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We determine the Schur multipliers of several of the sporadic simple groups, 
and in one case get an upper bound. The groups treated are those of Held; 
Suzuki, Fischer, and Conway. 

1. INTRODUCTION 

This paper is a continuation of the author’s work in “Schur multipliers of 
fir,ite simple groups of Lie type,” [19]. H ere, we determine the multipliers of 
several sporadic simple groups (those which are not known to belong to infinite 
families). We state our results as follows: 

MAIN THEOREM. The sporadic simple gmups below haae ~~~tipl~e~~ as 
stated: 

Group Order Multiplier 

eld 

Suzuki 

Fischer’s MW) 
~(23) 
M(24)’ 

Conway’s 0.3 
0.2 
0.1 

210335”7317 1 

21337527 1 I 13 . . & 
2173g527.11.13 & 
21s313527 11 13 17 23 . . . . 1 
2213L6527311 13 17 23 29 . . . . 1 or z, 

21037537 11 . . 23 1 

21936537 11 23 . . 
2213g54721 I 13 23 . . 

F~~they~zo~e, f7(24), which contains M(24)’ with index 2, has trivial multiplier. 

We remark that the multiplier of M(24)’ . IS very iilely to be Z, (the author 
had believed [19] until recently that the multiplier was trivial). The reason 
for this is the strong evidence that a simple group F (popularly called “the 
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monster”) of order 2463205s761 1213317.19.23.29.31.41.47.59.71 exists [15, 18, 
371, and its existence would imply that an element h EF of order 3 has the 
properties: C,(h) = C#)‘, C,(h)/(h) z M(24)’ and iV,((h)/(h> g M(24). 
Proving directly that M(24)’ has multiplier of order 3 would be very difficult. 
If F is shown to exist, the ambiguity would be settled, of course. 

Concerning other known simple groups, the multiplier situation is almost 
complete. For a general account of work on the Schur multipliers of finite 
simple groups, the reader is referred to the author’s announcement [20]. The 
gaps in the tables of [20] are now filled, modulo the ambiguity concerning 
M(24)‘. Since [20] was written, several new simple groups have appeared, 
and we present what is known about their multipliers. 

Sporadic group Order Multiplier 

Rudvalis [ 10,291 21433537 . 13 . 29 z2 

O’Nan [27] 2g345 . 731 1 . 19 . 31 z3 

Fl [15, 18, 371 2463205s76112133.17.19.23.29.31.41.47.59.71 1 

F, D31 241313567211 . 13 . 17 . 19 . 23 . 31 . 47 1 or Z, 

F3 [371 215310537213 . 19 . 31 ? 

F5 1211 21436567 . 11 . 19 ? 

The multiplier of the Rudvalis group was settled by the combined work of 
A. Rudvalis, W. Feit, and R. Lyons; they also showed that the outer auto- 
morphism group is trivial. See [27] for the multiplier of the O’Nan group 
and see [18] for the above bounds on the multipliers of Fl and F, (the groups 
Fi are defined to be the central factor groups of the centralizer in F = Fl of 
certain elements of order i = 1,2, 3, and 5). The existence question for the Fi 
has been settled affirmatively only for F3 and F5 as of this writing; both were 
handled with computer techniques by P. E. Smith of Cambridge. Also, the 
existence of Fl would prove that a simple group satisfying all the properties 
listed for F, in [13] has multiplier of even order. A direct proof (independent 
of the existence question for Fl) that the multiplier of F, is Z, has not yet 
been given. 

Our main technique may be described as follows. Let G be one of the 
above groups, and let G be a central extension of G. We study the possible 
extensions I? induced on various subgroups H of G to pinpoint information 
about G. Knowledge of the multipliers of other simple groups is very helpful 
in this regard, although it seems necessary to study nonsimple H (local 
subgroups, for example). 

Most group theoretic notation used here is fairly standard; see [17] or [19]. 
Notation for groups of Lie type used here is that of [17, p. 4911 and [5]. 
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ther notation for classical groups is that found in [24]. Some notation special 
to this paper is the following: 

M(G) the multiplier of the group 6, 

m(G) the order of M(G), 

-@f,(G) the Sylow p-subgroup of M(G), p a prime, 

m,(G) the order of MP(G), 

%J4G) mtG)Im,tG)> 
E 9” an elementary abelian group of order plz, p a prime, n 2 1~ 

Also, for group elements x, y, we define XZJ = y-lxy and [x, y] = &y-lxy. 
esults of [19] are referred to by (1) through (14) and are listed 

at the end of this article. 

