual, of two groups: 
the particle equations are the kinetic equation (5.1) 
for the ions and the Maxwell-Boltzmann distribu- 
tion for the electrons; the field equations of Max- 
well is reduced to a single equation (Poisson equa- 
tion) (5.27) under the present electrostatic approxi- 
mation. 

In order to gain some physical insight into this 
coupled particle-field set of equations, we rewrite 
them in terms of dimensionless quantities. In defin- 
ing these quantities, the following reference mag- 
nitudes as standard of comparison are introduced: 
the ion thermal speed vl = (KTdmi) ~n as characteris- 
tic velocity; the body size R as the macroscopic 
characteristic length; effective range of particle 
collisions d (defined as a transverse distance from a 
scattering center that a scattered particle is deflected 
by an angle 0 ~ 90 °) as the microscopic characteris- 
tic length; ambient ion density, n.. The dimension- 

less representations (with superscript*) are as 
follows: 

t= (R/rOt*, x = Rx*, ~ = (KT/e)4~*, 
v = v~v*, f, = (n~/v])f*, At = (d/v~)(At)*. 

In terms of the above dimensionless quantities, 
eqns. (5.1), (5.7) become 

Of~' 4-v*. af~ ad~*. Of,, 
cgt* 3x* 3x* Ov* 

_ R { O [(Av*) £] 1 3 z 

X/2x 7rl _ -  Ov--- ~ • L(At), a, j 4 2 Ov*0v* 

[!Av*Av*) 
'L (At)* f*]} (6.1) 

I =  where the characteristic mean free 
(X/2 zr d2n~) -'n eqn. (5.27) becomes 

h 2 

where ;to is the Debye shielding length. 

path 

(6.2) 

It is observed from eqns. (6.1) and (6.2) that the 
gas dynamics and the electrostatic similarity be- 
tween different model systems, depends on two 
similarity parameters: Knudsen number (I/R) and a 
shielding parameter (AD/R). Let us investigate 
further the physical significance of the dimension- 
less equations (6.1) and (6.2). From eqn. (6.1) we 
observe that when the Knudsen number is very 
small, say IIR ,~ 1, the collision term dominates 
over the streaming-term. This implies that the flow 
field in question is collision-controlled, hence the 
particle velocity distribution is not expected to 
deviate much from the locally Maxwellian distribu- 
tion on which corresponds to continuum flow of an 
inviscid fluid (see Section 5.2.2(b)). On the other 
hand, when the Knudsen number (I/R) is extremely 
large, we have the collision-free plasma flows with 
self-consistent fields due to particle distant encoun- 
ters, known as their collective behavior (Section 
3.3). This is of primary interest to the study of 
ionospheric aerodynamics. 

It is observed that eqn. (6.2) has several distinc- 
tive features: (i) its coefficient of the most high 
differentiated term (AD/R)2~ 1 for aerodynamics of 
finite bodies; (ii) the other coefficients are of order 
unity. The electrostatic field potential ~b(x) must 
thus behave akin to the boundary layers in applied 
mechanicsfl  °~ The field potential ~(x) would have 
small gradient* except in a narrow region very 
close to the body, known as the "boundary layer" 
in aerodynamics. It will be called the plasma sheath 
in the ionospheric flows where the stream impinges 
on the body. The field configuration in the near 
wake behind a moving body is much more com- 
plex. c5~ In any event for a region far away from the 
body, the term on the left-hand side of eqn. (6.2) 

*The gradient can be moderately large in the near 
wake, see the discussion that follows. 
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plays an insignificant role, we have a quasi-neutral 
flow for which n~/n~ = n,/n~ = exp ~b*. 

6.2. A s y m p t o t i c  So lu t ions  

Following the discussion of Section 6.1, we have, 
under the condition ,~D/R "~ I, the quasi-neutral 
flows i.e. with n,(x)=n~(x) outside of the sheath 
and the near wake. This corresponds to the zeroth 
order approximation to eqn. (6.2). It designates 
flows both upstream beyond the frontal sheath 
and the far wake downstream. We have from eqn. 
(6.2) 

n,(x) - n,(x) = n~ exp (ec~lKT) (6.3) 

the field potential 

(6.4) 

Gurevich °" suggested that the wake behind a 
spherical satellite be divided into two regions in one 
of which the ion density is not very small such that 
(R /ho)2n , (x ) /n~> 1; in the other the ion density is 
so small that (R/,kD)2n~ (x)/n~ < I. These refer to the 
regions far from and close to the body respectively. 
The boundary separating them is so defined by the 
condition 

R )  1 (6.5) n i ( x )  

The field potential in the near-region can be 
approximated by the use of 

V24~ = 0 (6.6) 

which is equivalent to assuming that the effect of 
space charge density is negligible compared with 
that of the surface charge. 

7. PLASMA SHEATH AND NEAR WAKE 

In view of the discussion on the nature of eqns. 
(6.1) and (6.2) which govern the distributions of 
particles and field near a moving body (R), non- 
linear analysis for the sheath region in front of the 
body and the near wake behind it are mandatory 
unless the body size is small (R ,~ ;to). This stems 
from the fact that the nonlinear relation of the 
particle-field coupling is inherent with the problem. 
We shall treat these aspects of the ionospheric 
aerodynamics first in order to gain a glimpse of the 
nature of plasma interaction. Our contemporary 
apprehensions about these problems are not at par. 
While the solution to the sheath problem has almost 
been satisfactorily resolved, the theory of near 
wake is very primitive, nowhere near to being a 
satisfactory solution. 

7.1. P l a s m a  Shea th  

On account of the boundary-layer nature of the 
field equation (6.2), it is expected that adjacent to 
the surface where the plasma stream impinges on 
the body, a thin sheath exists in which the variation 
of 4~(x) across the sheath is rapid. In view of the 
extreme disparity in field potential gradient across 
and along the sheath, we shall use a simplified 
quasi- one-dimensional sheath analysis. ~u~ 

Consider a collision-free mesothermal plasma 
stream, which is composed of fully ionized and 
singly charged particles, impinging on a negatively 
charged plate at a small angle /3 (Fig. 2). It is 
assumed that the incident electrons are absorbed; 
ions neutralized and re-emitted as neutrals. The 
plate is fixed to the yz-plane as shown in Fig. 2 and 
is assumed to be infinitely large, hence no edge 
effect will be considered, and the field potential 
depends on x only, 4~ = 4~(x). Furthermore, it is 
assumed that the absolute value is large enough that 
only the electrons at the rare high energy tail of its 
distribution can reach the plate and be lost. Thus 
the Maxwell-Boltzmann equilibrium distribution 
for electrons is approximately valid 

he(X) = n~ exp [e~b(x)] L KTe / (7.1) 

where n~ denotes the electron density at the outer 
edge of the sheath where n~ = n,~ = n~. 

