AN AURORAL F-REGION STUDY USING IN SITU MEASUREMENTS BY THE ATMOSPHERE EXPLORER-C SATELLITE

MARBHA R. TORR and D. G. TORR
National Astronomy & Ionosphere Center, Cornell University, Ithaca, New York 14850, U.S.A.
Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan 48105, U.S.A.
National Institute for Telecommunications Research of C.S.I.R., P.O. Box 3718, Johannesburg, South Africa

R. A. HOFFMAN
Planetary Aeronomy Branch, Goddard Space Flight Center, Greenbelt, Maryland 20771, U.S.A.

W. B. HANSON and J. H. HOFFMAN
Institute for Physical Science, University of Texas at Dallas, Richardson, Texas 75080, U.S.A.

W. K. PETERSON
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.

and

J. C. G. WALKER
National Astronomy & Ionosphere Center, Arecibo Observatory, Arecibo, Puerto Rico 00612, U.S.A.

(Received 10 June 1975)

Abstract—On 14 July 1974 the Atmosphere Explorer-C satellite flew through an aurora at F-region altitudes just after local midnight. The effects of the particle influx are clearly evident in the ion densities, the 6300 Å airglow, and the electron and ion temperatures. This event provided an opportunity to study the agreement between the observed ion densities and those calculated from photochemical theory using in situ measurements of such atmospheric parameters as the neutral densities and the differential electron energy spectra obtained along the satellite track. Good agreement is obtained for the ions O+, NO+ and NI+ using photochemical theory and measured rate constants and electron impact cross sections. Atomic nitrogen densities are calculated from the observed [NO+]/[O2+]] ratio. In the region of most intense electron fluxes (20 erg cm−2 sec−1) at ~280 km, the N density is found to be between 2 and 7 × 1017 cm−3. The resulting N densities are found to account for approx. 60% of the production of N+ through electron impact on N and the resonant charge exchange of O+(P) with N(3S). This reaction also provides a significant source of O(3S) in the aurora at F-region altitudes. In the region of intense fast electron influx, the reaction with atomic nitrogen is found to be the main loss of O+(P).

1. INTRODUCTION
On 14 July 1974 at 00:48 LT the Atmosphere Explorer-C satellite (see Dalgarno et al., 1973) entered a latitudinally-varying diffuse aurora at F-region altitudes. It emerged from the aurora at a local time just prior to morning twilight. The total electron energy input together with the variation along the satellite track of altitude, invariant latitude, and solar zenith angle are shown in Fig. 1. The effects of particle precipitation are clearly evident in the ion densities, 6300 Å airglow, and the electron (T_e) and ion (T_i) temperatures shown in Fig. 1. This provided an opportunity to study the agreement between observed ion densities and those calculated from photochemical theory using in situ measurements ofionic and neutral composition, T_e, T_i, and electron flux at each point along the track together with current values for reaction rates.

We do not know of any other study comparing observed and calculated ion densities in an aurora at F-region altitudes. Other auroral studies in recent years (Narcisi and Swider, 1970; Donahue et al., 1970; Narcisi et al., 1974; Swider and Narcisi, 1974) have dealt with rocket observations in the E and lower F regions where the energy deposition is a maximum. These studies have not had the benefit of in situ measurements of the
neutral atmosphere or particle fluxes. A study of the ionization response times to the particle source has been made by Jones and Rees (1973).

In this work we shall consider the altitude region from 200 to 300 km. The upper limit is determined by two factors. Although photoelectrons from atomic oxygen excited by He II radiation are visible at altitudes above 250 km, twilight effects do not begin to contribute until 320 km on this orbit. Transport is also a factor at higher levels.

The satellite has the capability of operating in either a spinning or oriented mode. On this pass the satellite was spinning (1/15 rev/sec). This mode is advantageous because it provides good information on the pitch angle distribution of the precipitating electrons, the major source of the auroral effects to be investigated. However, in the spinning mode the ion density measurements are degraded in spatial resolution and accuracy.

