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T h e  mean square error performance of  simple polynomial interpolators is 
analyzed for wide-sense stationary signals subjected to randomly t imed sampling 
represented by stationary point  processes. This  performance is expressed in 
dimensionsless parametric  terms,  with emphasis  on asymptotic error  behavior 
at high dimensionless sampling rates 7. 

T h e  form of the asymptotic error expression, and particularly its dependence  
on 7, is shown to vary according to the number  of  points utilized, together  
wi th  the differentiability propert ies of  the signal. One point  extrapolation yields 
a mean square error  varying wi th  7 -~ if the signal is differentiable, and as 7-1 
if the  signal is not. Similarly, two-point  (polygonal) interpolat ion error  exhibits 
linearity in y-a, 7 -a or 7 -", according as the signal is twice, exactly once, or 
nondifferentiable. Specific examples are offered to furnish insight into actual 
error  magnitudes.  I t  is shown, for instance, that  introduction of  j i t ter  in the 
sampling sequence increases the error  by only a negligible amount.  Exponential  
decay of the sample values is compared with stepwise holding; little is gained 
for a nondifferentiable signal, while for a differentiable signal the error  perfor-  
mance deteriorates from 7 -~ to 7 -1 at high sampling rates. 

W h e n  more  than two points are used in a polynomial fitting recovery scheme, 
specific computat ions or error  become excessively difficult. However ,  it is 
proved that  the asymptotic mean square error varies wi th  7 -2~ when  n points  
are utilized, and the signal is continuously differentiable at least n times. 

Finally, we compare the mean square errors of  one and two sample schemes 
as described above with those attained by causal (extrapolating) and noncausal 
(interpolating) Wiener -Kolmogorov  optimal filters. We demonstra te  nontrivial 
instances in which the Wiener -Kolmogorov  mean square error varies as 7 -112, 
so that  any of the simple recovery schemes considered exhibits superior  
performance at high sampling rates. This  is explained by not ing that  the latter 
represent  t ime-varying filters, whereas the Wiener -Kolmogorov  filter is t ime-  
invariant. 

* Research sponsored by the Air Force Office of  Scientific Research, AFSC,  U S A F ,  
under  Grant  No. AFOSR-70-1920B,  and the National Science Foundat ion  under  
Grant  No. GK-20385. 
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I. INTRODUCTION 

Practical recovery of a signal from its samples has concerned engineers for 
several decades, as Shannon's famous paper (1949) amply demonstrates. 
Originally, periodic sampling was routinely assumed. It was soon realized, 
however, that a stochastic model of the sampling sequence {t,~} more 
realistically reflects errors (jitter) (Balakrishnan, 1962; Beutler and Leneman, 
1968), lost samples (skipping), time-shared computer operation, and the like. 

It is indeed tempting to approach reconstitution of the signal x(t) through 
highly sophisticated optimization techniques. For instance, if x(t) is wide- 
sense stationary and independent of (stationary) {tn}, one can sometimes (see 
Brown, 1961; Leneman, 1966b) apply the Wiener-Kolmogorov technique to 
the sampled signal y( t )  by regarding it as a delta function train 

y( t )  = x(t) s(t) = ~ x( t . )  $(t - -  t,~); (1.1) 
- - v o  

thus, one minimizes the mean square recovery error ~2 = E{[x(t) - -  ~(t)]~}. 1 
In this work, we consider instead simple interpolators based on only a small 

number of samples, following Leneman (1966a), Leneman and Lewis (1966a 
and 1966b). It is our contention that such an interpolator is often preferable to 
a Wiener-Kolmogorov (or Kalman-Bucy) filter. Our preference follows from 
a number of considerations, namely: 

1. The optimum is often difficult or impossible to compute. 

2. Its implementation can be complicated. 

3. Unless the statistics of x(t) and {t~} are well known, a Wiener or 
Kalman-Bucy filter cannot be obtained. Even then, its effectiveness is seriously 
denigrated by  noise and/or imperfect knowledge of the relevant statistics. 
On the other hand, simple interpolators are robust. 

4. A simple interpolator depends neither on the remote past (as does 
the Wiener filter) nor on initial time varying computation and implementation 
(as does the Kalman-Bucy filter); it operates immediately and without start-up 
transient whenever the data becomes available. 

Lastly--and most surprisingly--the simple interpolator often exhibits per- 
formance superior to a comparable Wiener filter. This apparent paradox 
(which the author first observed by a direct calculation) is readily explained. 

1 This optimization, as applied to generalized random processes, is rigorously 
treated in Gelfand and Vilenkin (1964) and Rozanov (1959). 
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A time invariant filter is perforce based only on the statistics of the sampling 
train {t~} only, whereas even a simple sample-and-hold interpolator represents 
a time-varying weighting function [acting linearly on x(t)] predicated on the 
actual realization of the sampling instants tn [see Eq. (1.3)]. 

It is seen that simple interpolators are well worthy of attention. At the same 
time, our understanding of the performance of such interpolators (when 
used in connection with nonperiodic sampling) is quite limited. Answers do 
not now exist to any of the following: 

1. For typical sampling schemes and random signals, what mean 
square error performance is achieved by various simple interpolators ? 

2. Can the error be expressed parametrically to show the extent of 
dependence on factors such as sampling rates, number of points employed, 
irregularity of sampling times, etc. ? 

3. What is the mean square interpolatory error compared with that 
attained by a Wiener-Kolmogorov filter (causal or noncausal) ? 

4. How is the error affected in form and magnitude by the charac- 
teristics of the signal, as expressed by its "smoothness" or degree of diffe- 
rcntiability ? 

Although our results do not dispose of the above questions completely, 
we are able to make considerable progress with them. To do so, we limit 
ourselves to wide-sense stationary signals x(t)  stochastically independent of 
the sampling process {t~}. Our {tn} is only subject to the weak hypothesis 
that {tn} is a stationary point process (hereafter abbreviated spp) (Beutler and 
Leneman, 1968, 1971), which imposes merely the requirement that any joint 
probability distribution of numbers of points in intervals be invariant under 
time axis translations. The class of spp thus embraces a wide variety of sam- 
pling schemes, including those most likely to appear inpractice [seeBeutler and 
Leneman (1968, 1971) for examples which include jitter, skips, Poisson, etc.]. 
Properties of spp are well understood (Beutler and Leneman, 1966a, 1966b), so 
that the analytical tools for investigating interpolation errors are at hand. 
Finally, the stationarity properties of {t~}, in combination with those of x(t), 
result in wide-sense stationary {x(t~)}; then, unless the interpolation scheme is 
explicitly time dependent, the interpolated process x(t)  is wide-sense sta- 
tionary also. Throughout our work, the measure of interpolator performance 
will be the mean square error ~2 = E{[x(t)  - -  ~(t)]2}. For convenience, we 
take x(t)  real, and to standardize our results, we shall always suppose 
E{[x(t)] 2} -~ 1. 
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We begin with the simplest possible interpolator, the sample-and-hold 
scheme shown in Fig. 1, and described by the output 

k(t) = x(t,,) for tn ~< t < t,+ 1 . (1.2) 

Each x(t~) is thus held until the arrival of the next sample at time t,~+l, 
at which instant the current N(t) is "dumped" and replaced by a new value 
x(t~+l). While the sample-and-hold interpolator corresponds to the time- 
varying weighting function 2 

h ( t ,  .) = ~ [v(u - t .  - )  - u ( u  - t .  +)][u(t - t . )  - u ( t  - t.+l)], (1.3) 
--co 

it is actually easy to mechanize as a hardware device, and its performance can 
readily be calculated without reference to (1.3). 
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Sample-and-hold interpolation. 

