Heat capacities and thermodynamic properties of Li_{0.5}Fe_{2.5}O₄ and Li_{0.5}Al_{2.5}O₄ from 5 to 545 K

AGUSTIN F. VENERO and EDGAR F. WESTRUM, JR.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, U.S.A.

(Received 30 December 1974; in revised form 3 February 1975)

The heat capacities of $\text{Li}_{0.5}\text{Fe}_{2.5}\text{O}_4$ and $\text{Li}_{0.5}\text{Al}_{2.5}\text{O}_4$ were measured by adiabatic calorimetry from 5 to 545 K and no transitions or thermal anomalies were found. The low-temperature heat capacity of $\text{Li}_{0.5}\text{Fe}_{2.5}\text{O}_4$ shows the $T^{3/2}$ dependence expected for a ferrimagnetic substance. Lattice and spin-wave contributions to the heat capacity were calculated and compared with Pollack's values. The heat capacities of both compounds above 300 K are in good agreement with values obtained by Kopp's rule based on the component oxides. At 298.15 K, the heat capacity at constant pressure C_p , the entropy S° , and the function $[\{G^\circ(T) - H^\circ(0)\}/T]$ are 34.43, 29.20, and -11.811 calth K^{-1} mol⁻¹ for $\text{Li}_{0.5}\text{Al}_{2.5}\text{O}_4$. For the latter compound at 298.15 K $\Delta H_l^\circ = -(541 \pm 2) \text{ kcal}_{1h} \text{ mol}^{-1}$ and $\Delta G_l^\circ = -(535 \pm 2) \text{ kcal}_{th} \text{ mol}^{-1}$.

1. Introduction

The refractory compounds $Li_{0.5}Fe_{2.5}O_4$ and $Li_{0.5}Al_{2.5}O_4$ with their inverse-spinel structure are of considerable interest both scientifically and technologically. Lithium ferrite ($Li_{0.5}Fe_{2.5}O_4$) has been studied extensively⁽¹⁾ not only because of the interesting ordering of the lithium ions below 1040 K, but also because of its excellent square magnetic hysteresis and its consequent application in computer memory cores. Lithium aluminate spinel ($Li_{0.5}Al_{2.5}O_4$) has been used widely⁽²⁻⁵⁾ as a host lattice for the study of the effects of dopants in octahedral and tetrahedral environments. Disks of the aluminate have been recently hot pressed into a transparent ceramic for possible application as a high-temperature optical material. The heat capacities and thermodynamic functions obtained in this study together with thermochemical data—as they become available—will give a complete thermodynamic picture of these important substances.

2. Experimental

PREPARATION AND CHARACTERIZATION OF SAMPLES

Lithium ferrite and aluminate were prepared by solid-state reactions between lithium carbonate and aluminum and iron sesquioxides. The lithium carbonate was Baker's Analytical Reagent Grade, the iron(III) oxide was Baker's Reagent Grade, and the

A. F. VENERO AND E. F. WESTRUM, JR.

aluminum oxide was Semiconductor Grade from the Linde Division of the Carborundum Corporation. The reactants were well mixed nuchanically and then pressed into pellets in a steel die using pressures up to 10⁵ kPa. The ferrite powder was reacted in air at 1050 to 1150 K, ground in a steel mortar, sieved, repelleted, and refired at 1350 K. The aluminate was similarly treated but the corresponding temperatures were 1350 to 1500 K and 1550 K. After the final firing the products were annealed for 10 days and slowly cooled to room temperature. The annealing temperatures were 900 K for lithium ferrite and 1300 K for the aluminate sample. The annealed products were characterized by X-ray diffraction using a Guinier-Häag camera with Cu-K α_1 radiation and by chemical analysis. The diffraction patterns of both compounds revealed no second phases, and the refined lattice parameters (based on 13 lines for the ferrite, and 17 for the aluminate⁽⁶⁾) agreed well with the accepted values. The lattice parameters for lithium ferrite and lithium aluminate obtained in this work were (0.8330 ± 0.0001) nm and (0.7906 ± 0.0002) nm, respectively; these accord well with the accepted values (0.8331 ± 0.0002) nm,⁽⁷⁾ and (0.7907 ± 0.0001) nm.⁽⁸⁾ Chemical analyses for lithium and iron made on the lithium ferrite sample indicated: Fe, (67.16 ± 0.24) mass per cent (theoretical, 67.42 mass per cent); and Li, (1.70 ± 0.03) mass per cent (theoretical, 1.68 mass per cent). The lithium analysis for the aluminate sample was (5.63 ± 0.05) mass per cent of Li₂O (theoretical, 5.54 mass per cent).

