Heat capacities of Fe₃O₄ and ZnFe₂O₄ from 300 to 500 K

JAMES J. BARTEL and EDGAR F. WESTRUM, JR.

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48104, U.S.A.

(Received 6 January 1975)

Heat-capacity determinations were made on $ZnFe_2O_4$ and Fe_3O_4 to extend cryogenic data on $ZnFe_2O_4$,⁽¹⁾ and Fe_3O_4 .⁽²⁾ These materials have been investigated at these higher temperatures to seek a correlation between the heat capacity and changes in the trend of the resistivity of Fe_3O_4 near 350 K observed by Domencali.⁽³⁾ Since no obvious C_p anomaly was detected in Fe_3O_4 , $ZnFe_2O_4$ was also examined by adiabatic calorimetry to model the harmonic lattice for Fe_3O_4 .

Both samples were those used in previous investigations.^(1, 2) Measurements were made in the Mark IV adiabatic thermostat.⁽⁴⁾ Calorimeter loading information is listed in table 1; experimental molar heat capacities are given in table 2. Thermodynamic functions (listed in table 3) were computer-generated from a least-squares

Compound	$\frac{m}{g}$	$\frac{M}{\text{g mol}^{-1}}$	Calorimeter	p Torr	
Fe ₃ O ₄	sO₄ 124.101 231.539		W-22-P (83.76 cm ³)	29.5	
ZnFe ₂ O ₄	175,996	241.080	W-22-R (84.31 cm ³)	98.0	

TABLE 1. Calorimeter loading information: sample mass m, molar mass M, and He pressure p(Torr = (101.325/760) kPa)

fit of the experimental heat capacities combined with similar values above 120 K from the earlier cryogenic data measured from 5 to 350 K. The function $\{G^{\circ}(T) - H^{\circ}(0)\}/T$ has not been tabulated since the existence of zero temperature entropy in the spinel structure has not been resolved.

Figure 1 reveals the absence even of a subtle anomaly in the C_p of Fe₃O₄ referred to that of ZnFe₂O₄ over the investigated temperature region, for the difference between their heat capacities is maintained throughout. The anomalously high C_p of Fe₃O₄ relative to that of other ferrospinels will be discussed in subsequent papers.

NOTES

<u></u>	<i>C</i> _p	<u> </u>	<i>C</i> _p	<u>T</u>	<i>C</i> _p	<u>T</u>	Cp
K	$\operatorname{cal}_{\operatorname{th}} \mathrm{K}^{-1} \operatorname{mol}^{-1}$	K ca	$l_{th} K^{-1} mol^{-1}$	K cal	$_{th}$ K ⁻¹ mol ⁻¹	Kc	$al_{th} K^{-1} mol^{-1}$
			ZnFe ₂ O₄-	–Mark IV			
S	Series I	366.56	36.36	448.15	38.49	532.00	39.90
302.65	5 33.73	376.96	36.70	458.73	38.74	542.32	40.14
312.92	2 34.24	387.28	37.00	469.25	38,93		
323.05	5 34.74	397.53	37.31	479.82	39.15	5	Series II
333.06	5 35.36	407.69	37.57	490.36	39.35	444.31	38.66
339.24	4 35.38	417.79	37.84	500.83	39,56	454.60	38.66
348.15	5 35.70	427.83	38.04	511.26	39.77	464.88	38.91
356.96	5 35.99	437.80	38.29	521.67	39.83	475.10	39.06
			Fe₃O₄—	Mark IV			
	Series I	Se	eries II	444.54	43.54	538.76	47.06
304.50	36.57	353.25	39.47	453.59	43.95	547.92	47.41
316.45	5 37.32	366.01	40.12	462.58	44.28		
328.20	38.02	378.63	40.79	471.52	44.66		
339.71	7 38.70	388.22	41.24	480.39	44.99	S	eries III
351.17	7 39.37	397.72	41.65	489.20	45.30	478.25	44.76
362.42	2 39.98	407.14	41.98	497.96	45.61	488.57	45.13
373.50	40.59	416.47	42.48	510.89	45.94	498.81	45.51
384.4	5 41.08	425.74	42.83	520.25	46.28	508.96	45.81
		435.41	43.22	529.54	46.72	519.04	46.21

TABLE 2. Experimental heat capacities of $ZnFe_2O_4$ and Fe_3O_4 (cal_{th} = 4.184 J)

TABLE 3. High-temperature thermal functions of $ZnFe_2O_4$ and Fe_3O_4 $(cal_{th}=4.184\ J)$

$\frac{C_{p}}{\operatorname{cal}_{\operatorname{th}} \mathrm{K}^{-1} \operatorname{mol}^{-1}}$	$\frac{\{S^{\circ}(T) - S^{\circ}(0)\}}{\operatorname{cal_{th}} K^{-1} \operatorname{mol}^{-1}}$	$\frac{\{H^{\circ}(T) - H^{\circ}(0)\}/T}{\operatorname{cal_{th}} K^{-1} \operatorname{mol}^{-1}}$
Zn	Fe ₂ O ₄	
33.22	36.22	18.108
37.36	46.42	22.474
39.52	54.78	25,604
40.25	58.82	26.977
F	e ₃ O ₄	
36.18	35.14	19.945
41.75	46.36	24,744
45.59	56.11	28,549
47.51	60.54	30.181
	$ \frac{C_{p}}{cal_{th} K^{-1} mol^{-1}} $ 33.22 37.36 39.52 40.25 F 36.18 41.75 45.59 47.51	$\frac{C_{p}}{cal_{th} K^{-1} mol^{-1}} \qquad \frac{\{S^{\circ}(T) - S^{\circ}(0)\}}{cal_{th} K^{-1} mol^{-1}}$ $ZnFe_{2}O_{4}$ $33.22 \qquad 36.22$ $37.36 \qquad 46.42$ $39.52 \qquad 54.78$ $40.25 \qquad 58.82$ $Fe_{3}O_{4}$ $36.18 \qquad 35.14$ $41.75 \qquad 46.36$ $45.59 \qquad 56.11$ $47.51 \qquad 60.54$

FIGURE 1. Heat capacities of Fe₃O₄ (Series $I = \Box$; Series II = \blacksquare ; Series III omitted to avoid confusion); ZnFe₂O₄ (Series $I = \bigcirc$; Series II = \bigcirc).

The support of the National Science Foundation is acknowledged.

REFERENCES

- 1. Westrum, E. F., Jr.; Grimes, D. M. J. Phys. Chem. Solids 1957, 3, 44.
- 2. Westrum, E. F., Jr.; Grønvold, F. J. Chem. Thermodynamics 1969, 1, 543.
- 3. Domencali, C. A. Phys. Rev. 1950, 78, 458.
- 4. West, E. D.; Westrum, E. F., Jr. In *Experimental Thermodynamics*, Vol. I. McCullough, J. P.; Scott, D. W.; editors. Butterworths: London. **1968**, p. 333.