2. HELD'S GRow 

Let G be the simple group discussed by Held in [22]; j G 1 = 2103352731?. 
e shall prove m(G) = 1. Trivially, m,,(G) = 1. There is an element t E 

of order 3, central in a Sylow 3-subgroup such that C,(t) = Co(e)‘, 
Co(t)/(t) E A, [37, page 2751. Since %(A,) = 6, and / Co(t)/s = 1 G /a, 
Gaschiitz’ theorem implies HZ&G) = 1. itrow, G 3 S E Sp(4,4) (u~p~b~~shed). 
Since / S I5 = 1 G jj and m(S) = 1, it follows as above that PLJG) = 1. 

A Sylow 7-subgroup P of G is nonabelian of order 73, exponent 7. It . 
easy to see that a covering group Q of P must have A C Q n Z(Q), QfA E 
A z .& x Z, ) and that A is generated by [a, b], [LZ, c] where (denoting 
images of Q --j. P by -) <a) = Z(P) and (6, rj is any set of generators for P. 
checking centralizer orders for 7-elements in 6, we find that Cc(n) s 6” . Z, 
and C,(s) E Z, x L,(7) or 2, x D,, for / s / = 7, s not conjugate in G to an 
element of Z(P). Assume G is an extension of G by B z Z, I B C G’. Thea 
B _C P”’ by a transfer lemma. By (lo), P ’ IS a quotient of some Q as above. 
Denote images of Q - P” by -. Say [a, g] # I in P. If Cc(&) g ZT X L,(7), 
choose y, g EL&~) with / y / = 7, yg = y2* Since a~ C&), we may assume 
y = &. Let J be a preimage of y in I?. Then, as [Z, &] is central, [G, 8] = 
[Z, @ = [ y”, &]g = [y2, g] = [ y”, &]a = [L& g12, which implies [& &] = 1. 
Similarly, if C&) s .Z, X D,, , we get [8, J] = [d, @I, implying [Z, &] = 1. 
So the image of A _C Q in P” is trivial. Thus, G does not exist and so ~~(17) = I I 

Roving ma(G) = 1 will finish the proof. The following information comes 
from Held’s paper [22]. G has two conjugacy classes of involutions, represented 
by z and 2; x is central in a Sylow 2-subgroup, i is not. 

Cl+) Es (4 o 4 o 4) .&(7), 
[C,(i) : C&J'] = 2, C&j' = cG(y, Z(C,(i)') s z, x 252, 

C,(i)'/Z(C,(i)') &g L,(4), Z(C,(i)) = <i>. 
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G has a subgroup S g Sp(4,4) = C,(4). Let X be a one-parameter 
subgroup co,rresponding to a root of maximal height. Then X is a four-group 
lying in the center of a Sylow 2-subgroup of S and C = C,(X) g O,(C) .L,(4), 
N,(X) = c .z, , c = C’, O,(C) is e 1 ementary abelian of order 26 and L,(4) 
acts “naturally” on O,(C)/X. Since 5 I/ C 1, 5 7 1 C,Jx)l, X# consists of G- 
conjugates of i. We claim C,(X) = Cc(x)‘, for x E X#. [ Cs(X)lz = 2’ = 
/ C,(x)’ j2 implies that the kernel of the map Cc(x)’ -L,(4) is contained in 
C,(X). Since X is the only normal four-group in Cs(x), X must be this kernel, 
i.e., X = Z(Co(x)‘). The structure o,f C,(x) now establishes the claim. Since 

[N,(X) : C,(X)1 = 3, we must have N,(X)/N,(X)” E Z; , NJX)” = 
C,(X) = C&(x)‘. U n d er conjugation, NG(X) is transitive on X#. 

Let G denote a central extension of G by (a) g A = 2, . Since Z, x Z, g 
Ma(La(4)) and any outer automorphism 0 of order 3 acts fix point freely on 
M,&(4)) (and on any quotient by a e-invariant subgroup), the action of 

.iVc(X) on X implies A $ G’. Thus G) T C, x A where C, E 
C,(X). Each factor is invariant under NG(X) as C, = (C, x A)’ and A = 

Z((N,(X))‘). Also, if 2 E x E X#, 9 = 1 (i.e., i2 = 1 for i E z). 
For .% E x, we show that z2 = 1. Since (x) = Z(Q), Q a quaternion sub- 

group of O,(C,(x)) = D, o D, o D, [22, p. 2041, m(Q) = 1 implies z2 = 1. 
In particular a: has no square root in G. 