CRYOSTAT AND CALORIMETERS

694

The low-temperature heat capacities of $Li_{0.5}Fe_{2.5}O_4$ and $Li_{0.5}Al_{2.5}O_4$ were determined in the Mark II adiabatic cryostat described in detail elsewhere.⁽⁹⁾ Temperatures are based on a thermometer calibration by the National Bureau of Standards and are believed to agree with the International Practical Temperature Scale (1948, revised 1960) within 0.04 K from 90 to 350 K, 0.03 K from 10 to 90 K, and within 0.1 K from 4 to 10 K.

Information on the loading of both compounds in the cryostat and thermostat used is summarized in table 1. The top of calorimeter W-16 was sealed in place with

${\rm Torr} = (101.325/760) {\rm kPa}$							
Compound	Calorimeter designation	$\frac{V}{\mathrm{cm}^3}$	m g	$\frac{\rho}{\mathrm{gcm^{-3}}}$	p Torr		
	L Ma	ow-temperatu rk-II cryostat	re determinations (A-5 thermometer	r)			
Li _{0.5} Fe _{2.5} O ₄	W-16	73	124.905	4.75	51		
$Li_{0.5}Al_{2.5}O_{4}$	W-48	44	50.652	3.28	66		
	Hi Mark	gher-temperat	ure determination at (A-8 thermomet	s ter)			
Li _{0.5} Fe _{2.5} O ₄	W-22-P	84	124.447		114		
Li _{0.5} Al _{2.5} O ₄	W-22-P	84	52.857		110.5		

TABLE 1. Calorimeter loading information: volume V of calorimeter, sample mass m, density ρ , and He pressure p

Cerroseal-35 (indium + tin solder). The loaded calorimeter was then evacuated at room temperature for about an hour through a small hole in the helium seal-off tube and 51 Torr of pure helium was admitted to the calorimeter to assure thermal contact between calorimeter and sample.[†] The calorimeter was then sealed with Cerroseal-35 with a soldering iron operating within the vacuum chamber. The amounts of solder and Apiezon-T grease (used to assist in establishing equilibration between the thermometer-heater assembly and the calorimeter) were adjusted carefully to the amounts present during the determination of the heat capacity of the empty calorimeter. The procedure used to determine the heat capacity of lithium aluminate was the same as described above except that a screw-type closure calorimeter, similar to one described elsewhere,⁽¹⁰⁾ was used.

The heat-capacity determinations in the range 300 to 550 K were made in the previously described Mark IV adiabatic thermostat⁽¹¹⁾ which has two internal shields that are controlled automatically. A third automatic control operates a guard shield that surrounds the two adiabatic shields and the calorimeter and minimizes the heat leak between the shields and surroundings. The experimental procedure used was very similar to that for the determination of heat capacities in the Mark II cryostat.

3. Results

The experimental values of the molar heat capacities of lithium ferrite and aluminate are given in chronological order, in tables 2 and 3, and are depicted in figure 1. These values have been adjusted to the true heat capacities by applying a curvature correction for the finite temperature increments used in the measurements. The ice point is taken to be 273.15 K and the molar masses of $\text{Li}_{0.5}\text{Fe}_{2.5}\text{O}_4$ and $\text{Li}_{0.5}\text{Al}_{2.5}\text{O}_4$ were taken to be 207.085 and 134.921 g mol⁻¹ respectively on the 1968 scale of relative atomic masses. The molar heat capacity and thermodynamic functions derived from the heat capacities are listed at selected temperatures in tables 4 and 5. These heat capacities were obtained by a digital computer and are estimated to have a probable error of 0.1 per cent above 25 K, and 1 per cent at 14 K increasing to about 5 per cent at 5 K.