2. FAST ELECTRON FLUXES

Fast electron fluxes are measured by two instruments on the AE-C. The energy range from 0.2 to 25 keV is covered by the low energy electron detector (LEE) described by Hoffman et al. (1973). Fluxes at lower energies are measured by the photoelectron spectrometer (PES) described by Doering et al. (1973, 1975). This instrument measured electrons in the energy range 1.5–97.5 eV on this orbit.

In studying this aurora, it is not possible for us to resolve altitudinal, latitudinal, and temporal variations. It is probable that the satellite passed at different altitudes through latitudinally varying precipitation. For convenience in what follows we shall identify portions of the data by referring to them in terms of universal time.

Figure 2 shows the flux energy spectra obtained on the 8 satellite spin cycles between 26,309 and 26,420 sec UT. Between 26,233 and 26,300 sec UT (56–60 A where A denotes invariant latitude) the electron fluxes were below instrument thresholds. From 26,300 to 26,380 sec UT (60–65 A) the satellite passed through a diffuse auroral region in which the spectra were isotropic. Between 26,395 and 26,415 sec UT (66–67 A) the fluxes became more variable with pitch angle with the spin centered at 26,385 sec UT showing the most variation. In the case of the spin centered at
26,400 sec UT the fluxes remained relatively isotropic above 1 keV, but became strongly field-aligned below 1 keV. For the three spins showing anisotropy, we have used the flux averaged over pitch angle at each energy. It is this average that is shown in Fig. 2. Figure 1 shows the integral over energy of the spectra in Fig. 2. After 26,415 sec UT (67 A) the satellite moved into the polar cap region, and the fluxes again fell to the threshold of the higher energy detector, and the low energy spectrometer measured spectra characteristic of the twilight airglow.

Both the total energy flux in Fig. 1 and the spectra in Fig. 2 were obtained with the higher energy particle detector looking into the upper hemisphere. The backscattered fraction of these electrons varied between 10 and 30%. The proton energy fluxes at these altitudes were less than 7% of the electron energy flux.

3. NEUTRAL ATMOSPHERE

On this pass the O, N₂ and He densities were measured by the open source neutral mass spectrometer (OSS) described by Nier et al. (1973). These densities are shown in Fig. 3.

On this section of the orbit the [N₂] and the [O] show what appears to be a wave structure which is anticorrelated with that in [He] [Mauersberger, private communication, 1975]. On this pass O₃ densities were not measured (see Nier et al., 1974a). However, Nier et al. (1974b) have established from passes on which [O₃] and [N₂] were measured simultaneously that the O₃ density is generally about 8% of the N₂ density at 200 km.

Neutral temperatures (Tₙ) were measured by the neutral-atmosphere temperature experiment (NATE) described by Spencer et al., (1973), but were not available above 237 km. At higher altitudes a model Tₙ was therefore, used with an exospheric temperature of 1100 K, consistent with the atomic oxygen densities (Carignan, private communication, 1975). The variations in the [N₂] profile made it difficult to determine neutral temperatures from this constituent although generally [N₂] should be a better parameter than [O] from which to derive Tₙ (Hays et al., 1974).

4. COMPARISON OF THE ION COMPOSITION WITH PHOTOCHEMICAL THEORY

The ion densities were measured by the magnetic ion mass spectrometer (MIMS) described by Hoffman et al. (1973). The ion temperatures were measured by the retarding potential analyser (RPA) described by Hanson et al. (1973). The electron temperatures were measured by the cylindrical electrostatic probe (CEP) described by Brace et al. (1973). The temperatures Tₑ and Tₖ are shown in Fig. 1.

The reactions considered in the calculation of the density of each ionic constituent are listed in Table 1 and the reaction rates and branching ratios are listed in Table 2.

The electron impact cross-sections for ionization of N, N₂, O, and He are taken from Banks and Kockarts (1973) who have compiled these from measurements by Kieffer and Dunn (1966), Tate and Smith (1932), Rapp and Engleander-Golden (1965) and Schram et al. (1965, 1969). In the case of O we have used the values from Dalgarno and Leujeune (1971) to calculate the production rate of O⁺(3P) and O⁺(3D). Above 100 eV we used 22 and 38% of the total cross-section for ionization of O to obtain the O⁺(3P) and O⁺(3D) production rates respectively. We have assumed that 44% of the total O₂⁺ ions are produced in the metastable O₂⁺(α₄n) state (Jones and Rees, 1973).