A variation of the above method, designated exponential interpolation, is 
shown in Fig. 2; it differs from sample-and-hold only in the exponential 
weighting of the sample value used. In other words, 

Yc(t) -=- e-5(~-t")x(t~) for  t,~ <~ t < t~+l, (1.4) 

where b > 0 is chosen as desired. On strictly intuitive grounds, it could be 

3 Here U(-) is the unit step function. 

643/26[4-2 
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FIG. 2. Exponential decay interpolation. 

argued that the exponential sampling of (1.4) is preferable to (1.2), since 
exponential sampling is superior at low sampling rates. In  fact, if the auto- 
correlation of R~(r) --~ 0 as r --~ oo [always true if x(t) has an absolutely con- 
tinuous spectral distribution function], we have e 2 ~ 2 as the sampling rate 
tends toward zero with sample-and-hold recovery, whereas e 2 ~ 1 for 
exponential interpolation. 

At high sampling rates, however, the relative ranking of these two inter- 
polation schemes is reversed for all differentiable signals. This  becomes clear 
once exponential interpolation is analyzed in conjunction with sample-and- 
hold interpolation by calculating errors respective to (1.4) with arbitrary 
b > /0 ,  that is, by regarding sample-and-hold as a special or limiting case of 
exponential interpolation. 

On each interval [t~, tn+l), sample-and-hold recovery is recognized as 
polynomial interpolation [see Davis (1963, p. 24)] with n = 1. The  same type 
of interpolation, but  with n = 2, connects successive samples with straightline 
segments as shown in Fig. 3. We refer to the interpolatory method of Fig. 3 
as polygonal interpolation. When the sampling times are random, computation 
of mean square errors becomes quite difficult; this bec:omes evident when  we 
see that recurrence times (i.e., time intervals f rom t to the nearest sampling 
instant) are present in both numerator  and denominator of a quotient, and 
that  joint statistics of forward and backward recurrence ,times are required. 
Nonetheless, we have been able to determine the mean square error for some 
special cases, and to formulate parametric relations on error behavior. T h e  
latter lend themselves naturally to comparisons with n0ncausal Wiener- 
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Kolmogorov filtering, since the usual polygonal interpolator is itself non- 
causal. It will be observed that the simple interpolator exhibits better per- 
formance at high sampling rates, even though its delay requirements are 
small, in contrast to the infinite delay postulated for the noncausal Wiener- 
Kolmogorov filter. 

x(t) 
\ 

I 
I 
X N 

tn- I t n tn+ I tn+2 

FIG. 3. Folygonsl interpolation. 

We also consider both causal and noncausal polynomial interpolators of 
arbitrary degree at high sampling rates. Exact mean square error expressions 
then become insuperably difficult to calculate, and in any case, lead to such 
complicated expressions that insight is inevitably lost. At high sampling rates, 
however, simple parametric relationships are obtained, and easy mean square 
error bounds established. 

It should be noted that the emphasis on high sampling rate results is not a 
serious restriction. Indeed, any meaningful application of sampled signal 
recovery requires that the error be small relative to the signal magnitude, and 
this in turn demands high sampling rates. The notion of sampling rate is made 
more precise in the next section, in which some of the other implication of 
asymptotic error analysis at high sampling rates is also discussed. 

I I .  N O T A T I O N  AND BACKGROUND 

Since the material of this paper leans heavily on properties of spp, it is 
convenient to summarize the notation and background to be used; the inter- 
ested reader will find further results and the applicable derivations in Beutler 
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and Leneman (1966a, 1966b). Fundamental is the notion of recurrence time 
L~(t) ,  which is the time interval between t and the Mh sampling point occur- 
ring thereafter. If k is a negative integer, L~(t)  denotes the interval length 
between the kth point preceding t and t itself. The distribution function of 
L~(t)  does not depend on t (by virtue of the stationarity of {tn}), and is known 
to be absolutely continuous; hence, a statistical description of L~(t) is furnished 
by the probability density function ge(-), which is zero for negative argument. 
A particularly prominent role is played by g l ,  which turns out to be the 
density of the distance to the nearest sampling point in either direction. 
Moreover, gl is a monotone functio n for which gl(0-t-) ----- fi, where fl is defined 
to be the mean number of sampling points per unit time. 

It is sometimes convenient as well as natural to operate in the frequency 
domain, for which purpose one introduces the transform 

gk*(s) = & ( u )  e -~" clu = E{exp[--sL~( t )]} .  (2.1) 

It  can be shown that g~* is related to the conditional distribution Fe for Le(t), 
given that a sampling point occurs at t; iffT~* is the Laplace-Stieltjes trans- 
form ofFe ,  we have [see Beutler and Leneman (1968b)] 

g~*(s) = ~ s - l [ f * l ( s )  - -  f~*Cs)]. (2.2) 

If the intervals are independent and identically distributed, F k becomes the 
(unconditioned) distribution of k successive intervals. 

Of greatest interest are the recovery capabilities of interpolation schemes at 
relatively high sampling rates. To justify this claim, it would suffice to remark 
that the mean square error (i.e., error power) should be small compared to the 
signal power in any practical situation, and that this is true only at high 
sampling rates. However, there are additional reasons for concentrating on 
high sampling rates. For one thing, the mean square error expressions tend 
to be quite complex, so that comparison among sampling schemes, signals, and 
interpolators is awkward. The asymptotic (high sampling rate) formulas are 
much simpler, so that a direct parametric understanding of factors affecting 
error becomes possible. Finally, one can often find universal error 
formulations related to moments of x(t)  and {tn} , independently of the form of 
the autocorrelation or other statistics. 

Insofar as possible, we shall present our results in nondimensionally 
normalized form. For instance, our notion of sampling rate is the non- 
dimensional ratio y = f i /W,  in which fi is the mean number of samples per 
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unit time (as previously defined), and W is some consistent bandwidth 
measure for x(t). One possible choice of W is 

l ' "  W = i n f  ~ i A S ~ ( ~ ) d o J  - -  , (2.3) 

S~ being the spectral density of x(t). a The  mean square error will then be given 
in terms of the (normalized) sampling rate 7, together with some statistical 
parameters of the unit bandwidth process 2(Wt)  = x(t) and the unit rate 
sampling sequence {Zn} defined by [~ - -  fit~. In  this fashion, it is possible to 
isolate the effect of sampling rate on the error, as distinct from variations in 
x(t) and {tn} unrelated to frequency content. I f  the ruth moment  of the nth 
derivative [of x(t) in quadratic mean] exists, the separation is obtained from 
relations such as 

E { [ x c . ) ( t ) ] , - }  = (2.4) 

and for the m th moments  of the recurrence time L~(t) 

(2.5) 

Elementary calculations also yield gk(u) = fl~k(fiu), gk*(s) = ~e*(s/fl), 
S~(co) = W-1S~(W-lo)) and Rx(r) = Re(Wz); here we have consistently used 
the tilde to refer to statistics of the normalized processes, and have denoted 
correlations by R with appropriate subscript. 