LITHIUM FERRITE

The heat capacity of lithium ferrite was extrapolated below 5 K by using an equation of the form $C_p = aT^3 + bT^{3/2}$ where a and b were obtained from a least-squares treatment of the plot of $C_p/T^{3/2}$ against $T^{3/2}$, shown in figure 2. The values of a and b obtained in this work ((13±5) µcal_{th} K⁻⁴ mol⁻¹ and (160±2) µcal_{th} K^{-5/2} mol⁻¹) may be compared with those of Pollack and Atkins⁽¹²⁾ ((24±1) µcal_{th} K⁻⁴ mol⁻¹ and (162±4) µcal_{tb} K^{-5/2} mol⁻¹, respectively). Although the values of b obtained from both studies are well within the calculated standard deviations, there is no apparent explanation for the discrepancy in the values for a.

Above 298 K the heat capacity of lithium ferrite has been measured by Reznitzkii et al. by the continuous heating method⁽¹³⁾ under adiabatic conditions. Using this

[†] Throughout this paper Torr = (101.325/760) kPa, cal._b = 4.184 J.

							·
$\frac{T}{K}$	$\frac{C_p}{\operatorname{cal_{th}} \mathrm{K}^{-1} \operatorname{mol}^{-1}}$	$\frac{T}{\overline{K}}$ \overline{c}	$\frac{C_{p}}{\text{al}_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_$	$\frac{T}{K}$	$\frac{C_p}{\operatorname{cales} \mathrm{K}^{-1} \operatorname{mol}^{-1}}$	$\frac{T}{K}$	$\frac{C_p}{\operatorname{cal}_{2} \mathrm{K}^{-1} \mathrm{mol}^{-1}}$
	······						
			Mark II	Cryosta	t		
	Series I	266.33	32.040	81.07	7.289	10.62	0.019
147.55	18.431	273.43	32.571	87.92	8.480	10.81	0.021
155.93	19.693			99.28	10.415	11.21	0.024
163.91	20,855			113.01	12.757	11.39	0.026
171.56	5 21.919	S	eries IV	116.08	13.282	11.50	0.028
179.10	22.932	269.69	32.308	126.14	14.977	11.98	0.027
186.90	23.921	276.74	32.865	135.30	16.475	12.29	0.030
		283.69	33.361	143.84	17.837	13.14	0.037
		290.57	33.850	151.90	19.084	13.56	0.042
	Series II	297.36	34.384	159.56	20.217	15.28	0.057
186.36	23.839	304.56	34.869	166.91	21.268	16.31	0.073
194.25	24.822	312.16	35.404	173.98	22.244	17.31	0.088
201.91	25.749	319.69	35.817	110100		18 51	0 111
		327.49	36.380			20.29	0.149
		335.59	36.803		Series VI	22.66	0 220
	Series III	343.61	37.197	7 37	0.0081	24.93	0.305
197.78	25.243	0 10101	5.1157	8.18	0.011	27.25	0.414
205.30	26.115			8.53	0.012	29.88	0 562
213.10	26.998	S	eries V	8 95	0.018	30.20	0.581
221.19	27.845	49.93	2.523	9.33	0.016	33.02	0.778
229.09	28.656	53.68	3.013	9.35	0.016	35.74	0.995
236.81	29.411	57.92	3.601	9.67	0.017	39.23	1 313
244.38	30,144	63.64	4.459	10.03	0.019	43 57	1 767
251.82	30.811	69.99	5.447	10.15	0.020	47.76	2 253
259.13	31.436	75.87	6.399	10.53	0.022	51.23	2.694
207.10	211120	12.01	0.077	10.00	0.022	51.25	2.074
			Mark IV 7	Thermost	at		
	Series I	S	eries II	423.89	40.82	:	Series IV
300.28	34.56	332.62	36.56	434.77	41.24	481.95	42.81
309.31	35.13	344.55	37.23			492.48	43.16
318.10	35.75	356.30	37.89	5	Series III	502.92	43.46
326.79	36.25	367.90	38.48	428.62	41.00	513.28	43.76
335.28	36.74	379.33	38.99	439.47	41.38	523.58	43.99
		390.64	39.50	460.88	42.14	531.03	44.25
		401.83	39.95	471.47	42.47	541.13	44.62
		412.92	40.38	481.98	42.82	-	