× 

V 

FIG. 2. Plasma sheath at an inclined plane (cb, < 0). 

The field potential obeys the Poisson equation 

d~4) = - 4 7re( m - nc ) = - 4 7re [ n~ - n~ e x p  ( ~ T  ) 2 

(7.2) 

and boundary conditions: 

~b = 4), x = O, 
(11.3) 

4,=0,  x = ~ ,  

which implies that the sheath potential decays 
asymptotically to zero at ambient. The ion density 
n~(x) in eqn. (7.2) can be determined by means of 
either the Vlasov equation (5.8) or the Schroedinger 
equation (5.13). The latter is chosen for mathemati- 
cal simplicity. 

a2~ 0"g' 8rrzm, 
-~-rx +~Ty,_ + ~ [ E , - e r b ( x ) ] ~ = O  (7.4) 

where E~ denotes the energy of an impinging ion 
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relative to the reference frame fixed to the plate. 
The stream is approximately monoenergetic (E~) 
since V-~ >> v~. 

Let 

• (x, y) = qt,(x)~, .(y) (7.5) 

be a trial for the separation of variables in qt(x, y). 
Equation (7.4) is resolvable into two component 
equations: 

dxP't 87r"md 
dx'- F----ff r - [ E i  - ecb(x)]~' = A 2xtt'' 

d "-xlt: 
dy " - A 2xtt2 

where A'- is a constant. Through the W.K.B.J. 
transformation (5.16), the solutions to the above 
equations can be readily obtained which, after the 
introduction of the upstream boundary conditions 
(7.3), gives 

I'I'l:  = l eqb ) tl2 n,/n~. (7.6) 

1 Ei cos"/3 

It is of interest to compare the present result (7.6) 
with that obtained by Ginzburg (32~ who studied a 
special case (/3 =0)  of the problem using hyd- 
rodynamic equations suitable for continuum flows. 
It is found that if the contribution due to pressure- 
term in reference 32 is neglected for a hyperthermal 
flow as with the present case, the result thus 
obtained would agree with eqn. (7.6) when/3 is put 
to zero. 

The solution to eqn. (7.2) after the substitution 
of n~ (7.6) can be written: 

X = (87rn~)-w'{2Ei cos-"/3 (~,/(I - ecklE, cos"/3) 
s 

- 1 ) -  KT,.[1 - exp (ecMKT, ) ] }  -~12. (7.7) 

The sheath potential ~b(x), given in solution (7.7) 
is shown in Fig. 3. It is observed from Fig. 3, along 
with the number densities m (7.6) and n, (7.1), that 
they all show the rapid variation nearest to the 
plate, in fact more than 95% of the drops in their 

k Te 

x_ 

xD 

FIG. 3. Field potential of sheath. 

T: V®c°s ~= 2. qI': V®c°s ¢=4.  
1)l 1)1 

values occur in a minute distance from the plate 
which may be defined as the thickness of the 
sheath. This unique "boundary-layer" behavior of 
the sheath makes it possible for the use of singular 
perturbation analysis, m~ 

The fact that the variations of field variables, 4>, 
ni and n, are infinitely stronger across than along 
the sheath makes it feasible to use the present 
inclined-plate solution to approximate the frontal 
sheath of a three-dimensional body which can be 
sliced into convex ring sections facing a mesother- 
mal stream at different inclination angles (/3). This 
approach is analogous to the modified Newtonian 
theory of sphere drag at hypersonic speeds using 
the oblique shock relation/TM 

7.2. Near Wake 

When a negatively charged circular disk of radius 
R moves at a mesothermal speed along the direc- 
tion of its axis in a collision-free plasma, a momen- 
tary void develops immediately behind the disk. 
Both the ambient electrons and ions rush to popu- 
late the void region. Since the electrons have a 
greater mobility they leave the ions behind giving 
rise to an electric field which decelerates them very 
rapidly while slightly accelerating the heavy ions. 
As a result, the velocities of electrons and ions 
filling the void tend to become equal. The front of 
the plasma motion thus has a local negative field 
potential because of the excess electrons therein. 
This apparently is responsible for the presence of a 
V-shaped potential valley in the near wake/5' For a 
moving blunt body having a width R across the 
stream and with the above depicted nonlinear cou- 
pling between particles and field is an inherent trait 
of the near wake. 

Inasmuch as a satisfactory theory of near wake is 
not yet available, it appears more important now to 
expose the intricacy of the problem and make some 
suggestion that might serve as a guide to a prospec- 
tive solution. In order to make the discussion 
definitive, we introduce an idealized model of near 
wake. Consider a sphere of radius R and with a 
negative surface potential ~b, < 0  moving in a 
collision-free fully-ionized plasma of singly 
charged particles. It is assumed that the ambient 
plasma may be bi-thermal, i.e. having different 
temperatures (T,, T~) for the electrons and ions 
respectiyely. The sphere moves at a steady 
mesothermal speed, namely (KT~/m~)m~ V~ 
(KT,[m,)  ~n'. It is further postulated that upon colli- 
sion with the body an electron is absorbed; an ion, 
neutralized and re-emitted as a neutral. The body 
size (R) is much larger than the Debye shielding 
length ()to). Magnetic field is absent. 

The equations governing the distributions of par- 
ticles and field in the near wake consist of the 
Vlasov equation (5.10) for ions, Maxwell-Boltz- 
mann distribution for electrons (7.1) and the Poisson 
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equation (5.27) in dimensionless quantities. 

a f,. 1 0q~ o)~_ v . . . . . . . .  0, (7.8) 
Ox 2 dx Ov 

n, = exp q5, (7.9)* 

( ~  ) 2V2,~ = n, - n, = exp ¢ - f f, dv (7.10) 

where the superscripts * have been dropped. The 
set of eqns. (7.8), (7.9) and (7.10) provides a self- 
consistent system together with the boundary con- 
ditions: 

¢(R)  = ~b,, ~b(~) = 0, 
/;(R, Vr > 0 ) =  0, 

{ 1 ~3/2 [--~(V V,)"]. (7.11) ~(~, v)=  ~ )  exp 

A common practice in the contemporary studies 
of near wakes is to treat the ions as if they were 
neutrals as far as the initial determination of ion 
density n~(x) in the wake is concerned. Assorted 
free "ion" trajectories, starting from the free 
stream, are calculated. The amount of computa- 
tions thus involved depends on whether the thermal 
random velocities of the free stream "ions" are 
taken into account in the parametric trajectory 
studies. This is important because it is the transver- 
sal thermal motions of the free stream particles that 
are primarily responsible for the filling in the void. 
Since they are perpendicular to the direction of the 
free stream, the transversal thermal velocities 
though much smaller than the longitudinal free 
stream velocity (V,) must be retained in the trajec- 
tory calculations. This neutral particle assumption 
is tantamount to the neglect of the second term on 
the left-hand side of eqn. (7.8). In so doing, the 
particle and field equations are thus decoupled. The 
population of ions in the wake can be determined 
by the use of the trajectory results. Once the ion 
density n~(x) is known, it is a simple matter to use 
the Poisson equation (7.10) to evaluate a first 
approximation to the field potential d~(x). 