Although some of our results hold for any spp satisfying E{[LI(0)] 2} < o% 
it is frequently desirable and necessary to turn to explicit forms, chosen on the 
basis of analytic tractability as well as practical applicability. One of these is 
the so-called skip-jitter sampling process, which can be viewed as idealized 
periodic sampling (period T) modified by equipment and environmental 
conditions. One supposes that points are deleted independently, each with 
deletion probability q. In  addition, the remaining sample points are randomly 
perturbed; jit ter displacements uk are mutually independent, and may  be 
statistically described by the generating function 4 

= Z [ e x p  (2.6) 

3 We assume throughout for convenience only that the spectral distribution function 
of x(t) is absolutely continuous. 

4 The jitter cannot be so large that indices of sampling points are permuted. It 
follows that the u~ must be distributed over an interval whose length cannot exceed T, 
and which (by the stationarity of {t~}) can be taken as [0, T). 
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With the above notation, we obtain for the skip-jitter process, 

fn*(S) = C(s) C(--s)[(1 - -  q) e-sT]n~[1 - -  qe-sr] n, (2.7) 

as shown in Beutler and Leneman (1966b), Eq. (7.20). Of course, the skip- 
jitter process can be specialized if desired by setting either q = 0 or C(s) = 1. 
For comparison, it is of interest to consider the "most  random" [i.e., largest 
ent ropy--see  McFadden (1965)], spp, namely, the well-known Poisson point 
process. For this spp 

gl(u)  -~- fie -eu and gn*(S) = fn*(s) ~--- , (2.8) 

which corresponds to the classical formulas of renewal theory. 
One process x( t )  whose interpolation is analyzed in considerable detail is 

the wide sense Markov process, whose correlation is necessarily of the form 
[see Beutler (1963), Theorem 3] 

Rx('c) = exp( - - a  ] r  I). (2.9) 

There  are several reasons why this stochastic process should be of special 
interest to us. Aside from its mathematical simplicity, we note that the corre- 
lation is not differentiable at the origin, so that x( t )  is nondifferentiable in 
quadratic mean. Thus,  the wide sense Markov process is suitable to the 
study of interpolation for nondifferentiable processes. Furthermore,  it is 
known that the minimum mean square causal estimator for the process is 
(Beutler, 1961) 

~(t) = x ( t  - -  L l(t)) e x p [ - - a L _ l ( t ) ] ,  (2.10) 

with resulting mean square error 

E ~ = 1 - -  gx*(2a) (2.11) 

for any spp sampling process whatsoever. Lastly, the interpolation error for 
any x( t )  with rational spectral density having distinct poles is readily found 
once the error corresponding to (2.9) is known. This  follows because the 
mean square error is linear in Rx,  so that a solution for (2.9) extends 
immediately to x( t )  possessing correlations of the form 

R~(r) = ~ A~[exp(--a~ I ~ I)]. (2.12) 
k 
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I I I .  EXPONENTIAL AND SAMPLE-AND-HOLD INTERPOLATION 

In this section, we obtain and compare the mean square errors incurred 
when the recovery is based on the single sample value which immediately 
precedes the present time t. We consider in particular interpolators whose 
output is 

&(t) = x(t  - -  L_l(t))  exp[--bL_l(t)] (3.1) 

for some b /> 0, as in (1.2) and (1.4). Because the statistics of {t~} appear 
only in a simple form within (3.1), the mean square error corresponding to the 
~(t) of (3.1) is relatively easy to evaluate. 

For interpolators or estimators of general type, the mean square error can 
always be written as 

~ = 1 - -  2E[x(t) ~(t)] @ E{[~(t)]2}, (3.2) 

where x(t) and k ( t ) a re  assumed to be of finite mean square, with x(t) nor- 
malized so that E{[x(t)] ~} = 1. Since x(t) and {t~} are supposed statistically 
independent, expectations involving x(t) can be calculated when desired by 
applying successively these expectations in the more convenient order. We 
thus have 

E[x(t) ~(t)] = E{R~[L_I(t)] exp[--bL_!(t)] } 

= _l?~x(Y. ) e--bugl(U ) du (3.3) 

and (by an even simpler computation) 

E{[~(t)] 2} = E{[x(t)] 2} E{.exp[--2bL_~(t)] 

= e-2bug~(u) du = g~*(2b). (3.4) 

From the three foregoing equations, it is seen that the mean square error 
pertinent to the exponential interpolator is 

d [1 - 2R~(u) ~-b~ + e-~o~] e l ( . )  au (3.5) 

for arbitrary x(t) and (t~}. The  expression (3.5) is especially simple for a wide 
sense Markov signal. 
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EXAMPLE 3.1 (wide-sense Markov signal-arbitrary sampling statistics). 
On substituting in (3.5), we find that 

d = 1 --  2g~*(a -k b) q- g~*(2b). (3.6) 

If  W is defined as in (2.3), we have W = a. We also let a : b/a, so that the 
error takes on the dimensionless form 

E ~ ----- 1 - -  2~*(y  -* q- a r  -1) q- ~x*(2ay-~). (3.7) 

At high sampling rates, y becomes large, and since (see Section II) ~ = 1 
minimizes the mean square error, we may suppose ~ (the normalized exponen- 
tial decay) not large. Then  we may take advantage of the small arguments of gl* 
to derive a high sampling rate approximation to (3.7). In fact, the assumed 
existence of the second moment of Ll( t  ) implies [see Loeve (1955, p. 199)] 
that 

g~*(z) = 1 - -  zE[L~(O)] q- ½z~E{[L~(O)] 2} .q- o(z 2) (3.8) 

where O(Z2)/Z 2---~ 0 as z--+ 0 by definition. With the substitution (3.8), (3.7) 
becomes 

e 2 = 2y-IE[LI(0)] _[_ y-2[~2 _ 2a --  1] E{[LI(0)] ~} + o(y-2). (3.9) 

The  significance of (3.9) is discussed below, when a comparable expression for 
differentiable signals is available. To  this end, we first derive an alternative 
frequency domain version of (3.5). One of the terms needed is already given 
by (3.4). The  other follows from (3.3) by writing R~ as an inverse Fourier 
transform of S~, and then (since gl and S~ are both integrable) applying 
Fubini's theorem. The  final result, stated in dimensionless parameters, is 

E 2 = 1 q-  g1*(20~y--1 ) __ _1 ~Q¢ S:7(¢.o) g l  $(°~Y -1  - -  io)~/-1) dR). 
• w oo 

We use (3.10) in 

(3.10) 

EXAMPLE 3.2 (differentiable signal--high sampling rates). I f~ l*  in (3.10) 
is put  in series form (3.8), there follows 

,~ = ~,-~E{[L~(O)p}(~ + E{[~(O)]~}) + o(y-'). (3.11) 

We conclude that the mean square error always varies as the inverse 
square of the sampling rate when the signal is differentiable; this is clearly 
more desirable than the variation with y-1 encountered for the wide-sense 
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Markov signal. We further conjecture--but  have been unable to prove- - tha t  
the error behaves as y-1 for any nondifferentiable signal. 