TABLE 2. Heat capacity of $\rm Li_{0.5}Fe_{2.5}O_4$ $(cal_{th}=4.184~J)$

$\frac{T}{T}$.	<i>C</i> _p	$\frac{T}{T}$.	<i>C</i> ,	$\frac{T}{T}$ -		$\frac{T}{T}$ -	<i>C</i> ,
K. ($\operatorname{cal_{th}} \mathbf{K}^{-1} \operatorname{mol}^{-1}$	<u>K</u> (calth K ⁻¹ mol ⁻¹	К. С	al _{th} K ⁻¹ mol ⁻¹	<u> </u>	alth K ⁻¹ mol ⁻
			Mark II	Cryostat			
	Series I	31.44	0.136	S	eries III	196.58	17.245
7.84	0.0016	34.88	0.196	94.57	4.195	207.53	18.506
9.03	0.0034	38.64	0.269	105.40	5.446	218.51	19.732
9.85	0.0067	43.08	0.379	115.66	6.751	229.54	20.893
10.62	0.0095	48.81	0.580	125.81	8.085	240.51	21.979
11.45	0.0125			136.22	9.495	251.06	22.968
12.45	0.0146			146.93	10.960	261.40	23.895
13.62	0.0205		Series II	157.92	12.424	271.95	24,774
14.96	0.0235	47.70	0.539	168.65	13.818	282.71	25,622
16.55	0.0285	52.40	0.737	179.22	15.159	293.70	26.419
18.23	0.0313	58.25	1.037			304.95	27.219
20.00	0.0385	64.56	1.438			316.62	28.038
21.90	0.0431	70.72	1.879			328.49	28.816
23.93	0.0557	77.30	2.430	S	eries IV	340.36	29.494
26.20	0.0754	85.22	3.203	175.89	14.746		
28.68	0.102	95.13	4.252	185.94	15.991		
			Mark IV T	Thermosta	ıt		
	Series I		Series II	409.75	32.95	S	Series III
13.64	27.88	330.67	28.95	419.51	33.32	462.74	34.64
22.60	28.48	340.10	29.53	429.49	33.63	473.75	34.98
32.03	29.08	349.39	30.10	439.71	33.91	484.68	35.24
41.32	29.66	358.99	30.63	449.84	34.30	495.80	35,56
50.49	40.18	368.92	31.18	451.64	34.29	507.11	35.91
		378.71	31.66	460.33	34.61	518.32	36.03
		388.40	32.10			529.50	36.28
		398.00	32.49			540.61	36.51

TABLE 3. Heat capacity of $Li_{0.8}Al_{2.8}O_4$ (cal_{th} = 4.184 J)

FIGURE 1. Heat capacities of $Li_{0.5}Fe_{2.5}O_4$ and $Li_{0.5}Al_{2.5}O_4$. The experimental heat capacities for the ferrite (upper curves) are represented by \bigcirc ; those for the aluminate are given by \bigcirc (lower curves).

FIGURE 2. Plot for evaluation of the parameters of $C_p = aT^3 + bT^{3/2}$. The results of this research on lithium ferrite are given by —_____, those of Pollack and Atkins by -_____.