Now, G)) splits over A since [No(X)’ : Co(X)] = 3. Any 
t E N,(X)\N,(X)’ effects an outer automorphism of Co(X)/X s L,(4). 
Since Out(La(4)) g Z, X Z; [5], and is generated by the automorphism 
classes of the diagonal automorphism, the graph automorphism, and the 
field automorphism, there is in Aut(L,(4)) a complement to the group of inner 
automorphisms. Hence, we may assume t has period two on C&X)/X. Then 
ta induces a central automorphism of C,(X), a perfect group. Thus t2 is 
trivial on C,(X), forcing t2 = 1 or t2 = x E X#. Pick fc t. If t2 = 1, then 

t”a = 1 because 01 has no square root in G. In this case G) splits, because tl 

with a complement to A in G) generates a complement to A. The 
other case is t2 = x. Choose s E X - (x). Then st = sx. So, (ts)2 = t2sts = 

xsxs = 1. Replacing t by ts E Nc(X), the same argument yields ~66) split 
over A. 

Checking centralizer orders, 2 I C,(;)12 = / C,(x)l, = j G 12. Since .66) 
splits, the induced extension of some maximal subgroup of a Sylow 2-subgroup 
splits over A. 

We now look at the induced extension of Co(z), which contains a Sylow 

2-subgroup of G, and try to prove G) splits over A. Choose L C C,(x), 
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L e L,(7). Set R = O,(C,(x)). A is elementary abelian. 

viously, but they are equal since CG(z) is perfect. So, 
L acts on R, = i?/(Z), where we choose 2 E (w>’ n .a (conceivably, there are 
two choices for 2). Let A, = (A, z!?)/(.z). SI lnce A is central in G, L preserves 
the bilinear form R,/A, x R,/A, --j A, given by commutation. e claim 
this form is identically trivial, i.e., that R, is abelian. Since the induced 
extension of a maximal subgroup of a Sylow 2-subgroup of G splits over A, 
the same is true for a maximal subgroup of R. This means that 
subspace of codimension 1 isotropic under the form. rice, the radical of 
the form has codimension no more than 2. Since R,/ has the same irre- 
ducible constituents under L as R/R’ does (dimensions 3 and 3 for ‘)) the 
radical. must be the whole space &/A,, , as L leaves the radical invariant. This 
means I&, is abelian. Furthermore, R. is elementary abehan. If not, L leaves 
invariant the kernel of the squaring endomorphism of R, , which contains A, o 

d force R/R’ to have a 5-dimensional L-invariant su ) contra- 
ence, i? splits over A because A, is a direct summan 

Let K be a subgroup of L isomorphic to Zd . K ins a Sylow 2-subgroup 

of L and RK contains one of G. We aim to show 
Let XI i Xa be the indecomposable constituents ofL on R/la’ as describe 

- 
En [22, Sect. I]. Set X,*/R’ = Xi. Xi* is elementary abelian and so is Xi*, 

i = 1, 2. As before, R, denotes I?/(S) where (2) = (a)‘. Set Y, = XT/(,%). 
Yi is elementary abelian, (Yr , YZ) = R, , Yl n Yz = B = A(@/(,%) gg A, 
j Y<l =2",i= 1,2. 

We claim it suffices to show that Yi = Y,, @ as K-modules. For then, 

Y/(Z) = (YIO , Y,,) is invariant under K and disjoint from and K-R/Y 

is a central extension of K by B, z AYjY = A. Now, B, g (KR/Y)‘, or else 
some involution in K = .Z* is represented in K&?/Y by an element of order 
four (for example, the induced extension of K’ s A, would be isomorphic 
to SL(2, 3), whatever the covering of K), a contradiction. Taking preimages 

- - 
in KR, this gives A g (KR)‘. By a transfer lemma, A c G’, and so G splits, 
implying ma(G) = 1. 