Exponential interpolation is undesirable in conjunction with a differentiable 
signal x(t); as (3.11) indicates, the mean square error increases directly with 
the decay rate squared. On the other hand, the error (3.9) applicable to the 
wide sense Markov signal is quite insensitive to the decay rate ~ even at 
moderate sampling rates V -1. Both error behavior with y and effect of decay 
are readily explained by the manner in which R~ drops off near the origin. 
I f  x(t) is differentiable,/~(0) = 0, and so ~(t) is more highly correlated with 
x(t) than for the nondifferentiable (wide-sense Markov) signal. This  leads to 
smaller interpolation errors for differentiable signals, and also suggests that 
decay in ~(t) emphasizes its deviation from x(t) whenever Rx departs only a 
little from unity during a sampling interval. 

Our next object of investigation is the influence of jitter on the mean square 
error. A limited approach is through (3.9) or (3.11), in which one observes the 
change in ELL1(0)] or E{[L~(0)]~}, respectively, as the sampling point locations 
are modified by independent identically distributed perturbations. 

EXAMPLE 3.3 (wide-sense Markov signal--ji t tered periodic sampling). 
The  interval lengths in this instance are T + un - -  un-1,  where the uk are 
the jitter variables. Then  if Q( ' )  is the (common) distribution function of 
u~ - -  un_x, we have g~(u) = T-~[1 - Q(u - T)] by the relation of Fx to gl 
[see Beutler and Leneman (1966a), Eq. (3.4.1)]. One then computes 

~0 c° E{[LI(0)]~} --  .m&(u) ~u. 

We shall assume in particular that each u k is uniformly distributed over the 
interval [0, vT),  whence it follows that 

1 v 2 
ELL1(0)] = ~ + 1~ ; (3.12) 

the mean square error (3.9) is therefore E 2 = 7-111 + (vz/6)] + o(y-~). 
Although jitter augments the error, the increase is negligibly small; if each 
sampling point is allowed to deviate by as much as a quarter of the sampling 
interval (i.e., v ----- ¼), there is an increase of but 1% in the error. The  same 
reasoning is pertinent to differentiable signals, for which we have: 

EXAMPLE3.4 (differentiable signal--jit tered periodic sampling). We 
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proceed as in Example 3.3, and obtain E{[/,l(0)] 2} = ½ + (v2/6). The latter 
yields a high sampling rate approximation 

1 ~ (1 v2 ,2 = ~ r- + -5-) (~2 + E{[~(0)p}) + o(~-~). (3.13) 

If the sampling points are perturbed in a uniform distribution extending (as in 
Example 3.3) over a quarter of the sampling interval, the error increase is 
3 %--still a small amount, especially in view of the relatively large sampling 
time deviation. The small influence of jitter can be explained intuitively by 
observing that L_l(t ) is unchanged on the average, but since there is a symme- 
trical probability of smaller and larger occurrence times before the most recent 
sample, the mean square weighting generates a second order error effect. 

Jitter may be imposed on sampling processes other than the periodic. 
It is seen from (3.7) and (3.10) that the change in gl* resulting from the jitter 
translates into its influence on the mean square error. Consequently, general 
approximation formulas can be derived if the variation in gl* can be related 
to the jitter. Let us call f *  the interval characteristic function [see Eq. (2.2)] 
prior to the imposition of jitter, and take C(') the jitter characteristic function 
as defined by (2.6). Then 

f~*(s)  = C(s )  C ( - - s )  f*ol(S) (3.14) 

and from the connection (2.2) between fl* and gl* 

A g l * ( s  ) = g l* ( s )  - -  g*~(s) = 1 - -  C(s )  C ( - - s )  [sg*(s)  - -  1]. (3.15) 
S 

In nondimensional form, (3.15) can be expanded in the series, 

A g l * ( s  ) = --s,~ 2 q-  s~,r ~ -+- o(s2), (3.16) 

in which ~2 is the variance of the normalized jitter variable/?u~. 

EXAMPLe 3.5 (wide-sense Markov signal--arbitrary jitter statistics). The 
mean square error increase consequent to the introduction of jitter is deter- 
mined for moderate or larger sampling rates by substituting (3.16) into the 
general mean square error formula (3.7). Upon performing the indicated 
operations, one sees that 

Ae 2 = 2~2r -* q- 2~2y-2(c~ = --  2a --  1) q- o(r-2) .  (3.17) 

Evidently, jitter enlarges the error by the ratio cr2/E[/,l(0)] for high sampling 
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rates. Although we have been unable to find an a priori bound for this ratio, 
the requirement that the jitters not permute sampling points suggests that 
1/4 is not exceeded. As we have seen in Examples 3.3 and 3.4, even large 
jitters do not come close to this value under plausible conditions. 

The techniques of Example 3.5 are equally suitable to a determination of 
error increase for differentiable signals when jitter is imposed on the sampling 
sequence. 

EXAMPLE 3.6 (differentiable signal--arbitrary jitter statistics). We put 
(3.16) into (3.10), observing that some terms cancel, while others assume the 
form J" ~oS~(co) do~ ---- 0. There remains 

= + + (3.18) 

In this instance, the mean square error augmentation ratio is 2e2/E{[[,l(0)12}, 
which is again likely to be small in practical applications. 

Skipping of samples is yet another phenomenon which may be encountered 
in practice as a result of sampler malfunction, jamming, fading or other 
environmental causes. Like jitter, skipping exacts a performance penalty 
intuitively connected with irregularity of sampling intervals. For simplicity, 
we consider only periodic sampling subjected to independent deletions, each 
sample being omitted with probability q. The fl* for this case is then given 
by (2.7) with C(s) = 1, and 

E{[L~(0)]~} = ( - -1 )~+~  a '+~  ~=0 m + 1 ds~+ ~ f~*(s) (3.19) 

where/3 = (1 -- q)/T. We are therefore led to the high sampling rates results 
of 

EXAMPLE 3.7 (periodic sampling with independent rando m skips). Because 
E[La(0)] = ½(1 + q)/3 -1, substitution in (3.9) for the wide-sense Markov 
signal yields 

d = ~,-1(1 + q) + o(y-1). (3.20) 

The procedure is entirely analogous for differentiable signals; taking m ---- 2 
in (3.19) and putting E{[LI(0)] 2} into (3. i 1) gives 

,2 = ~_~,-2(1 + 4q + qZ)(a2 + E{[~(0)]2}) + o(y-2). (3.21) 

The error increase engendered by the skipping is connected with the con- 
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sequent irregularity of the sampling, and is expressed by the factors (1 + q) 
and (1 + 4q + q~) in (3.20) and (3.21), respectively. Of course, if T is held 
constant in face of increasing skipping probability q, the sampling rate y 
decreases, thus leading to a larger error also. I t  is worth noting that the 
sampling tends to a Poisson process if we let q -+  1 while taking T--~ 0 such 
that the ratio (1 - - q ) / T  remains undisturbed; we could use this fact to 
calculate mean square errors attendant to Poisson sampling, but  find it as 
easy to proceed directly. 