(a) NO⁺ and O₂⁺

In Fig. 4 we show the observed and calculated NO⁺ and O₂⁺ densities. The observed [NO⁺]/[O₂⁺] ratios are given in Table 3. In calculating the densities shown in Fig. 4 we have assumed that there is no atomic nitrogen. The sources of NO⁺ that are important are N₂⁺ + O and O⁺ + N₂, with N⁺ + O₂ contributing in the region of more intense precipitation. We have also included
the source of NO$^+$ from the reaction $\text{O}^+(\text{T}^3\text{D}) + \text{N}_2 \rightarrow \text{NO}^+ + \text{N}$ discussed by Torr et al., (1975c). This contributes approximately 20% in the region of maximum particle energy influx. The only loss of NO$^+$ is by dissociative recombination. We have used a recombination rate for NO$^+$ of $4.3 \times 10^{-7} \text{(Te/300)}^{-0.37}$ (Huang et al., 1975) as this value was found to explain the observed [NO$^+$] on three night-time orbits under quiet conditions (Torr et al., 1975b). Significant sources of O$_2^+$ are the charge exchange reactions with O$^+$ and N$^+$. Electron impact ionization of O$_2^+$ contributes 10% in the region of maximum electron precipitation (between 26,383 and 26,413 sec UT). An additional loss of O$_2^+$ is needed in this region. It was also found, in preliminary calculations of the N$^+$, that we were unable to account for the observed N$^+$ densities in the absence of atomic nitrogen after 26,363 sec UT. Indications are that the presence of N would provide the required loss process for O$_2^+$ and the required source for N$^+$.

Since the chemical lifetime of N(4S) at 280 km is approx. $4 \times 10^4$ sec and the time constant associated with diffusion is ~500 sec, the N densities at these altitudes are diffusively controlled. Thus, we have not calculated the atomic nitrogen densities directly from the N photochemistry, but from the measured ratio of [NO$^+$]/[O$_2^+$], where we solve for the [N] required to bring the [NO$^+$] and [O$_2^+$] photochemistry into balance, i.e.

$$[\text{NO}^+] = k_{17} [\text{O}_2^+] [\text{N}] + q_2 (k_{16} [\text{e}]) + (k_{17} [\text{N}])$$

$$[\text{O}_2^+] = k_{24} [\text{e}] q_1$$

where $q_1$ is the total production of O$_2^+$ and $q_2$ is the production of NO$^+$ due to all sources other than O$_2^+$ + N $\rightarrow$ NO$^+$ + O.

The resulting N densities are shown in Fig. 5, along with the observed ion densities and those calculated including these N densities in the photochemistry. Using $k_{17} = 1.8 \times 10^{-10}$ cm$^3$ sec$^{-1}$ the maximum [N] obtained in the region of most intense particle precipitation is $7 \times 10^7$ cm$^{-3}$. However, it is likely that a significant fraction of the N will be formed in the 2D state in which case $k_{17}$ may be $4 \times 10^{-10}$ cm$^3$ sec$^{-1}$ (Dalgarno, 1970). These values for [N] are therefore the upper limit. We can calculate the lower limit by assuming that all the N is N(2D) and find that the maximum density is $2 \times 10^7$ cm$^{-3}$. An estimate of the [NO] from the reactions N + O$_2$ $\rightarrow$ NO + O and NO + N $\rightarrow$ NO + O + N$_2$ indicates that [NO] in the region of most intense precipitation would not compete with N in charge exchanging with O$_2^+$ even if we assume that all the N is N(2D) and use $k_{28} = 4.4 \times 10^{-18}$ (Tn)$^{1/2}$ (Slanger et al., 1971) and $k_{24} = 7.0 \times 10^{-11}$ cm$^3$ sec$^{-1}$ (Black et al., 1969; Lin and Kaufman, 1971).
Table 2. Rate coefficients, $k$(cm$^3$ sec$^{-1}$) and branching ratios, $b$