T	C,	S°	$\{H^{\circ}(T) - H^{\circ}(0)\}$	$-\{G^{\circ}(T)-H^{\circ}(0)\}/T$
ĸ	cal _{th} K ⁻¹ mol ⁻¹	$\overline{\operatorname{cal}_{\operatorname{th}} \mathbf{K}^{-1} \operatorname{mol}^{-1}}$	cal _{th} mol ⁻¹	$\operatorname{cal}_{\operatorname{th}} \mathrm{K}^{-1} \operatorname{mol}^{-1}$
5	(0.003)	(0.001)	(0.005)	0.000
10	0.019	0.008	0.055	0.003
15	0.054	0.021	0.224	0.006
20	0.142	0.047	0.685	0.013
25	0.310	0.095	1.78	0.069
30	0.572	0.173	3.94	0.042
35	0.932	0.288	7.66	0.069
40	1.386	0.441	13.42	0.105
45	1.932	0.634	21.66	0.153
50	2.531	0.868	32.77	0.212
60	3.912	1.448	64.83	0.370
70	5,450	2.165	111.54	0.572
80	7.095	3.000	174.20	0.822
90	8,806	3.934	253.67	1.115
100	10.542	4.951	350.40	1.447
110	12.274	6.037	464.50	1.815
120	13.979	7,179	595.79	2.214
130	15.641	8.363	743.93	2.641
140	17.248	9.582	908.43	3.093
150	18,793	10.825	1088.69	3.567
160	20.272	12.085	1284.07	4.060
170	21.628	13.357	1493.90	4.570
180	23.02	14.635	1717.49	5.092
190	24.30	15.914	1954.15	5.629
200	25.51	17,191	2203.2	6,175
210	26.65	18.464	2464.1	6.730
220	27.74	19.729	2736.0	7.292
230	28.76	20.98	3018.6	7.860
240	29.73	22.23	3311.1	8.433
250	30.65	23.46	3613.0	9.009
260	31.52	24.68	3923.9	9.589
270	32.34	25.89	4243.2	10.170
273.15	32.59	26.26	4345.5	10.354
280	33.12	27.08	4570.6	10,753
290	33.86	28.25	4905.5	11.336
298.15	34.43	29.20	5183.8	11.811
300	34.56	29.41	5247.6	11.919
320	35.84	31.68	5951.8	13.084
340	37.00	33.89	6680.5	14.243
360	38.05	36.04	7431.2	15.394
380	39.00	38.12	8162,9	16.479
400	39.88	40.14	8990.8	17.666
420	40.68	42.11	9796.6	18.783
440	41.43	44.02	10617.8	19.887
460	42.11	45.88	11453.3	20.98
480	42.75	47.68	12302.0	22.05
500	43.34	49.44	13162.9	23.11
520	43.93	51.15	14035.6	24.16
540	44.58	52.83	14920.6	25.19

TABLE 4. Thermodynamic functions of $\rm Li_{0.5}Fe_{2.5}O_4$ $(cal_{th}=4.184~J)$

T	C_{p}	S°	$\{H^{\circ}(T) - H^{\circ}(0)\}$	$-\{G^{\circ}(T)-H^{\circ}(0)\}/T$
ĸ	$\overline{\operatorname{cal}_{\operatorname{th}} \mathrm{K}^{-1} \operatorname{mol}^{-1}}$	$cal_{th} K^{-1} mol^{-1}$	cal _{th} mol ⁻¹	cal _{th} K ⁻¹ mol ⁻¹
5	(0.0005)	(0.0001)	(0.0006)	(0.000)
10	(0.004)	(0.001)	(0.0097)	(0.000)
15	(0.013)	(0.004)	(0.0491)	(0.001)
20	(0.031)	(0.010)	(0.155)	(0.002)
25	0.066	0.021	0.381	0.006
30	0.118	0.038	0.834	0.010
35	0.190	0.061	1.593	0.015
40	0.296	0.093	2.793	0.023
45	0.442	0.126	4.196	0.031
50	0.631	0.192	7.287	0.046
60	1.137	0.349	15.982	0.082
70	1.819	0.573	30.62	0.136
80	2.674	0.870	52.96	0.208
90	3.682	1.242	84.62	0.302
100	4.813	1.687	127.00	0.417
110	6.037	2.203	181.19	0.556
120	7.326	2.783	248.0	0.717
130	8.655	3.422	327.8	0.900
140	10.002	4.112	421.1	1 104
150	11.350	4.848	527.9	1.329
160	12.683	5.623	648.1	1 573
170	13.990	6.432	781.4	1.835
180	15.262	7.268	927.7	2 113
190	16.491	8.126	1086.5	2.407
200	17.674	9.002	1257.4	2.715
210	18.809	9.892	1439.9	3.036
220	19.893	10.792	1633.4	3.368
230	20.93	11.699	1837.5	3.710
240	21.91	12.611	2051.8	4.062
250	22.85	13.525	2275.6	4.422
260	23.75	14.439	2508.7	4,790
270	24.60	15.351	2750.4	5.164
273.15	24.86	15.638	2828.3	5.283
280	25.41	16.260	3000.4	5.544
290	26.18	17.165	3258.4	5.929
298.15	26.79	17.899	3474.3	6.246
300	26.92	18.065	3523.9	6.319
320	28.30	19.847	4076.3	7.109
340	29.54	21.60	4654.9	7.910
360	30.67	23.32	5257.2	8.718
380	31.67	25.01	5880.9	9.532
400	32.56	26.66	6523.4	10.347
420	33.33	28.26	7182.4	11.162
440	34.00	29.83	7855.8	11.975
460	34.59	31.35	8541.7	12.784
480	35.13	32.84	9239.0	13.589
500	35.64	34.28	9946.7	14.388
520	36.11	35.69	10664.2	15.180
540	36.50	37.06	11390.6	15.965