We next compare the mean square error of exponential interpolation with 
that achieved by causal Wiener-Kolmogorov filtering. Unfortunately, the 
comparison is severely limited by difficulties in the factorization which is a 
crucial aspect of the Wiener procedure. Nonetheless, our results strongly 
suggest the conjecture that the exponential interpolator gains in relative 
performance as the sampling sequence becomes more random. 

Our discussion is of necessity confined to wide-sense Markov signals. For 
these, the exponential interpolator (with c~ = 1) is optimal (among all linear 
causal filters) with respect to any sampling sequence (Beutler, 1961). When the 
sampling sequence is periodic, the exponential interpolator and Wiener 
filter coincide. But if random skipping (see preceding example) is introduced, 
the corresponding Wiener filter possesses infinite memory (Leneman, 
1966b); a since its output must then differ from the opt imum (exponential) 
interpolator (see Beutler, 1961), the causal Wiener filter must generate a larger 
mean square error. 

An explicit comparison is feasible for Poisson sampling, which can be 
regarded as "most  random" among all sampling schemes when judged on the 
basis of entropy (McFadden, 1965). 

EXAMPLE 3.8 (wide-sense Markov signal--Poisson sampling). The  exact 
mean square error formula is immediate from (2.8) and (3.7), viz, 

l i -~- ~,-1 1 I (3.22) 
e 2 = 2 1 + 2c~7-1 1 + cW-1 + 7 -1 " 

The  asymptotic error form is computed either f rom (3.22), or by using 
ELL1(0)] = 1 in (3.9), whence 

,~ = 27 -~ + 0(7% (3.23) 

5 In this instance, the Wiener filter and its mean square error depend implicitly 
on q, T and a through the solution of a quadratic equation. We have therefore been 
unable to obtain a high sampling rate approximation to the mean square error. 
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This represents a definite improvement over Wiener filtering, for which 
(Leneman, 1966b, Eq. 2.43) we have the asymptotic error relation 

~ = ~/2 r-~/2 + o(7-~). (3.24) 

Further quantitative comparisons between Wiener filters and simple inter- 
polators appear in the next section. There, the fair comparison is with non- 
causal time-invariant mean square optimal filters. Since the latter are cal- 
culable without the need for spectral factorization, we will be able to obtain 
a greater number of results for reference. 

IV. POLYGONAL INTERPOLATION 

The interpolatory methods presented thus far utilize only the last sample 
preceding time t to produce &(t). Use of a greater number of samples in linear 
combination should decrease the interpolation error; this is expected in ana- 
logy with the nonrandom interpolation of functions [see, for instance, Davis 
(1963), p. 56 ff.]. There we recognize sample-and-hold interpolation as zeroth 
order polynomial interpolation, while polygonal interpolation is identified 
with interpolation by polynomials of order one. It follows that the sample- 
and-hold error should depend inversely on the interval length, while the 
error of polygonal interpolation is inverse to the square of this length. More- 
over, the error for the latter becomes much smaller (by a constant multipli- 
cative factor) when one sample is to each side of time t than when both samples 
lie in the past. 

Motivated by the above considerations, we now analyze polygonal inter- 
polation; it is of particular interest to note whether the behavior of the mean 
square error is consistent with the arguments of the preceding paragraph. 
To this end, consider the interpolation scheme illustrated by Fig. 3. We see 
that ~(t) lies on the straight line joining the samples x(t~) and x(t~+~), the 
index n being such that t~ ~ t < t~+ x . Evidently, this interpolation method 
is noncausal, although the delay is likely to be small at high sampling rates. 

An analytical expression for &(t) can be developed in terms of the forward 
recurrence time Ll(t ) and backward recurrence time L_x(t); the contributions 
of X(tn) and x(tn+l) are in linear combination that depends on these recurrence 
times. More specifically, we have for ~(t) 

~(t) = L_~x(t + L~) -4- L~x(t - -  L-z)  
L1 + L_ 1 , (4. l) 

in which we have suppressed the arguments OfLl(t ) and L l(t ). 
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Calculation of the mean square error e ~ from (3.2) requires a knowledge of 
E{[k(t)] z and E[x(t)~(t)], where ~(t) is given by (4.1) above. We cannot 
in general hope to obtain these expectations without the joint probability 
distribution ofL  1 and L 1 ,  since these appear in nonlinear combination in the 
expression for the square of the error. Even when the appropriate integrands 
are available, the (L1 + L_I) term in the denominator of (4.1) usually leads to 
integrals that cannot be evaluated in closed form. In view of these problems, 
few direct results are explicitly obtainable. 

It is advantageous to use the symmetry of R~ to write 

E t (L_~) R~(L,) + (L~) Rx(L_~) t E[x(t) ~(t)] L-a +-L_---~ ) (4.2) ( 

and to put E{[~(t)] 2} in the form 

e t + (L )2 + 2¢1L_ ) R (L1 + t E{[~(t)] 2} 
t (L 1 -~- L_I)  2 ) 

(4.3) 

We can then obtain a fairly general error formula, namely 

EXAMPLE 4.1 (twice differentiable signal--high sampling rates). Let  us 
call G(', ") the joint distribution function of L 1 and L 1 ,  and assume the 
existence of the joint second moments of the recurrence times, viz, 

co 

E{[LI(t ) L l(t)] 2} = ff u2v  dG(u, v). (4.4) 
o 

The  mean square error, as furnished by (3,2), now appears as a double 
integral with respect to G, with E[x(t) ~(t)] and E{[~(t)] 2} given by (4.2) and 
(4.3), respectively. Because x(t) is supposed twice differentiable, R~ may be 
expanded as in Loeve (1955, p. 199). If the integral is written in dimensionless 
form using the sampling rate 7, we find that 

E 2 = 1},-aE{[~(t)]2} E{[LI(I)LI(t)]2 ) -}- o(T-t). (4.5) 

I f  G(', ") is too difficult to find, one may modify (4.5) by utilizing the upper 
bound 

E{[L~(t) L_~(t)] ~} ~< E{[L~(t)]4}, (4.6) 

the latter follows from the Schwarz inequality and the fact that L 1 and L 1 
both have the same probability distribution [see Bentler and Leneman 
(1966a)]. 

It is noteworthy that the mean square error varies with the sampling rates 
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according to 7 -4. This  behavior, together with that of once differentiable 
signals under sample-and-hold interpolation, is entirely consistent with the 
classical results on polynomial interpolation [see again Davis (1963)]. While 
it would be desirable to compare the mean square error expression (4.5) with 
the corresponding error for Wiener-Kolmogorov filtering, nontrivial compu- 
tations on the latter appear to pose insuperable difficulties. 

As we have observed earlier, the polygonal interpolator of Example 4.1 is 
noncausal. However, this fact is irrelevant to the fashion in which the mean 
square error varies with the sampling rate 7. To  further demonstrate this fact, 
and to observe the influence of causality, we borrow a result f rom the next 
section for: 

EXAMPLE 4.2 (twice differentiable signal--causal polygonal extrapolator 
at high sampling rates). We suppose here that ~(t) is the linear extrapolation 
of the two sample values immediately preceding t, i.e., 

fc(t) : x( t  - - L _ I )  -}- 1 x(t - - L _ I )  - -  x(t  - - L _ s )  
- -  L - e  I (t - -  L 1). (4.7) 

Then  it may be shown that 

e~ = ~-4E{[~(0)]z} E{[L_I(t) L_2(t)] 2} -~- o(7-a); (4.8) 

it is clear that the only difference between the errors of the noncausal and 
causal interpolators lies in the mean square distance between t and the 
sampling instants. 