<table>
<thead>
<tr>
<th>Rate Coefficient</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_1 = 1.2 \times 10^{-9}$</td>
<td>Lindinger et al. (1974)</td>
</tr>
<tr>
<td>$k_2 = 2.5 \times 10^{-10}$</td>
<td>Torr et al. (1975a)</td>
</tr>
<tr>
<td>$k_3 = 1.7 \times 10^{-9}$</td>
<td>Torr et al. (1975a)</td>
</tr>
<tr>
<td>$k_4 = 5.0 \times 10^{-10}$</td>
<td>Lindinger et al. (1974)</td>
</tr>
<tr>
<td>$k_5 = 1.0 \times 10^{-12}$</td>
<td>Torr et al. (1975a)</td>
</tr>
<tr>
<td>$k_6 = 7.0 \times 10^{-10}$</td>
<td>Rutherford and Vroom (1971)</td>
</tr>
<tr>
<td>$k_7 = 4.0 \times 10^{-10}$</td>
<td>Lindinger et al. (1975)</td>
</tr>
<tr>
<td>$k_8 = 5.2 \times 10^{-11} \left(\frac{T_e}{300^0K}\right)^{a} \times (1-0.07x\left(\frac{T_e}{300}^{\frac{2}{3}}\right))$ for $T_e &lt; 1300^0K$.</td>
<td>McFarland et al. (1974)</td>
</tr>
<tr>
<td>$k_9 = 1.8 \times 10^{-7} \times (\frac{T_e}{300^0})^{a}$ for $T_e &lt; 1300^0K$.</td>
<td>Mehr and Blondi (1969)</td>
</tr>
<tr>
<td>$k_{10} = 5.0 \times (\frac{T_e}{300^0})^{a}$</td>
<td>Oppenheimer (private communication, 1975)</td>
</tr>
<tr>
<td>$k_{11} = 2.0 \times 10^{-10}$</td>
<td>Henry et al. (1969)</td>
</tr>
<tr>
<td>$k_{12} = 1.8 \times (300/T_e)^{a}$</td>
<td>Henry et al. (1974)</td>
</tr>
<tr>
<td>$k_{13} = 2.0 \times 10^{-8}$</td>
<td>Henry et al. (1969)</td>
</tr>
<tr>
<td>$k_{14} = 3.0 \times 10^{-8}$</td>
<td>Henry et al. (1969)</td>
</tr>
<tr>
<td>$k_{15} = 1.3 \times (\frac{T_e}{300}^{\frac{2}{3}})$</td>
<td>Lindinger et al. (1974)</td>
</tr>
<tr>
<td>$k_{16} = \frac{1.1 \times 10^{-5} \left(\frac{T_e}{300^0K}\right)^{a}}{3.9 \times 10^{-6}}$ for $T_e &gt; 1200^0K$.</td>
<td>Blondi (1969)</td>
</tr>
<tr>
<td>$k_{17} = 1.8 \times 10^{-10}$</td>
<td>Ferguson (1974)</td>
</tr>
<tr>
<td>$k_{18} = 3.0 \times 10^{-10}$</td>
<td>Lindinger et al. (1975)</td>
</tr>
<tr>
<td>$k_{19} = 1.0 \times 10^{-7}$</td>
<td>Assumed cf. Walker and Rees (1967)</td>
</tr>
<tr>
<td>$k_{20} = 6.0 \times 10^{-13}$</td>
<td>Lindinger et al. (1974)</td>
</tr>
<tr>
<td>$k_{21} = 2.0 \times 10^{-10}$</td>
<td>Torr et al. (1975a)</td>
</tr>
<tr>
<td>$k_{22} = 4.3 \times (\frac{T_e}{300}^{\frac{2}{3}})$</td>
<td>Huang et al. (1975); Torr et al. (1975b)</td>
</tr>
<tr>
<td>$k_{23} = 2.4 \times 10^{-11} \exp \left(-2975.5/T_e\right)$</td>
<td>Wilson (1967)</td>
</tr>
<tr>
<td>$k_{24} = 1.5 \times 10^{-12}$</td>
<td>Phillips and Schiff (1962)</td>
</tr>
</tbody>
</table>