TABLE 5. Thermodynamic functions of $Li_{0.5}Al_{2.5}O_4$ (cal_{th} = 4.184 J)

HEAT CAPACITIES OF Li_{0.5}Fe_{2.5}O₄ AND Li_{0.5}Al_{2.5}O₄ 701

method, more than 400 determinations were made by Reznitzkii *et al.*⁽¹⁴⁾ at 5 to 6 K intervals with a reproducibility of under 1 per cent in a non-magnetic stainless-steel calorimeter with a Pt-to-(Pt+13 mass per cent Rh) thermocouple for measuring temperature. Although no explanation is available for the fact that their data are 9 per cent higher than ours at 300 K, 2 per cent lower at 400 K, and 7 per cent lower at 500 K, it is worth while to note that in determining the heat capacity of their empty calorimeter⁽¹⁴⁾ an anomalous heat capacity against temperature curve was obtained, where the apparent heat capacity of the calorimeter decreased with temperature in the temperature range 298 to 600 K.

LITHIUM ALUMINATE

Values from 5 K to 0 were extrapolated by the Debye limiting law. A small rounded anomaly with an excess entropy of 6.4×10^{-3} cal_{th} K⁻¹ mol⁻¹ was found between 10 and 22 K and assumed to be due to impurities in the sample. The entropy and enthalpy associated with this anomaly were not included in the tabulated molar thermodynamic functions given in table 5.

$\frac{T}{K}$	$\frac{C_{p}(\text{expt})}{\operatorname{cal_{th}} \mathrm{K}^{-1} \operatorname{mol}^{-1}}$	$\frac{C_{p}(\text{Kopp})}{\operatorname{cal}_{\operatorname{th}} \mathrm{K}^{-1} \operatorname{mol}^{-1}}^{b}$	$\frac{10^{2} \{C_{p}(\text{expt}) - C_{p}(\text{Kopp})\}}{C_{p}(\text{expt})}$
	Li _{0.5}	Fe _{2.5} O ₄	
300	34.56	34.67	-0.32
350	37.54	37.46	+0.21
400	39.88	39.71	+0.46
450	41.78	41.64	+0.33
500	43.34	43.37	0.07
	Li _{0.8}	Al _{2.5} O ₄	
300	26,92	27.24	-1.1
350	30,12	30.33	-0.69
400	32,55	32.47	+0.02
450	34.30	34.03	+0.81
500	35.64	35.26	+1.1

FABLE 6.	Comparison	with Kopp's	rule	based	on	component	oxides	a
		$(cal_{th} = 4$.184	J)				

^a $C_p(\text{Li}_2\text{O})$, reference 17; $C_p(\text{Fe}_2\text{O}_3)$, reference 19; $C_p(\text{Al}_2\text{O}_3)$, reference 16.