For purposes of comparison, it is of interest to find also the form and 
error magnitude associated with opt imum two point interpolation. Tha t  is, 
we take 

~(t) = a(t)  x ( t  - -  L_I)  + b(t) x ( t  -[- L_I)  , (4.9) 

choosing a and b to minimize the mean square interpolation error. Applying 
the orthogonality principle, one easily shows 

a(t)  = R~(L-1)  - -  R~(LI)  R~(L~ + L_a) 
1 - -  [R~(L 1 + L_~)] 2 ' (4.10) 

and that (by symmetry) b is precisely like a, but with L 1 and L_ 1 interchanged. 
The  mean square error for this (optimal) a and b is calculated asymptotically 
at high sampling rates by substituting (4.9) into E 2 = 1 - -E[x ( t )~ ( t ) ]  with 
optimal values of a and b entered therein. Although t h e  formal computation 
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is routine, as are the simpler ones leading to mean square errors (4.5) and (4.8), 
rigorous justification of the results prove more complicated in all these cases. 
The  problems arise relative to the truncated Maclaurin expansion of R~,  
since the latter is expressed in series form prior to taking the expectation with 
respect to {tn}; it must  then be shown that the remainder term leads only to a 
contribution of o(7 -4 ) in the final expression. The  denominator term of (4.10) 
necessitates particularly delicate analysis, since the manner in which it tends 
toward zero with L 1 ~ L _  1 is crucial. Under  mild assumptions (i.e., the 
existence of the sixth moment  of L1), one shows the total integrand with 
respect to the probability distribution G(', ") well behaved, and indeed 
admitting an asymptotic expansion whose leading term has 7 -4 as its multi- 
plicand. We shall omit the rigorous verification of this assertion, and only note 
that the final result is 

e ~ = ~r-4(E{[#(t)] ~} - -  (E{[4(t)]~}) 2) E{[L~(t) L_l(t)] 2} + 0(7-4). (4.11) 

Thus,  there is some reduction in mean square error, but no fundamental 
difference in error behavior with sampling rate 7, or with the sampling scheme 
[reflected only by the last term on the right of Eq. (4.11)]. Since a and b must  
be individually computed for every t, it seems questionable whether the 
additional complexity of the two point optimization is warranted. 

T o  secure a better feeling for the comparative performance of the two point 
interpolators discussed above, we shall compute their respective mean square 
errors under similar conditions. To  this end, let us assume Poisson sampling 
of a band-limited white signal. 

EXAMPLE 4.3 (band-limked white signal with Poisson sampl ing--com-  
parison of two-point reconstruction of signal). I t  is only necessary to sub- 
stitute in the expressions already derived. Straightforward calculations yield 

16 
E{[~(t)]'} = ~ - ,  

E{[LI(t)L_I(t)] 2} = 4 and 

(E{ [~ ( t ) ]~} )  = 4 _ ,6 
3 

E{[Z_l( t  ) L_2(t)] 2} = 40. 
(4.12) 

For the (non-causal) polygonal interpolator, we then have 

16 4 e2 = .~_ 7 -  ( 4 . 1 3 )  

6 In this example, our notion of bandwidth is furnished by the half power fre- 
quency, i.e. by (2.3). As usual, we suppose x(t) normalized to make E{[x(t)] 2} = 1. 
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whereas the causal polygonal extrapolator yields 10 times this value or 

~2 = 327-4. (4.14) 

As is expected, the smallest mean square error is associated with the optimal 
two-point interpolator; it is 

d 64 4 (4.15) ---- ~ , - .  

We again call attention to the similarity of the error forms, and that the 
dependence on sampling rate is the same for all. Indeed, differences in signal 
or sampling characteristics, as well as the choice of two-point reconstruction 
method, is reflected only in a fixed numerical multiplier. 

The superiority of the simple two-point interpolator over a Wiener- 
Kolmogorov noncausal filter becomes evident when we calculate the mean- 
square error for the latter under comparable conditions. We again assume 
Poisson sampling of band-limited white signal. The technique (standard in 
any case) suggested in Leneman (1966b) is applied to the spectral densities 
obtained from Beutler and Leneman (1968), Eq. (3.7) and (4.6). The mean 
square optimal time-invariant interpolator then yields mean square error 

¢2 = 2 y-1 q_ o(y-2),7 (4.16) 
77" 

which compares unfavorably with the variation with y -4 of any of the two 
point interpolators mentioned in Example 4.3. Nor is the behavior of the 
Wiener-Kolmogorov interpolator merely a special case relevant only to 
Poisson sampling. For instance, we could assume periodic sampling subject 
to skips (deletion of samples) each occurring independently with probability 
q; the latter model leads to a mean square error expression 

,3 _ 2 q y - 1  + o(y-1). (4.17) 
7r 

It  is our belief that the y--1 leading term is typical of Wiener-Kolmogorov 
interpolation of a differentiable signal. Of course, a regular sampling pattern 
at a high sampling rate leads to error-free recovery, so that this statement is 
applicable only if some degree of randomness is present in the sampling train. 

We have been unable to answer to our satisfaction the nature of the poly- 

The exact error formula is ~2 = (2#r)y-l[1 + (2y-1/~r)]-l. 

643126[4-3 
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gonal interpolation error when x(t) is once differentiable. If we again introduce 
(4.2) and (4.3) into the general error expression (3.2) and expand Rx as 
R~(u) = 1 -  (u~/2)E{[2(t)] 2} -t-o(u2), we see that all the terms cancel 
mutually except the last; hence we are left with 

E 2 = o(7-3). (4.18) 

Approximation techniques are also useless in attempting to derive 
asymptotic error expressions for non-differentiable signals. Fortunately, 
it has been possible to evaluate the error in certain special cases (e.g., wide- 
sense Markov signals). Here one is generally able to determine the exact 
mean square expression, from which the asymptotic form is then obtained. 

EXAMPLE 4.4 (wide-sense Markov signal with independent skip sampling-- 
polygonal interpolation). We return to (4.2) and (4.3), which enable us to 
compute the desired mean square error. In order to deal with the 
denominators comprised of powers of L 1 + L 1 , we apply the total proba- 
bility law 

E(Z) = y, E(Zl  C,) P ( C , ) ,  

where {C,~} constitutes a partition of the probability space. In this instance, 
we take C~ as the event that time t falls in a sampling interval of length nT ,  
where T is the nominal distance between successive (unskipped) samples. 
We then have C n = {L 1 + L_  1 : nT} ,  and as may readily be verified 

P(C,~) ~ nq'~-l(1 - -  q)2 (4.19) 

under the earlier assumption of independent skips each having probability q. 
The conditional density ofL 1 , given Cn, is 

o < .  < . T  
gl( u I c.) (4.20) ~o ovherwise. 