(b) $N_2^+$

From Figs. 1 and 5, it can be seen that $[N_2^+]$ increases almost linearly with the increase in electron energy flux. This is because there are only two important sources, both of which increase linearly with the energy flux. These are electron impact on $N_2$ and the reaction of $N_2$ with metastable $O^+(2D)$, where $O^+(2D)$ is produced by electron impact on $O$. The $O^+(2D)$ photochemistry is given in Table 1 and the densities calculated from this are given in Table 3. Between 200 to 260 km, $N_2^+$ is lost predominantly by $N_2^+ + O \rightarrow NO^+ + N$. Above 260 km (26,364 sec UT) the major loss process is by recombination with electrons.

(c) $N^+$

Below 260 km (26,360 sec UT) the $[N^+]$ increases in a way very similar to the $[N_2^+]$, but increases more steeply above this point. Over the lower altitude range the sources of $N^+$ resemble those for $N_2^+$; they are electron impact on $N_2$ and $O^+(2P) + N_2 \rightarrow N^+ + NO$ (Torr et al., 1975a). The $O^+(2P)$ photochemistry is given in Table 1 and the densities calculated from this are given in Table 3. Above this altitude, as mentioned earlier, we were unable to theoretically reproduce the observed $N^+$ densities without including atomic nitrogen, the calculated $N^+$ being too low by a factor of ~3-5. The inclusion of electron impact on $N$ made
It would appear that the reason for the more dramatic change in $N^+$ in the region of the most intense particle precipitation is its dependence on $N$ which in turn appears to be enhanced in regions of large energy influx. Since the diffusion time constant for $N$ is much shorter than the photochemical lifetime at $\sim 280$ km (the altitude at which the particle detectors saw the largest energy flux), the $N$ density at this altitude must be controlled by processes which occur at altitudes where $N$ is photochemically controlled, followed by upward diffusion. The $N$ density is photochemically controlled below 200 km and the maximum loss of energy from the fast electrons to the atmosphere takes place below 200 km. Reactions which produce atomic nitrogen are given in Table 1. Below 200 km the main sources of $N$ (electron impact on $N_2$, dissociative recombination of $N_2^+$ and $NO^+$ and the reactions $N_2^+ + O, O^+ + N_2$ and $N^+ + O_2$) all depend directly on the energy input. It is unlikely that a single auroral event would persist for long enough to enhance the atomic nitrogen to the levels deduced above. However, since $N$ has a lifetime at $F$-region altitudes of longer than $10^4$ sec, it is

![Figure 4](image1.png)

**Fig. 4.** Measured and calculated densities of NO$^+$ and O$_2^+$ as a function of UT and altitude when no atomic nitrogen is included in the photochemistry.

![Figure 5](image2.png)

**Fig. 5.** Measured and theoretical densities of O$_2^+$, NO$^+$, N$^+$ and N$_3^+$. Atomic nitrogen densities calculated from the observed [NO$^+$]/[O$_2^+$] ratio were used in the calculation. The $N$ densities are also shown.

![Table 3](image3.png)