^b $C_p(\text{Li}_{0.5}\text{M}_{2.5}\text{O}_4) = 0.25C_p(\text{Li}_2\text{O}) + 1.25C_p(\text{M}_2\text{O}_3).$

Kopp's rule has been applied successfully to the calculation of the heat capacities of silicates and titanates⁽¹⁸⁾ in terms of the component oxides and would be expected to give very good results when applied to aluminates and to ferrites below their Curie temperatures. That this is so for lithium aluminate and ferrite from 300 to 500 K is shown in table 6. By employing heat capacities of lithium aluminate from 500 to 968 K obtained from Kopp's rule, the enthalpy of formation of $\text{Li}_{0.5}\text{Al}_{2.5}\text{O}_4$ from the component oxides measured⁽¹⁵⁾ at 968 K has been used in conjunction with the pertinent thermodynamic properties of Al_2O_3 ,⁽¹⁶⁾ and Li_2O ,⁽¹⁷⁾ from

702 A. F. VENERO AND E. F. WESTRUM, JR.

critical tabulations to obtain the standard enthalpy and Gibbs energy of formation for $Li_{0.5}Al_{2.5}O_4$ at 298.15 K. These values are $-(543\pm2)$ kcal_{th} mol⁻¹ and $-(535\pm2)$ kcal_{th} mol⁻¹, respectively.

The authors are indebted to Professors B. J. Evans and E. Essene of the Department of Geology and Mineralogy, and to Professor John Haschke of the Chemistry Department for their helpful suggestions regarding the synthesis and characterization of the samples. The authors are also grateful to the Atomic Energy Commission for their initiatory support and to the National Science Foundation for the continuing support provided for this and related endeavors.

REFERENCES

- 1. Amemiya, M. J. Inorg. Nucl. Chem. 1972, 34, 3405 and references therein.
- 2. Jaffe, P. M. J. Electrochem. Soc. 1968, 115, 1203.
- 3. Melamed, N. T.; Viccaro, P. J.; Artman, J. O.; Barros, F. de S. J. Luminescence 1970, 2, 348.
- 4. Pott, G. T.; McNichol, B. D. Chem. Phys. Letters 1971, 12, 62.
- 5. Palumbo, D. T. J. Luminescence 1971, 4, 89.
- 6. Venero, A. F. Doctoral Dissertation, The University of Michigan. 1975.
- 7. Remeika, J. P.; Comstock, R. L. J. Appl. Phys. 1964, 35, 3320.
- 8. Datta, R. K.; Roy, R. J. Amer. Ceram. Soc. 1963, 46, 388.
- Westrum, E. F., Jr.; Furukawa, G. T.; McCullough, J. P. Adiabatic low-temperature calorimetry. In *Experimental Thermodynamics*, Vol. 1. McCullough, J. P.; Scott, D. W.; editors. Butterworths: London. 1968, p. 133.
- Westrum, E. F., Jr. Developments in low-temperature calorimetry. In *Thermochimie* (International Colloquium number 201 of CNRS). CNRS: Paris. 1972, p. 103.
- West, E. D.; Westrum, E. F., Jr. Adiabatic calorimetry from 300 to 800 °K. In *Experimental Thermodynamics*, Vol. 1. McCullough, J. P.; Scott, D. W.; editors. Butterworths: London. 1968, p. 333.
- 12. Pollack, S. R.; Atkins, K. R. Phys. Rev. 1962, 125, 1248.
- 13. Reznitzkii, L. A.; Filippova, S. E.; Metlin, Yu. G. Zhur. Fiz. Khim. 1971, 45, 1086. (Cf. Russ. J. Phys. Chem. 1971, 45, 608.)
- 14. Reznitskii, L. A.; Khomyakov, K. G.; Korzhukov, M. G.; Orel, G. E. Russ. J. Phys. Chem. 1969, 45, 608.
- Gross, P. Fulmer Research Institute Stoke Poges, Buckinghamshire, England. (Personal Communication, 30 Jan. 1974.)
- 16. Kelly, K. K. Bull. U.S. Bur. Mines. No. 476, 1949.
- 17. Shomate, C. H.; Cohen, A. J. J. Amer. Chem. Soc. 1955, 77, 285.
- 18. Knapp, W. J.; Van Vorst, W. D. J. Amer. Chem. Soc. 1951, 34, 384.
- 19. Coughlin, J. P.; King, E. G.; Bonnickson, K. R. J. Amer. Chem. Soc. 1951, 73, 3891.