In some studies, efforts apparently have been 
made to iterate for the higher-order approximations 
to the ion density and the field potential by using 
eqns. (7.8)-(7.11) in order to obtain a set of self- 
consistent solutions of particle and field distribu- 
tions. No published results on such efforts for the 
near wakes with R ~>AD seem available. This 
shruld not be confused with the works for the 
studies of far wakes or of near wakes with R ,~ AD 
which can be done on the basis of entirely different 
sets of approximations as will be seen later. 

The effectiveness of the above-mentioned 
neutral particle approximation depends on the con- 
ditions of the wake in question. With R -> )to the 
formation of a potential valley in the near wake, as 
depicted earlier, seems inevitable. It might be diffi- 
cult to recover this result in a computation that 

starts with neutral particle approximation. The 
mathematical question of convergency in the num- 
erical iteration of the system of eqns. (7.8)-(7.11) 
has not been satisfactorily resolved. Suffice to say 
that there is no guarantee that such an iteration will 
always converge. It seems obvious that a self- 
consistent solution of the system must emerge only 
after a convergent iteration. 

It is noted that the difficulty of treating the 
system of coupled eqns. (7.8)-(7.11) is computa- 
tional. For instance, if the computer capacity is of 
no problem, one could start with a guessed initial 
cb(x) to perform the trajectory study and then the 
iteration. It could serve as a test for the con- 
vergency of the iteration scheme. In so doing, 
however, the number of parameters needed to 
specify an ion is considerably increased as com- 
pared with the neutral particle calculations. At- 
tempts have been made to simplify the trajectory 
specifications by the use of Jeans theorem (5.14) to 
prescribe the ion distribution in terms of three 
integralst of the ion motion ~5'36~ in order to reduce 
the number of parameters for specifying an ion 
trajectory. On the other hand, it is deprived of the 
flexibility in the method of parametric trajectory 
calculations. The primary difficulties involved in 
the application of Jeans theorem to the near wake 
study are as follows. (1) Two of the integrals, the 
total energy and the axial angular momentum of a 
particle, are well known; the third one is not yet 
available in the general case if at all. There has been 
some scheme suggested to be used for the purpose 
of short-range numerical integrationsY ~ A special 
variational method °6~ has been proposed to general- 
ize a third integral which is valid for a restricted 
axisymmetric fieldY 7~ (2) It is difficult to find the 
function F(L,  I:, 13) tailored to satisfy the boundary 
conditions (7.11). It goes without saying that the 
efforts of applying Jeans theorem to the study of 
near wake could be very rewarding. 

A physical interpretation of the use of Jeans 
theorem in lieu of individual trajectory specifica- 
tion can be made. While the prospective path of a 
given ion may be specified in terms of the parame- 
ters for its initial position, velocity and the field 
according to the Newtonian equation of motion, it 
may also be determined in terms of its integrals of 
motion (5.14). 

8. QUASI-NEUTRAL FLOWS AND FAR WAKE 

The condition of quasi-neutral, i.e. n,(x)= n,(x), 
prevails in the plasma flows beyond the sheath and 
the near wake. Under this simplified condition, it is 
of interest to investigate the nonlinear interaction 
between the gas dynamical and the electrostatic 
phenomena for the mesothermal collision-free 
flows. 

* The use of MaxwelI-Boltzmann distribution for field 
potential with valleys has been cautioned by Lam. °~ t Also called adiabatic invariants. 
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8.1. Isothermal Compressible Flow Analogy 

We restrict the discussion to a negatively charged 
body of characteristic size R which is much larger 
than ;to. The electron temperature (Te) is assumed 
to be much larger than the ion temperature ( Z ) - - a  
bi-thermal state commonly prevails for the upper 
ionosphere particularly during the daytime. 

We shall use the continuum equations and show 
that both the ion and the electron flow fields are 
irrotational and mathematically uncoupled. The 
governing equation for the uncoupled ion flow 
velocity potential has been shown ~3~ to be identical 
to that of an isothermal irrotational compressible 
flow in classical gas dynamics. 

The continuity equations (5.22) for the steady 
flows of ions and electrons are 

O 
ax" (n,V,) = O, (8.1) 

a 
ax'  (n~V~) = 0. (8•2) 

The electron momentum equation (5.23) can be 
written: 

OV~ 4-V~ OV, e Oq5 1 dp, 
at " Ox me 8x ntm~ 8x (8.3) 

where p, is the scalar electron pressure. 
It is noted that in the absence of collisions, the 

electron gas is essentially isothermal. This and the 
equation of state for a perfect gas, p, = n,KT,, can 
be introduced to eqn. (8.3) which becomes integra- 
ble along a streamline 

{ e ~  I ~ ( ~  )} 
n, = n~ exp 2 - 1 (8.4) 

where V~ is the free stream velocity and v, = 
(KT,/m,) ~n is the electron thermal speed. In the 
limit of Vdv,  ~ 1 ,  eqn. (8•4) is reduced to the 
Maxwell-Boltzmann distribution (7.9). 

The ion mome0tum equation (5.23) can be 
written: 

OV,+v~. OV~ e Oq5 
at ax m, Ox" (_8.5) 

Equation (8.5) is also integrable along a streamline 
and gives the ion energy equation 

~.m~ ~ + e~b = Const. (8.6) 

which is valid as long as we can identify ion 
trajectories with macroscopic ion streamlines•* 
This condition prevails under the mesothermal con- 
dition because the oncoming ion trajectories look 
essentially like a parallel beam. 

It is important to note ~m that both the ion and the 
electron flow fields are irrotational since taking curl 
of both eqns. (8.3) and (8.5) we obtain 

* For a more rigorous justification see the discussion in 
reference 5. 