**Table 3**

<table>
<thead>
<tr>
<th>UT (sec)</th>
<th>Altitude (km)</th>
<th>[NO$^+$]/[O$_2^+$]</th>
<th>$\sigma^+$ (sec$^{-1}$)</th>
<th>$\sigma^+$ (sec$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26350</td>
<td>200</td>
<td>0.02</td>
<td>1.2 (0)</td>
<td>9.2 (1)</td>
</tr>
<tr>
<td>26360</td>
<td>206</td>
<td>0.04</td>
<td>1.9 (0)</td>
<td>1.8 (1)</td>
</tr>
<tr>
<td>26380</td>
<td>214</td>
<td>0.06</td>
<td>2.1 (0)</td>
<td>1.8 (0)</td>
</tr>
<tr>
<td>26390</td>
<td>221</td>
<td>0.08</td>
<td>4.1 (0)</td>
<td>2.1 (1)</td>
</tr>
<tr>
<td>26410</td>
<td>229</td>
<td>0.11</td>
<td>6.0 (1)</td>
<td>2.0 (1)</td>
</tr>
<tr>
<td>26435</td>
<td>237</td>
<td>0.14</td>
<td>9.0 (1)</td>
<td>2.0 (1)</td>
</tr>
<tr>
<td>26500</td>
<td>250</td>
<td>0.20</td>
<td>4.7 (1)</td>
<td>1.9 (1)</td>
</tr>
<tr>
<td>26620</td>
<td>264</td>
<td>0.30</td>
<td>1.0 (2)</td>
<td>1.7 (1)</td>
</tr>
<tr>
<td>26630</td>
<td>271</td>
<td>0.34</td>
<td>2.8 (0)</td>
<td>1.8 (1)</td>
</tr>
<tr>
<td>26640</td>
<td>283</td>
<td>0.38</td>
<td>4.3 (1)</td>
<td>2.8 (1)</td>
</tr>
<tr>
<td>26650</td>
<td>294</td>
<td>1.00</td>
<td>3.5 (1)</td>
<td>3.9 (1)</td>
</tr>
<tr>
<td>26700</td>
<td>304</td>
<td>0.50</td>
<td>1.8 (1)</td>
<td>2.1 (2)</td>
</tr>
</tbody>
</table>

![Diagram](image4.png)

**Diagram**

**Diagram Description**

- **Diagram 1:** Measured and calculated densities of NO$^+$ and O$_2^+$ as a function of UT and altitude when no atomic nitrogen is included in the photochemistry.

- **Diagram 2:** Measured and theoretical densities of O$_2^+$, NO$^+$, N$^+$ and N$_3^+$. Atomic nitrogen densities calculated from the observed [NO$^+$]/[O$_2^+$] ratio were used in the calculation. The $N$ densities are also shown.
possible that atomic nitrogen might be generally enhanced in the auroral oval where there is continual particle energy influx.

An important aspect of the atomic nitrogen enhancements associated with the precipitated electron energy flux is that they cause N to be the dominant constituent responsible for the loss of O+(SP).

It is likely that the atomic nitrogen would appear as NO in a neutral mass spectrometer and this may explain the measurements of large NO densities that have been reported in auroras.

As mentioned earlier, the satellite is only able to monitor the precipitated flux at one instant in time at each point along the track and it is possible that large temporal fluctuations may have occurred in the region of more intense precipitation. However, from the good agreement obtained between experiment and theory in this analysis, it appears that this aurora was stable for long enough for the ionosphere to attain a state of chemical equilibrium. This is not surprising since the lifetimes of the molecular ions at 280 km are less than 100 sec and that of N+ is approx. 200 sec.

We have not attempted a photochemical comparison with O+ as it is significantly affected by transport over the altitude region we are studying.

The four ions NO+, O2+, N2+ and N+ form a rather tightly knit system so that a significantly wrong reaction rate or density used in determining one, will tend to show up in one or more of the others. This requirement for internal consistency, provides a useful constraint which gives added reliability to the conclusions drawn.

5. ELECTRON AND ION COOLING RATES AND ELECTRIC FIELDS

The processes effective in cooling the electron gas have been discussed in a review paper by Schunk and Walker (1973). The cooling rates due to these processes have been calculated from the measured temperatures and are shown in Fig. 7. As would be expected, the dominant loss process above 300 km is elastic collisions with positive ions; below 300 km cooling occurs mainly by the excitation of the fine structure levels of atomic oxygen. However, the contribution by elastic collisions with ions below 300 km is much larger than in non-auroral conditions where the ion densities are not
enhanced (see, e.g. Dalgarno, 1969). Cooling by excitation of the \(^3\)D metastable state of atomic oxygen is important during the precipitation event in the vicinity of 283 km (26,415 sec UT). Cooling due to elastic collisions with neutrals and due to rotational excitation of O\(_2\) are not entirely negligible and contribute up to 5% of the total cooling.

The ion gas is cooled by elastic ion-neutral interactions and resonant charge exchange between ions and their parent neutrals. The cooling rates due to these two processes are shown in Fig. 8. The rates are reasonable but they are sensitive to the values we have assumed for \(T_n\).