With this information one computes for later use in the total probability 
formula 

E{[~(t)] ~ [C~} = ½[2 + R~(nT)], (4.21) 

which holds generally for any Rx. On specializing (4.21) by assigning R~(~-) 
exp(--a I ~- 1), multiplying by P(C~), and summing one obtains 

1 [2 + (1 - -  q)2 e-aT ] = 1 - -  1 (1 Jr q] (aT)  -t- o(aT).  (4.22) E{[~(t)] 2} 
(1  - -  qe-aT) 2 J 3 \-~q~ q] 
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The same technique, applied to the computation of E[x(t)N(t)], yields the 
closed form expression 

E[x(t)£~(t)] ~ 2 ( 1 -  q)_){1 1 - - q  [log (1 - -qe -aT . ) ]} .  (4.23) 
aT q(aT) 1 --  q 

An expansion of the logarithm [whose argument is written 

for this purpose] leads to  a high sampling rate approximation to E[x(t) ~(t)] 
identical to the right side of (4.22). The estimates of E{[~(t)] ~} and E[x(t)~(t)], 
valid for high sampling rates 7 = (1 -- q)/aT, are entered into the general 
mean square error formula ,2 = 1 --  2E[x(t) ~(t)] ÷ E{[~(t)]2}, thus giving 

(1_3+___q) y - l +  o(7-1). (4.24) 

The above error invites comparison with the corresponding error associated 
with use of only one  sampling point [see Eq. (3.20)]. Although the mean 
square error is reduced by a factor of three by interpolation between two 
sampling points relative to sample-and-hold extrapolation, its dependence 
on the sampling rate through 7 -1 remains unchanged. The benefits of employ- 
ing a second sampling point are therefore relatively small, and are even 
further minimized if a two-point (causal) extrapolator is considered in place 
of the interpolator of the present example. 

It is noteworthy that the error for twice differentiable x(t) with a polygonal 
recovery scheme varies as 7 -~, whereas the variation is with 7 -1 for the non- 
differentiable signal just considered. We also showed by (3.18) that the mean 
square error behaved as o(7 -2) when the signal is (at least) once differentiable. 
It  therefore appears that signal differentiability is a vital error consideration at 
high sampling rates. This is again seen from the next example, in which we 
are also able to make error comparisons with Wiener-Kolmogorov noncausal 
filtering. 

EXAMPLE 4.5 (Poisson sampling of a wide-sense Markov signal--polygonal 
interpolation). Because L 1 and L 1 are statistically independent, each having 
exponential density with parameter t3, one can find the joint probability 
density of L 1 -t- L-1 and L 1 to be 

i 2eBo 0 < v < u 
h(u, v) (4.25) 

otherwise. 
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Knowledge of this joint density permits us to determine E[x(t)~(t)] by 
noting that (4.2) consists of two terms having the same expectation, so that 

E[x(t) ~(t)] = 2 f f  (u -- ~) R~(v) h(u, v) du dr. 
U 

0 

(4.26) 

We integrate first on v, taking advantage of the exponential form of R~ ; 
the second integral can then be treated as a Laplace transform whose trans- 
form variable in ft. The final result is 

E[x(t) o~(t)] = 27{1 -- y log(1 -k 7-!)}. (4.27) 

By proceeding in similar fashion we also obtain 

1{2 + 1 I '  (4.28) E{[~(t)]2} = 3 (1 -~ r--l) 2 

where the nondimensional sampling rate y = fi/a as before. Although the 
mean square error is directly available from (4.27) and (4.28) above, the effect 
of y on error behavior is not transparent. However, the asymptotic expression 
resulting from expansion of the logarithm in (4.27) and the denominator in 
(4.28) takes on the relatively simple form 

2 y_, 8 + o(y_.)" d = ~ _ y-3 (4.29) 

Here we have deliberately carried the 7 -3 term, which will prove useful in the 
next example. 

For the nondifferentiable signal x(t) considered above, the error is linear in 
y -1, as it was in the preceding example likewise concerned with polygonal 
interpolation of a nondifferentiable x(t). While the error magnitude is not as 
responsive to sampling rate as for a twice differentiable signal, the performance 
(4.29) is nevertheless superior to that achieved by a noncausal Wiener- 
Kolmogorov interpolator. It has been shown elsewhere [Eq. (2.37) of Leneman 
(1966b)], that for the latter 

/ ] -  --1/2 (4.30) 

which is clearly worse than the mean square error (4.29) applicable to the 
polygonal interpolator depending on only one point to each side of t. 
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I t  is also instructive to observe the relation between sampling rate and mean 
square error when the signal is exactly once differentiable; as we have seen, 
this error varies as 7 -4 for a signal which is twice differentiable, and as 
y -1 (in Examples 4.4 and 4.5) if the signal cannot be differentiated. Since 
general results in this direction seem to be beyond our grasp, we must again 
rely on a convenient example. 

EXAMPLE 4.6 (Poisson sampling of once differentiable signal--polygonal 
interpolation). Although we are unable to treat once differentiable signals 
of general type, we can use the results of the preceding example to handle any 
signal of rational spectral density having distinct real poles. The  correlation 
R~ of such a signal can be written 

R~(r) = ~ A,~ exp(- -ak  I r L), (4.31) 

whose coefficients must satisfy 

2 Ak = 1 and 2 Al~a~ = 0 (4.32) 

because E{[x(t)] 2} = 1 and the derivative of R ,  at the origin exists and is 
zero by the assumed differentiability (in quadratic mean) of x(t). Moreover, 

Akal~ a <~ 0, with equality iff x(t) is twice differentiable. 
Let  us now compute the mean square error for an R x furnished by (4.31). 

Now the mean square recovery error is linear in R~,  so that the formula (4.29) 
can be applied te rm-by- te rm to (4.31). For notational brevity, call the right 
side of (4.29) e2(y). Take 7 = fi/a, where fi is the Poisson rate as before, and 
a is any consistent measure of signal bandwidth (e.g., the half power fre- 
quency). The  linearity property, as applied to the mean square error, then 
yields 

,~ = ~ A~,2 (-~-7~) , (4.33) 

in which be = alJa. By virtue of the second equality in (4.32) and the defini- 
tion of e2(') f rom (4.29), the y-1 terms sum to zero, and there remains 

= __[~__~ ~ Akba I y-a q_ 0(7-3). (4.34) E 2 

We have thus shown that for this (large) class of precisely once differentiable 
signals the mean square error varies according to y-a. The  same qualitative 
behavior may be demonstrated for once differentiable signals whose spectral 
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density has multiple poles, and for the skip sampling considered earlier in 
different connections. 

By way of comparison, we again recall that the error relevant to twice 
differentiable signals varied with y -4, while that of nondifferentiable signals 
behaved like ),-1. Wiener-Kolmogorov noncausal filtering of a nondifferen- 
tiable signal yielded the still worse figure ),-1/~. I t  is also worth noting 
that utilization of two interpolation points (in place of one) improves the mean 
square error behavior from ),-2 to ),-a for a once differentiable signal, from 
),-2 to ),-4 for a twice differentiable signal, and leaves the factor 7 -1 unchanged 
if the signal is not differentiable at all. 