( t+vo 
av,, 0 x v  ( a  ) 

• ax ~ o\-ff-~x. Vo ( a = i , e ) .  (8•7) 

Recall that d/0x×V~ and a / 0 x × V ,  are initially 
zero in the oncoming stream and therefore remain 
so in the flow field• The fact that the flows are 
irrotational proves to be important in the analysis 
later because a velocity potential exists for an 
irrotational flow• 

0qb~ Oqb, 
V ~ = -  Ox' V , =  ax" (8.8) 

Consider now the Poisson equation (6.2) which 
can be written: 

(--~)'V*:d~* = n* - n ,  (8.9) 

where the superscript * denotes a dimensionless 
quantity (Section 6.1), and ;tD = (KT,/47rn~e2) ''. In 
the limiting case of small value for the parameter 
;tD/R, we have 

n ~, = n* + 0[(AD/R)"] = n* (8•10) 

which is the precise quasi-neutral condition and is 
valid where ever 7*:&* is of order unity or less• 

The equations (8.1), (8.2), (8.4), (8.6), (8.8) and 
(8.10) can be combined for the elimination of all the 
flow variables except qb~ and qb,. Recognizing the 
conditions m,/m~ ,~ 1 and V,/v,,~2 z I (mesothermal 
flows), we obtain finally 

m N ~ _ .  (2Vqb, Vqb~), (8.11) V:O~ = ~ Vq~ • V 

m~V2~ - "  • VOw). V'(1)e = -~-7-. vq), • V (~ V*, (8.12) 

Where mN:~/(KT,) represents the ratio of the di- 
rected kinetic energy of the free stream ions to the 
thermal energy of the electrons it can be interpreted 
as the square of a flow roach number on the basis of 
ion-acoustic speed which is equal to (KT,/m,) 'n 
(Section 3•2). Equation (8.11) appears like the po- 
tential equation for an isothermal compressible 
flow in classical gas dynamics, a7~ The classical 
solutions developed for the compressible flows of 
neutral particles can be adopted with caution for 
the ion flows in view of the mathematical analogy 
shown herein. Once the ion flow field is determined, 
the electron flow field can be obtained from eqn. 
(8.12) which is then a linear equation• Applications 
to mesothermal collision-free flows about circular 
cones and other configurations are available) 3~'3.~ 

8.2• Far-wake Flows 

Another class of quasi-neutral flows that are of 
aerodynamic interest is that which is far behind a 
mesothermally moving body. We call it herein the 
far-wake flows. In contrast to the near-wake flows 
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which are governed by a set of nonlinear equations, 
the gas dynamical as well as electrostatic distur- 
bances are small enough such that perturbation 
analysis is applicable, hence a method of linear 
analysis can be used effectively. The structure of 
the disturbances undergoes sharp variations in 
the near-wake region which extends a distance 
of only a few body diameters. Thereafter the 
disturbed flow becomes essentially quasi-neutral 
and persists for a relatively long period of time, 
during which collision-free Landau damping pro- 
cess acts to nullify the disturbances. The body- 
plasma interaction can also be viewed in a different 
light: the rapid motion of the charged body can be 
considered as a generator of low-frequency collec- 
tive oscillations of the positive ions--the ion acous- 
tic waves. 

The unique feature of a great extension of the 
collision-free plasma disturbances behind a moving 
body is technically important. For instance, it con- 
stitutes an excellent target for radio-wave tracking* 
of the moving object when the body itself does not 
provide large enough scattering cross-section for 
wave-echos. The plasma tail which has perturba- 
tion of the electron density that leads to the varia- 
tion of the plasma dielectric constant which is 
responsible for the scattering effect. Although the 
dielectric constant of the trail is lower than that 
of a metallic body it compensates in total scattering 
effect many-fold over by its extremely larger size. 

The linear theory of mesothermal far wakes in a 
collision-free plasma without magnetic field has 
been reviewed recently ~5~ and will not be repeated 
herein. It is, however, pertinent to discuss the 
magnetic field effect on the electron motion in the 
wake hence the radio-wave scattering by the wake 
of moving body in the ionosphere. The magnetic 
field effect on the plasma interaction in the case of a 
far wake is no longer negligible because the length 
of the plasma tail could be much larger than the 
Larmor radii of the ions. 

It is expected that the geomagnetic field could 
critically affect the length of the wake depending on 
the orientation between the magnetic line of force 
and the axis of the wake. If the body is moving 
along the magnetic field lines ambient electrons 
which are moving into the void with thermal speed 
will be turned around by the field before they 
penetrate a distance of the order of its Larmor 
radius. The ions, having larger Larmor radii, are 
much less influenced by the magnetic field. As it 
was depicted earlier, the ions cannot separate from 
the electrons by more than a distance of the order 
of Debye shielding length ()tD). The net effect on the 
electrons of dragging by the ions and deterring by 
the magnetic field is to fill in the void with a drift 
motion of the electrons around the circumference 
of the cylindrical void which is inconsequential as 
far as void-filling is concerned. The net effect is that 

* Technically known as the RADAR technique. 

there will be a considerable elongation of the wake 
if the electron collisions with ions and neutral are 
neglected. Otherwise, the electrons may diffuse a 
distance of the order of Larmor electron radius 
across the field lines as a result of a collision. When 
the body moves oblique to the magnetic field lines, 
electrons and ions tend to spread into the void due 
to their thermal motions. 

9. SLENDER-BODY T H E O R Y  

The ionospheric aerodynamic problems treated 
so far are of the type where the characteristic 
dimension of the moving body is much larger than 
the Debye shielding length (,~D). On account of the 
distinctive differences in flow and field characteris- 
tics in front and behind the moving body, they have 
been treated as separate entities. It is intended now 
to develop a unified theory of plasma interaction for 
a slender body, for which R ,~ Am that moves at 
mesothermal speed in a collision-free fully ionized 
plasma where magnetic field effects are unimpor- 
tant. 

The dynamical consequences of the motion of a 
charged body in a plasma can be considered from 
two different points of view: 

(i) Waves and energy. A charged body travelling 
through a tenuous plasma may lose energy to the 
collective motions of oscillations by the plasma 
particles in addition to the energy loss by means of 
aerodynamic drag. When the body speed is 
mesothermal, the important mode of waves thus 
excited must be the ion acoustic type (Section 3.2). 

(ii) Disturbed particle and field distribution. The 
motion of the body makes it necessary for the 
ambient plasma in the neighborhood to adjust to 
new distribution together with a new local field. The 
self-consistent particle and field distributions under 
the influence of a prescribed motion of the body are 
the electrogasdynamic effects of interest. We shall 
confine our discussions to the latter viewpoint. 