If we neglect thermal conduction (which is probably not significant at these altitudes) we can solve for the perpendicular electric field, \(E_\perp\), in the aurora by equating the Joule heating rate to the ion-neutral cooling rate. The relevant expressions are given in Schunk and Walker (1973). The values thus obtained for \(E_\perp\) along the satellite track are shown in Fig. 8. The maximum perpendicular electric field obtained is 27 mV/m. This would correspond to a horizontal ion drift of 540 m/sec. It would therefore appear that in this aurora, electrodynamic transport of the ions is not significant.

Also because the ion drifts in this case are relatively small the NO\(^+\) density would not be enhanced due to the increase in the rate coefficient of the reaction O\(^+\) + N\(_2\) \(\rightarrow\) NO\(^+\) + N with ion velocity (Banks et al., 1974).

6. COMPARISON WITH OPTICAL EMISSIONS

The visible airglow emissions on the AE-C satellite are measured by the photometer described by Hays et al. (1973). On this orbit the photometer was observing 6300 Å on the wide channel (3° half-angle) and 5577 Å on the narrow channel (0.75° half-angle). The upward looking surface brightness at 6300 Å is shown in Fig. 1.

In the case of high spatial structure in the emissions, such as occurs through this aurora, it is very difficult to obtain volume emission rates along the path of the satellite. We have attempted in this case to obtain volume emission rates for comparison with those calculated in the following way.

Because the satellite is spinning, we have surface brightnesses looking both horizontally and vertically. If we assume that the temporal variations are not severe in a quarter revolution (4 sec) and that the vertical volume emission rates are exponential with altitude we can write

\[
I_H/I_U = \text{Ch}(90°),
\]

where \(I_H = \) horizontal surface brightness; \(I_U = \) upward surface brightness and \(\text{Ch}(90°)\) is the Chapman function looking at 90° through the atmosphere. Having the Chapman function, we can solve for the scale height, \(H\), of the 6300 Å emission from

\[
\text{Ch}(90°) = \left(\frac{\pi R}{2H}\right)^{1/2},
\]

where \(R\) is the altitude of the satellite above the center of the Earth.

In Fig. 9 we have shown the horizontal surface brightness at 6300 Å looking both backward and forward along the satellite track. The upward surface brightness is shown in Fig. 1.

As this approximation to the Chapman function assumes spherical symmetry, it would appear from these data that there are only two points at which the above technique will provide volume emission rates that can reasonably be compared with those calculated. These are at the maxima in the upward looking surface brightness at 26,324 and 26,415 sec UT, since at these maxima the horizontal channels will be seeing mainly the local bright emission and
not distant emissions. Before 26,309 sec UT the horizontal channels are either looking back into dimmer regions or forward into brighter regions than would correspond to the locally overhead situation. Between these two altitudes the satellite is passing through a dim region between two bright regions and after 26,415 sec UT the forward channel looks into dawn while the backward channel still sees the bright aurora behind.

We have therefore taken the average of the backward and forward horizontal counts at 26,324 and 26,415 sec UT and have derived volume emission rates at these two points. We have calculated the O(\(^{1}\text{D}\)) volume emission rates due to (1) dissociative recombination, (2) thermal electron excitation and (3) secondary electron impact excitation where

\[ \eta_1 = [\text{O}_2^+][e]k_{17}/q, \]  
\[ q = \frac{A_{6300}}{A(\text{D})}/(1 + \beta[N_2]/A(\text{D})), \]  
\[ \beta = 5 \times 10^{-11} \text{ cm}^3 \text{ sec}^{-1}, \]  
\[ \eta_2 = 1.1 \times 10^{-10} \times [e] [\text{O}] T_e^{1/2} \times \exp\left(-2.27 \times 10^4/T_e\right) \times (0.406 + 0.357 \times 10^{-4} T_e - (0.333 + 0.183 \times 10^{-4} T_e) \times \exp\left(-1.37 \times 10^4/T_e\right) \times \exp\left(-2.97 \times 10^4/T_e\right)/q \]  
and
\[ \eta_3 = [\text{O}] \int_{E_{th}}^{\infty} \sigma_{\text{O}(\text{D})}(E) \phi(E) dE/q. \]  

These are shown in Fig. 9 with the two volume emission rates deduced from the observations shown for comparison. Below 10 eV where the shielding effects of the local plasma generated by the spacecraft affected data from half the spin cycle (Doering et al., 1975), it is possible that the electron fluxes used here are too low. However, it would appear that the 6300 Å emission can be almost entirely accounted for by dissociative recombination in the diffuse auroral region and by thermal excitation in the region of field aligned precipitation, i.e. 26,309–26,380 sec UT and 26,385–26,420 sec UT respectively.