V. GENERAL POLYNOMIAL INTERPOLATION 

The  interpolation and extrapolation schemes studied in the preceding two 
sections represent classical Lagrange polynomial interpolation [Davis 
(1963), Section 2.5] of degree zero and one, respectively. The  computational 
difficulties experienced there discourages direct mean square error calculations 
for polynomials of higher degree fitted to larger numbers of sample points. 
Thus,  there seems no way to readily determine the asymptotic mean square 
error incurred by interpolating an m times differentiable signal by a poly- 
nomial of degree n - -  1 passed through n sample points when m ~< n - -  1 and 
n /> 3. However, we can and do derive an error expression of polynomial 
interpolation valid for m /> n and n arbitrary. The  formula obtained will hold 
for causal as well as noncausal estimators; in either case, the mean square error 
varies as y-2•. 

Our starting point is the expression for the Cauchy remainder [Davis 
(1963), Section 3.1] indicative of the difference between an n times 
differentiable func t ion fand  the n - -  1 degree polynomial P~-I  passed through 
the pointsf(/~),  h = 1, 2,..., n; we have 

i f ( t  ) _ p,_l(t)[ _ ]f"(s)] i ~ i l t  _ te ] (5.1) 
n! 1 

in which the indicated nth derivative is to be taken at some (unspecified) 
time s, t~ ~< s ~< t~. We assume here that the sampling points t~ < t~ 
"'" < tn,  without requiring that t falls within the interval [ t l ,  tn] marked by 
the sampling time extremes t 1 and t~. In  fact, t > t n or t 1 ~< t ~<t~ ,  
according as we consider (causal) extrapolation or (noncausal) interpolation. 

The  error formula (5.1) applies ipsofacto to randomly t imed sampling of an 
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n times differentiable stochastic signal x(t). We now have I t - -  tk I = Lj k , 
where Jl ,...,J~ represent the combination of indices appropriate to the 
recovery scheme contemplated; all indices are negative for extrapolation, 
whereas interpolation leads to some positive and some negative indices. 
Once the substitution by the Lj~ is accomplished, one is tempted to square 
(5.1) (with f replaced by x), and to take the resulting expectation in order to 
find the mean square error. But unfortunately, one cannot claim that 

n 

since in general the s on the left side of (5.2) depends not only on x(t), but 
also on {t~}. 8 We must  therefore resort to a different technique which avoids 
the dependence problem, although its validity is limited to asymptotically 
large sampling rates 7. 

I t  is possible to bound the error (5.1) by replacingf~(s) with 

sup [f~(s)]. 
Q<~s<~t n 

Correspondingly, we may write in terms of the nondimensional processes 
introduced in Section I I  

7 ~ d  <~ (n!) -2E lsup[~(u)] 2 ~I [£;~(t)]2 I, (5.3) 
t , 1 

where * indicates that the supremum is to be taken over the interval 
D,- l i l ,  7-1~].  The  right side of (5.3) is further enlarged by taking the 
supremum instead over the interval [0 A ~-1il ,  0 V 7-1[~], in which the 
symbols A and V are defined by a A b = min (a, b) and a V b = max (a, b), 
respectively. The  supremum of [2n(u)] 2 over the larger interval is denoted 
by**.  We now assume the following: the nth derivative of x(t) not only 
exists, but is also almost surely continuous at each t2 A consequence of this 
assumption is 

lim{sup[2~(u)] ~} = [2~(0)]2; (5.4) 

here the interval over which the supremum is taken shrinks to the single point 
zero, so that the indicated convergence is monotone. Lebesgue's  monotone 

8 I t  is not even obvious- -a l though it can be s h o w n - - t h a t  s is measurable on the 
product  space generated by the stochastic processes x ( t )  and {t~}. 

For  n = 1 and n = 2, the results to be derived in this section are already given by 
(3.11) and (4.5), respectively, but  without  any requirement  on the continuity of the 
nth derivative. 
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convergence theorem, applied to (5.3) with sup, replaced by sup** , therefore 
yields 

IO E  YI" 
In writing (5.5), we have taken advantage of the independence of x(0) and 
{tn} , and have used the stationarity of {t~) to eliminate [ [Beutler and Leneman 
(1966a), Theorem 2.3.1).] 

The arguments just concluded may be modified by substituting inf,  for 
sup. , in which case the inequalities obtained are in the opposite direction. 
One may again employ the monotone convergence theorem, which now 
yields 

° I lira 9,3", 2 ~ (n !)-2E{[~"(0)]2}E ![-[ [/%(0)12 . (5.6) 
y-->oo I--t- 

I t  follows from (5.5) and (5.6) above that the limit of 9,2~ee exists and is given 
by the right side of these inequalities. A statement equivalent to this 
assertion is 

e 2 = 9 , - a ~ ( n l ) - 2 E { [ ~ ( O ) ] 2 } E  IO [Ljk(0)]2l + o(9,-~). (5.7) 

We have thus shown that the mean square error for polynomial inter- 
polation of a randomly sampled signal is consistent with the classical error 
formula as well as the results obtained earlier in the context of sample-and- 
hold and polygonal interpolation recovery. 

SUMMARY AND CONCLUSIONS 

We have analyzed the asymptotic mean square errors for polynomial 
recovery schemes when stochastic signals are sampled at random times. The 
results are expressed in dimensionless parametric form emphasizing the role 
of the nondimensional sampling rate 9,. 

Sample-and-hold recovery is seen to exhibit mean square error propor- 
tional to 7 -2 when the signal is differentiable, and 7 -1 when it is not. Error 
penalties for jitter appear to be negligible, nor does low probability random 
skipping exact a major error increase. Introduction of exponential decay fails 
to improve high sampling rate performance measurably when the signal is 
not differentiable; for a differentiable signal, the decay changes the dependence 
on sampling rate from 7 -2 to 7 -1 . 

Polygonal interpolation or extrapolation yields a mean square error 
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depending on 7 -4 for twice differentiable signals. The error varies according 
to y -3 when the signal is only once differentiable, and with 7 -1 for a non- 
differentiable signal. I t  is clear from these results that signal differentiability is 
a desirable attribute at high sampling rates. 

It  is shown that n point polynomial interpolation gives mean square errors 
proportionate to y-an if the signal is at least n times continuously differentiable. 
The  mean square error also varies directly with moments of the forward 
and/or backward recurrence times, as it does with sample-and-hold and 
polygonal interpolation; this variation is multiplicative and does not negate 
the y dependencies mentioned above. 

Virtues of the simple (e.g. sample-and-hold and polygonal) interpolators 
(or extrapolators) include ease of mechanization, lack of complex design 
computations, robustness and good performance. Comparisons regarding the 
latter have been made with Wiener-Kolmogorov filters for the few cases when 
the optimal time-invariant interpolator (extrapolator) could be derived. 
Mean square errors for the Wiener-Kolmogorov interpolators tended to vary 
with 7-1/2 , which distinctly favors the simple interpolators (extrapolators). 
An  explanation of this apparent paradox is easily found; although the simple 
interpolators are easy to implement, they nevertheless constitute time- 
varying filters, whereas the Wiener-Kolmogorov filter is constrained to be 
time-invariant. 
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