9.1. Linearized Equations of Particles and Field 

The ion distribution, under the influence of a 
slender body having minute negative charge and 
moving at mesothermal speeds, is described by the 
Vlasov equation (5.10)" 

f~+v. 0J~ e O~ Of,=O (9.1) 
//t 8 x  m~ 8 x  8 v  

the electron distribution, as usual, complies with 
the Maxwell-Boltzmann law: 

rne 3/2 l 

(9.2) 

and the field potential ~b(x) obeys the Poisson 
equation: 

V% =-4~e(f f, dv- f f, dv). (9.3) 
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If the body is sufficiently thin and the charge on 
the body sufficiently small, the perturbed ion dis- 
tribution can be represented as 

/~(x, v, t) = f~(v) + f '(x, v, t) (9.4) 

where L is the Maxwell distribution for the undis- 
turbed plasma 

I m, "~"~ (_ m o~  
f==n=~2~-~KT~ ) e x p \  2KT~] (9.5) 

f ' ,  the perturbation. The electron density n,(x) 
evaluated from eqn. (9.2) becomes 

e4~ (1 + KeT~T+ " n ,=n~exp( -~- -~)=n~ . ' )  (9.6) 

where le~/KT, I ~ 1. The substitution of eqns. (9.5) 
and (9.6) in eqns. (9.1) and (9.3) yields 

Of t - e Odp Of= Of' 4- v . . . . .  (9.7) 
Ot Ox m~ Ox Ov' 

(V 2 -  A ~")~b = - 4 ~ r e (  f '  dv (9.8) 

where AD = (KT,/4rrn~eZ) Ip-. 

9.2. Fourier Transform Analysis 

To solve for f '  we follow the standard proce- 
dure ~39'4°~ with the introduction of a direct velocity U 
of a particle caused by the field potential ~(x) as 
represented by 

a U  e 04~ 
Ot m~ Ox" (9.9) 

Let  

= v - U(x, t). (9.10) 

Equation (9.7) becomes 

Oft+ ~ . Of t O ( Of~) 
0--t- -~x = ~ .-~x U . - ~ -  (9.11) 

and eqn. (9.8) becomes 

= -4Trey  ft dv. (9.12) (V 2 - 

The method of Fourier  transform can be used to 
solve the system of linear equations (9.11) and 
(9.12). Let 

f ' (x,  ~, t) = f A(k, co, ~ ) e ',~ ) dk  doJ 
J 

(9.13) 

and 

U(x, t) = f B(k, to) e ~a ..... ~ dk  do). (9.14) 

The ion density perturbation is 

n ~ = n , - n = =  f f '  dv 

= m----L f e "~ ..... '3~(k, w) dk  do) (9.15) 
KT, 3 

where 

B . k  
o¢(k, to) = - - - ~  f ( ~  " ~ k ) Z ~  d~ - _ - -z - . -  ' (9.16) 

Under the mesothermal condition and negligible 
Landau damping, the integral (9.16) can be simp- 
lifted ~9~ 

5 ~ = 1 + 0 ( ~ )  (9.17) 

and eqn. (9.15) becomes 

t = n = m i  f 
n KTI 3 (B • k) e "k ..... ~ dk  do). (9.18) 

Let U(x, t) = o/at(oG/ax),  the eqns. (9.18), (9.12) 
and (9.9) can be simplified to the following 
form: ~'°.4, 

-ff~-= ~ 4~ (9.19) 

and 

4~ren~m~ 
(V 2 - A ~,2) 4> KT~ V2G" (9.20) 

The boundary and initial conditions complying 
with given physical situations that are imposed on 
the functions ~b and G can be formulated as 
follows: at the surface of the body we may pre- 
scribe ~b = ~b,, a constant value for the surface 
potential in the case of a conducting body.* Far  
upstream of the body, <h must vanish. In the 
particle aspect, the boundary condition for a two- 
dimensional body can be prescribed by first letting 
the equation of the body surface S as 

f = y - * l o ( x - V ~ t )  o n S  (9.21) 

where V~ is the body velocity which is along the 
x-axis;  x and y measure along the longitudinal and 
transversal dimensions of the slender body respec- 
tively. Differentiating eqn. (9.21) and neglecting the 
highest-order term, we have the remaining terms: 

02G 
OyOt = -  V.rl'o on S. (9.22) 

Following the usual practice in thin airfoil theory, 
the condition (9.22) may be evaluated at y = 0 
instead of at the actual boundary of the body. 

Some physical insight into eqns. (9.19) and (9.20) 
may be gained by introducing an approximation on 
~b, which is appropriate for the slender bodies 
(R ,~ Xo) 

Under the condition (9.23), eqns. (9.19) and (9.20) 

* In the case of a dielectric body, either th or its normal 
derivative may be prescribed. 
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become 

KT,. 1 ~ V2G (9.24) 
e v~ 

O 2 G 
( K T ' )  2 v : c  = o.  ( 9 . 25 )  

- ,,,---7/ 
For coordinates fixed to the body, eqn. (9.25) 

becomes the usual wave equation with the speed of 
propagation (KT,/m~) ~n equal to the speed of the ion 
acoustic wave. Here once again we see the fluid- 
nature behavior of the collision-free plasma due to 
their collective action through a self-consistent 
field. 

I0. AERODYNAMICS OF METEORS 

The discussion on aerodynamic problems, so far, 
has been limited to the cases where the physical 
conditions of the moving body remain unchanged. 
In reality, there are many situations, e.g. a missile 
re-entering into the atmosphere, where the body 
surface is caused to transform with considerable 
aerodynamic consequences. The remaining space 
of the present review will be used for a glimpse at a 
class of aerodynamic problems for which the mov- 
ing body of interest is allowed to change as a 
feedback to the dynamics of flow. The meteor 
phenomenon will be taken up first and then the 
comet for which the kinetic processes of interac- 
tion between the cometary atmosphere and the 
solar wind are not yet completely understood. 

10.1. Statement of the Problem 

A meteor is an extraterrestrial body which moves 
at an extremely high speed, e.g. 30 km/sec, into the 
Earth's atmosphere. Solid bodies entering the at- 
mosphere at such high speeds will be heated to 
incandescence by friction with the air and in some 
cases they are melted or vaporized. When this 
happens we see a momentary streak of light in the 
upper atmosphere which is part of a meteor 
phenomenon. Atoms evaporating from the surface 
of a meteoroid possess energies as high as hundreds 
of electron volts. The vaporizing atoms are ionized 
principally in the first collisions with atoms of the 
ambient air. The ions and electrons produced 
thereby form a cloud of quasi-neutral plasma 
whose concentration at the time of plasma forma- 
tion is usually higher than the concentration of the 
ionospheric plasma at those altitudes. The meteor 
wake formed in the process dissipates by ambipolar 
and possibly turbulent diffusion. Radar techniques 
which are adopted to observe echoes from the 
ionized meteor trails have been useful tools for the 
study of the upper atmosphere. Various scattering 
theories have been developed that give the amp- 
litudes and durations of the radar echoes in terms 
of the ionization densities in the trails among other 
factors. 