On this orbit the F-region 5577 Å emission is just detectable above the galactic background in the regions of electron precipitation and some 20–40 R of this emission was seen in the upward direction (corresponding to 2 or 3 counts per integration period above the dark count and galaxy). In the region of diffuse precipitation this results from the dissociative recombination of O\(^{+}\), which also produces the 6300 Å emission. However, in the region of intense precipitation centered on ~283 km (26,415 sec UT) the O(\(^{1}\text{D}\)) is accounted for by thermal excitation and this could not produce O(\(^{3}\text{S}\)). Charge exchange of O\(^{+}\)(\(^{3}\text{P}\)) with N(\(^{4}\text{S}\)) as discussed earlier, contributes significantly to the production of N\(^{+}\) in this region, and this process would also produce O(\(^{3}\text{S}\)) at a rate of 5.0 cm\(^{-3}\) sec\(^{-1}\). If we attempt to estimate the volume emission rate of 5577 Å emission from the photometer observations in the same way as we have done for the red line, we obtain a value of 3.5 cm\(^{-3}\) sec\(^{-1}\) at 26,415 UT. This could vary by a factor of two due to the uncertainties involved.

These data are clearly not optimum for evaluating the O(\(^{3}\text{S}\)) production arising from this reaction and we shall do this more accurately elsewhere. However, the indications are that the process could be a significant source of O(\(^{3}\text{S}\)) at high altitudes.
CONCLUSIONS

From the agreement obtained between the observed NO⁺, O₂⁺, N₂⁺ and N⁺ densities and those calculated from photochemical theory, it would appear that transport effects and time variations are not the dominant factors controlling these ions in this aura in the altitude range 200–300 km. Quantitative photochemical studies of ions in auroras measured by a satellite may therefore be easier than was anticipated. The internal consistency demanded by the system of simultaneously measured ions provides a useful constraint on the photochemistry.

Although the uncertainties introduced by the low resolution of the ion data do not allow us to establish the density with certainty, it emerges from the study that atomic nitrogen is enhanced in regions of intense particle precipitation, and that atomic nitrogen plays an important role in the photochemistry. The major source of N⁺ is electron impact on N, the balance being provided by electron impact on N₂ and the fast reactions

\[ \text{O}^+ (\text{P}) + \text{N}(\text{S}) \rightarrow \text{O}(\text{S}) + \text{N}^+ (\text{P}) \]
\[ \rightarrow \text{O}(\text{P}) + \text{N}^+ (\text{S}). \]

These reactions could provide a significant source of O(\text{S}) in precipitation events at these altitudes. The atomic nitrogen also becomes the dominant constituent responsible for the removal of O⁺(\text{P}) in the region of most intense energy influx.

Acknowledgements—We wish to thank all members of the Atmosphere Explorer team, whose co-operation and support provided the data for this study. This work was supported in part by NASA Contract NAS 5-20705 to Cornell University. We are grateful to P. B. Hays for the airglow measurements, to L. R. Brace for the electron temperatures, to A. O. Nier for neutral density measurements, and to D. W. Rusch for reading the manuscript.

REFERENCES


Fehsenfeld, F. C., Dunkin, D. B. and Ferguson, E. E. (1970). Rate constants for the reaction of CO₂ with O, O₂ and NO; N₂⁺ with O and NO; and O⁺ with NO. Planet. Space Sci. 18, 1267–1269.


Lindinger, W., Fehsenfeld, F. C. Schmeltekopf, A. L.
Satellite measurements in auroral F-region