From the aerodynamic point of view, the meteor 
phenomenon is a conglomeration of problems of 
aerodynamic heat transfer, ablation, plasma 
dynamics in addition to radar tracking. It has 
practically all the essentials of the missile re-entry 
problems and possibly at a higher intensity because 
meteors move at higher speeds into the Earth's 
atmosphere. This has been one of the motivations 
in the earlier studies of meteor aerodynamics. The 
specific aspects of meteor aerodynamics that fit in 
the present study are: (i) the problem of the initial 
radius of ionized meteor trails, i.e. the kinetic 
process of interaction between the evaporated 
atoms and the ambient atoms; (ii) the ambipolar 
diffusion of the trail in the presence of an external 
magnetic field. The former is germane to the meteor 
detectability via electromagnetic wave scatter° 
ing: '4:3 it also reveals that the evaporated meteor 
atoms undergo stages of free molecular, transi- 
tional and continuum flows--a problem of funda- 
mental importance to rarefied gas dynamics. The 
latter constitutes an interesting application of the 
theories developed in Section 5.2.1. 

A meteor aerodynamic problem is often made 
extremely complicated by the nonlinear coupling 
between the various after-effects of meteor 
aerodynamics, e.g. ionization, recombination, radi- 
ation, etc. The essentials of meteor phenomenon 
can be effectively treated by dividing it into two 
parts: the gas kinetics of flow of the evaporated 
atoms and the microscopic processes of inelastic 
atomic collisions. It is the first part that we shall be 
concerned herewith. An idealized and viable model 
of the meteor trails has been proposed t43~ of which 
the meteor is represented by a point source of 
evaporated meteor atoms whose intrusion into the 
ambient atmosphere undergoes stages of free 
molecular, transitional and diffusional flows. In the 
initial period prior to their collisions with the am- 
bient air molecules, the atom convection can be 
considered as a free molecular flow which is related 
to the determination of the initial radius of a trail; 
after several collisions the distribution of the 
evaporated meteor atoms become essentially ther- 
realized and is close to equilibrium with the ambient 
air--a diffusional flow which is often called a 
convection-diffusion process. The motion of the 
ion species, produced by the meteor atomic colli- 
sions, obey the law of ambipolar diffusion which is 
further complicated by the presence of a magnetic 
field. 

10.2. Formulation of Aerodynamics of the Meteor 
Trail 

Consider a stationary point source of evaporated 
meteor atoms at the origin (x = 0). The distribution 
of meteor atoms having velocity v at time t and 
position x is denoted by f(x, v, t). They interact 
with the ambient atmospheric molecules (or atoms) 
whose distribution is denoted by F(v~) which is 
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assumed stationary. The transfer of the dynamic 
characteristics of the meteor atoms Q(v) in the 
phase space (x, v) can be represented by a moment 
equation of Boltzmann as given in Section 5.2.1. 

O(nm(Q)) ~_ 0_.0_ . (n,,(vQ)) 
Ot Ox 

= f f f [O(v')-O(v)]F(v,)f(v) 
x l v ~ -v l Gdg)  dvdv~ (10.1) 

where the collision-term (Q(Sf/6t)c) has been pre- 
scribed in terms of Boltzmann's binary collision 
integral ~23'~3~ which is valid for the collisions be- 
tween meteor atoms and the atmospheric molecules 
or atoms. 

The incomplete understanding of the initial vel- 
ocity distribution at the source and the interest to 
obtain a uniform representation including free 
molecules to diffusional flow prompt us to use the 
transport equation (5.21) instead of the Boltzmann 
equation (5.1). With the choice of Q = I and Q = v, 
eqn. (10.1) can be simplified into the following 
f o r m s :  ~23,431 

0nm + ___O 
Ot 0x ' ( n V " ' ) = n " ( v l - v a )  (10.2) 

and 

O(mn,.V,,,)+ O = -mn.,vV,,, (10.3) 

respectively where v, denotes the frequency of 
ionization of meteor atoms: vA that of attachment, 

P,., the pressure tensor that has diagonal elements* 
only. 

The elimination of V,, between eqns. (10.2) and 
(10.3) yields 

102n,,, 1 (  v , -  va) Onm VI-- IJA 
V"n°, = ~ - - ~ - ~ -  + ~ 1 -  nm 

v Ot D 
(10.4) 

where A 2= KT/m, D = KT/mv with T, assumed 
constant, denoting an effective kinetic temperature 
of the evaporated meteor atoms of mass m. The 
quantity D approximately equals the diffusion 
coefficient of the meteor atoms in the ambient air. 
The quantity A represents the propagation speed of 
a small pressure impulse of meteor atoms assum- 
ing an isothermal process during the propagation. 

10.3. Nature of the Solution of Meteor Trail Equa- 
tions 

Notice that eqn. (10.4) is a so-called telegrapher 
equation ~'~ where A denotes the dissipationless 
propagation speed of a telegraph signal; D, the 
coefficient of diffusion of the signal during propaga- 
tion. The solution to eqn. (10.4) will have a well- 
defined wave front representing an average be- 
havior of meteor atoms prior to their collisions with 

* This assumption implies that the flow of the meteor 
atoms is frictionless (see Section 5.2.2(b)). 

the ambient moleculesJ '3~ In addition the solution 
also has terms denoting residual disturbances 
which persist at all points traversed by the wave 
front. ~4~ The telegrapher equation thus lies between 
the simple wave equation whose solutions have a 
wave front but no residual disturbances and the 
classical diffusion equation whose solutions have 
residual disturbances but no wave front. The differ- 
ence between them becomes indistinguishable after 
a few collisions from the initial instant at t = 0. The 
stationary point source solution to eqn. (10.4) has 
been obtained ~'3~ which gives the distribution of 
meteor atoms evaporated from a stationary point 
meteorite. The corresponding distribution for a 
uniformly moving meteorite can be determined by a 
simple application of the Galilean transformation to 
the stationary source solution as has been done in 
the heat conducting problem for a uniformly mov- 
ing sourceJ 45~ 

The present result of the initial expansion of the 
cloud of evaporated meteor atoms can be used to 
make a rational determination of the "initial radius" 
of the ionized meteor trails which were defined on 
the basis of a variable mean free path approach in 
the meteor publications, which is an unsatisfactory 
way of treating nonequilibrium kinetic processes. 
Considering the high speed with which the evapo- 
rated meteor atoms leave the meteor surface, cor- 
responding to a kinetic energy of several electron 
volts for some meteors, the present theory thus 
provides an elucidation of an earlier observation 
which found the initial spreading of a meteor trail 
"explosively" fast, not at all diffusionlike. "6~ 

It is also of interest to use the present theory to 
explain the double trails observed for some fast 
me teorsS  ~ It was observed that a meteor at an 
altitude of 100-110 km has a broad trail that shows 
an outer trail with a diameter about 20cm that 
surrounds a bright inner trail of much smaller width 
with sharp borders between these concentric trails 
at the initial instant of the trail's formation. Now 
consider the atomic streams emitted from the sur- 
face of a meteorite; two distinctive groups must 
exist: (i) the evaporated meteor atoms with a cer- 
tain kinetic energy of escape from the meteor 
surface, (ii) the atmospheric molecules which are 
reflected specularly from the meteor surface with 
velocities of the order of meteor speed. Besides the 
difference in their velocities, these streams differ, 
of course, in composition and ionization collisions 
as well. Therefore there exist two separate wave 
fronts with different speeds of propagation into the 
ambient air that account for the observed double 
trails according to the present theory of meteor 
trails. 

10.4. Ambipolar Diffusion of  Ionized Meteor Trails 

The ionization collisions between the evaporated 
meteor atoms and the ambient air are the primary 
source of ionization production in the meteor trails. 
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Since the electron density of a meteor trail deter- 
mines its detectability during a radar observation, it 
is of interest to study the diffusion process of the 
positively charged ions and the free electrons in a 
meteor trail particularly in the presence of an 
external magnetic field. 

In the absence of a magnetic field, it is noted that 
the large difference in the diffusion coefficients for 
ions and electrons will lead to their separation. The 
separation of the charged particles will produce 
electrostatic forces tending to resist the separa- 
tion. As a result, the electron diffusion rate is 
decreased while that for the ions is increased and 
both particles diffuse at the same rate given by the 
coefficient of ambipolar diffusion Da which is a 
function of the diffusion coefficients and mobilities 
of ions (D~, K,) and electrons (D,, K,). 

It has been showff ~ that in the absence of a 
magnetic field, the ambipolar diffusion of a weakly 
ionized gas obeys the classical diffusion equation: 

On (10.5) ~-  = Da V 2 n 

where quasi-neutrality is assumed, i.e. n = n~ = n, 
with singly-charged particles and 

K,D~ + KiD, 
DA = K, + K; (10.6) 

The use of Einstein's relation between the mobility 
and diffusion coefficient of the particles, namely 
K,/D, = e/(KT,) and K~/D~ = e/(KT~) where T; and 
T, are the ion and the electron temperatures re- 
spectively, helps to simplify eqn. (10.6) for Da. This 
simplification is found particularly effective consid- 
ering the large mass ratio of ions and electrons thus 
(Te/D,)(DdTO~ 1 we have DA =D~(I + T,/T~) and 
with an isothermal plasma T~ = T,, DA = 2D, 

If we can represent a meteor trail by a line source 
of strength Q which diffuses into a neutral atmos- 
phere, the solution to eqn. (10.5) becomes 

n ( r , t ) = 4 ~ a t  exp[ -4 -~a t ]  (10.7) 

where t denotes the time lapse after the passage of 
the meteor; r, the radius from the trail axis referring 
to a coordinate system fixed to the meteor in 
question. It is noted that in the above diffusion 
analysis, the initial radius effect which accounts for 
the free molecular and transitional regions of the 
trail has been ignored. 

In the presence of a magnetic field, charged 
particles tend to gyrate around the magnetic field 
with their respective Larmor frequencies until 
these are interrupted by particle collisions. As a 
result, a magnetic field reduces the ion and electron 
diffusion coefficients transverse to the field to D~ 
and D,~, respectively, leaving the longitudinal 
coefficients unchanged. These transverse diffusion 
coefficients can be approximated as follows: TM 

2 

D , ~ = ~ D ,  ( a = i , e )  (10.8) 

where v~, v, and the ion and electron collision 
frequencies and fL, ~ ,  are the Larmor gyrofre- 
quencies respectively. At meteor altitudes, D~l will 
be close to D~ but D~ is greatly reduced at altitude, 
say, above 95kin. It is reasonable to treat the 
ambipolar diffusion of a meteor trail above 95 km as 
an isotropic diffusion with the longitudinal coefficient 
equal to DA and the transverse coefficient D .  

On _ [32n+ 32n\ 02n 
a--~ = u ~  ~ ~-~x ~. ~y~ } + D, , ~y , (10.9) 

with the magnetic field in the y-direction and 

K, ID~ + K~zD, l 
Dl (10.10) 

K,~ + K;~ 

The solution to eqn. (10.9) is 

/ x ' + z "  y" \ ]  
. = Q exp +4- at)j. ( l O l l )  47rDI(DA ): ' t  

11. COMETARY GAS DYNAMICS 

From the gas dynamics of meteors to that of 
comets, another degree of complexity is added. 
While the cause and nature of the meteor atom 
evaporation and dispersion as a result of 
aerodynamic heating are well known, the composi- 
tion of the cometary atmosphere and its micros- 
copic interaction with the oncoming solar wind are 
yet to be settled. None the less, macroscopic 
theories of cometary gas dynamics have already 
served important causes in the contemporary as- 
trophysics. 

11.1. Astrophysical Significance of the Cometary 
Phenomena 

The primordial origin of comets in the solar 
system is still being debated among astrophysi- 
cists. Suffice to say that comets are astronomical 
objects that may contain frozen gases like ammonia 
and probably water. They appear to contain large 
amounts of hydrogen, trapped in these molecules, 
or larger molecules that can break up into NH~, OH, 
CO2 and CH on exposure to solar radiation. There 
may be large amounts of frozen hydrogen gas 
present as well. Some of the comets at large 
distances from the sun may represent deep-frozen 
samples of matter preserved from the early solar 
system and therefore are interesting objects to 
study if the history of the solar system is to be 
reconstructed. 

The continual heating by solar irradiation can 
evaporate most of the short-period comet gases. 
The comet nucleus itself is too small to hold on to 
these gases through its gravitation and soon the 
entire comet disintegrates. If it has a solid core, 
only that core would remain and become an asteroid 
or a meteorite in the solar system. Some comets 
have elliptic orbits about the sun; their periods may 
range from a few years to many hundreds of years. 
Other comets have nearly parabolic orbits and must 
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be reaching the sun from the far reaches of the 
solar system. 

A typical comet has a fuzzy head, called the 
coma, surrounding a bright nucleus and a long tail 
when its orbit is under closer influence by the sun. 
The intense interest in the studies of comets stems 
also from the fact that comets can be considered as 
natural probes of the interplanetary plasma or solar 
wind; hence potentially may supply astrophysical 
information which can be extracted from ground or 
in situ observations. The gasdynamic interaction of 
solar wind with a comet which has its own atmos- 
phere without its own magnetic field is somewhat 
like that with a non-magnet planet, e.g. Mars or 
Venus. In fact, it was Biermann's observation ~'~ of 
the comet tails that led him to predict a continuum 
streaming of plasma from the sun, now known as 
the solar wind. ~4~ 

11.2. Nature of  Cometary Gas Dynamics  

On the basis of observational data, a gross de- 
scription of comets can be made. The coma has 
essentially a spherical volume centered on the 
cometary nucleus from which neutral molecules 
appear to be moving away with velocities of about 
0.5 km/sec. Charged particles are produced from 
the neutrals either by absorption of solar radiation 
or by their interaction with the solar wind. The 
question pertaining to the mechanism of this in- 
teraction is still unsettled. The coma can be de- 
tected out to distances of 10 ~ to 10 6 km from the 
nucleus. Another basic structural element of a 
comet is the tail which can be as long as 108 kin. 
There are two distinctive types of tail structures. 
The Type I tails which point straight away from the 
sun with filamentary structure in the form of tail 
rays are composed of ionized gases. The Type II 
tails, which are composed mainly of dust, are 
strongly curved, broad and apparently without ex- 
tensive fine features. The Type II tails are generally 
shorter than the Type I tails. 

It should be noted that the construction of a 
theory of cometary gas dynamics is still plagued 
with uncertainties about some basic physical con- 
cepts on which it is built. For instance, the hyd- 
romagnetic interaction between the solar (magneto- 
plasma) wind and the cometary atmosphere rests 
on the assumption that the latter becomes ionized 
sufficiently fast somehow in order to be coupled to 
the former by means of a convected or fluctuating 
field; yet an ionization process suitable for such 
results has not been established. Besides, the study 
of cometary gas dynamic interaction depends criti- 
cally on the rate of ionization of the cometary gas in 
question. In view of this dilemma, it serves no 
important purpose by performing detailed exercise 
of cometary gas dynamic calculations. Instead, we 
shall dwell on the criterion for the establishment of 
hydromagnetic interaction between the solar wind 
and the ionized cometary atmosphere which is 

relevant to the study of the contemporary cometary 
gas dynamics. 

To simplify matters for the sake of discussion, 
we consider a cometary atmosphere with sufficient 
ionized components such that its conductivity is 
high enough to induce an electric current that 
interacts with the solar magneto-plasma. Under 
such conditions, a bow hydromagnetic shock wave 
can be expected for the interaction between the 
oncoming solar wind and the comet. With an as- 
sumed shock discontinuity in the flow field, 
the gas dynamic problems becomes a simple 
hypersonic flow over a blunt body c27~ with, of 
course, proper consideration of the hydromagnetic 
aspect of the flow. The kernel of the difficulties with 
such an approach is the irreconcilable time scales: 
the observed time scales of the variation in comet- 
ary structure and of the likely ionization processes 
either by charge transfer or by absorption of solar 
ultraviolet light are orders of magnitude apart. 

It is illuminating to follow Biermann et al. "8~ who 
investigate the macroscopic feature of the plasma 
flow on the sunward side of a comet by means of a 
stationary quasi-hydrodynamic model. The hyd- 
rodynamic equations are modified by adding source 
terms to take into account the influence of the 
added plasma of cometary origin. 

The inviscid hydrodynamic equations modified 
by source terms are as follows: 

an+ a 
~- ~x • (nV) = A, 

Op a ~ + ~  .(pV)=B, 

°(PV)~v. (pVl+pV 7x.V +-~x=C, 
at 

3-t P T  + +-~x "V p + p = D ,  

where n, p, p represent the number density (ions 
plus electrons) the mass density and the pressure 
tensor of the plasma (including the magnetic stress 
tensor) which has only isotropic diagonal compo- 
nents hence have been replaced by a scalar, V its 
mass velocity vector and 3' denotes the ratio of 
specific heat (3' = 2 to include the magnetic pres- 
sure H:/8~'). The source terms A - D  describe the 
local gains which the plasma undergoes in the 
corresponding quantities due to the (charge) ex- 
change of particles with the neutral cometary gas. 
Simple order of magnitude analysis shows that in a 
steady supersonic flow the source term B for the 
mass conservation equation has the predominant 
source effect on the system. Using a simplified 
one-dimensional model, it can be shown "~ that 
under their assumed ionization rate for the comet- 
ary molecules hence the mass accretion rate for the 
plasma flow, a shock transition from supersonic to 
subsonic flow is necessary. Biermann et al. ~"~ pro- 
ceeded to give an elaborate flow-field analysis for 
the interaction between the solar wind and a comet. 
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The tentat ive solution of Biermann et al. 148~ for 
comets  and their extension to Mars and Venus must 
be subjected to experimental  verification on the 
basis of in situ observat ions by space probes. Some 
features of the comet ,  Mars or  Venus that have 
bearings on the consequence  of the theory are 
experimental ly  verifiable, e.g. the extent  of the 
upstream disturbance must be limited by the shock, 
exis tence of high energy spikes of electrons or ions 
as a result of a strong shock, etc. 

The causes of ionization of the cometary  gas are 
still not  clear since all the mechanisms considered 
are too weak to provide the observed degree of 
ionization. It was proposed c49~ that the motion of the 
solar magneto-plasma relative to the neutral comet-  
ary atmosphere obeys the critical veloci ty 

V (~0) hypothesis  of Alf e n  which implies that when the 
relative velocity between a neutral gas and a mag- 
netized plasma increases to a value of ( 2 e ~ / m n ) ~ ,  
then ionization of the gas will increase abruptly. 
Here 4~ and mn are the ionization potential and 
mass of the neutral atom respect ively.  Considera-  
ble discussions pertaining to Alfven ' s  hypothesis  
are available in the literature. ~-~ 

So far our discussion has been limited to the 
sunward side of the cometary  gas dynamics.  To 
study the dynamics of the tails, let us start with the 
accelerat ion observed in the comet  tails. The Type I 
tails normally have high accelerat ions of the order 
of l02 or 103 t imes solar gravity, while the dust tails 
(Type II) have accelerat ions of the order of solar 
gravity (which is equal to 0.6 cm/sec :  at l as tronom- 
ical unit from the sun). The accelerat ions in dust 
tails can be explained by considerat ion of the solar 
radiation pressure, the solar gravity and the 
aerodynamic drag of the free expanding dust parti- 
cles in a free expanding cometary  gas. 's2' However ,  
the accelerations in ionized tails are far too high to 
be explained by this mechanism. It was this ob- 
served anomalous high outward accelerat ion of the 
comet  tails that prompted Biermann to propose the 
existence of some general streaming of plasma 
particles outward from the Sun. Biermann has 
pointed out that the ionization and excitat ion of the 
molecular  ions can be explained only by some kind 
of particle flux, presumably the same solar stream- 
ing responsible for the accelerat ion.  

.The basic fi lamentary structure of the Type  II 
comet  tails appears to be compell ing evidence for 
magnetic tails in the ionized gas comet  tails. Pursu- 
ing along this line of  argument ,  one may suggest 
various modes of plasma instabilities to explain the 
fine structure of the tails. 
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