For convenience, we consider L (rather than L) as a group of operators on 
Yi . There are two conjugacy classes of Z4 inL g SL(3,2) and for a fixed Yi 
we choose K to be the stabilizer of a nonzero vector of Xi . Let Y be the 
normal four-group of K and set U = [Yi ) V]. U is K-invariant. If s is an 
element of order 3 in K, Yi = Fl @ F2, Fl = Cyi(s), Fg = [Yi p .s]? j Fl i = 
j FZ 1 = 4. By the structure of L and the point-stabilizer K, 1 U;i/ 

We prove ! hi / = 2. Since s acts trivially on B and UBlB, UB = F, I 
Suppose ! U / = 4, i.e., U r) B. We claim that p = [JJ, v] where (/3> = 
yEY{,,.Z;EV’.Ifnot,/ Ui =4impliesthatthereareyi,y,~Y~,v,,v,EV 



450 ROBERT L. GRIESS, JR. 

with [yr , VJ = u, [yz , vz] = u/3, for 21 E U\B. Conjugating the second by a 

power of s, we may assume zlr = us . Then [yrya , z+] = p. Recall that @ 
is elementary abelian. Choosing 9 ~yrya , cr E V, , the above implies that, 
in G, ($?J = [ y”, 41 = CII,Z~, K = 0, 1. Now, in Co(z), L normalizes a 
complement Wi to (2) in Xi* (see [22, p. 2591). Thus, [mi , L] _C J& which 

intersects {y) in (a). This forces K = 0 and the equation reads (y”EJ = (II, 
a contradiction to a: having no square root. 

So, / U j = 2. Setting W = [Yi , s], we have I( W, U)i = 8 and the 
definitions of U and W imply that Yi, = (W, U> is K-invariant. This gives 
the required decomposition of Y+ . Yi,, is L-invariant since it is invariant 
under K (of odd index in L), by Gaschtitz theorem. So each Yi, , i = 1, 2, is 
K-invariant for any K C L, K g .Zh (even though K is not a vector stabilizer 
for both X1+ and X,*). 

The proof of m(G) = 1 is complete. 

3. SUZUKI’S GROUP 

Let G be the simple group constructed by Suzuki [41]. We shall prove 
m(G) = 6. By Lindsey [26], it is enough to prove m(G) j 6. Now, 1 G 1 = 
2133752.7.11.13 and G 3 Gr g G,(4), simple of order 2123352.7.13. Since 
we know m(G,) = 2 (see [19,20]), we need only determine m,(G) for p = 2, 3 
by Gaschiitz’ theorem and the cyclicity of a Sylow 1 l-subgroup of G. 

Let U be the standard unipotent (Sylow 2-) subgroup of Gr , and let H 
be the standard Cartan subgroup. If U C T, an S, of G, then [T : U] = 2 
andU~T.IfN=N,(U),theniVI(H,T),H~Z3xZa.LetCCN 
be the subgroup inducing trivial automorphisms on U/U’. 1 N/C j is n or 2n, 
n odd. In either case, N/C has a normal 2-complement and H maps isomor- 
phically into N/C by Theorem 1.4 of [17], since H is faithful on U and 

(I H I, 2) = 1. 
Suppose G is a central extension of G by A z 2, such that Gr splits. Then 

U s U x A. Furthermore, by the structure of a Bore1 subgroup in G,(4) E 
Gi , U/U, = [U/U’, H]. So, we may write 0 = U, x A, where each factor 
is H-invariant, U, E U as H-groups. Note U,,’ = 8’ is characteristic in r?. 
In particular, lJ,,/U,’ = [U,,/U,l, &]. Take Z E ri’\U. Its image in N/C z N/C 
normalizes [ U,/U,,‘, L] = X where L = O,(N/C). But U,,/U,’ 3_ X > 
[ U,,/U,‘, H] = U,,/U,‘. So equality holds, and E normalizes U, . Since r?; is 
a Sylow 2-subgroup of G, and U, Q T, [F : lJ,l = 4, we have F/U, abelian 
with A !& p’. By a transfer lemma (2), A it;‘ &‘, and so G splits. 

The conclusion is that if G is a perfect central extension of G by a 2-group 
A, then A C G1’. Now, m(G,) = 2 implies %(G) 12. 



SCHUR MULTIPLIERS 451 

Lindsey [26] discusses a group G, , 6, = G,,‘, Z(G,) z Z, , G*/~(G~) E G. 
These results, together with 11251, imply that there is a subgroup S C Go ) 
s = S’, Z(S) g z, x 2, ) s/z-(S) g-& U,(3) g 2A,(3). Since m(U4(3)) = 
2232 (see 119, 201) and S contains a Sylow 3-subgroup of G0 ) Ma(cS,) = 1 by 
Gaschiitz’ theorem. Thus, Ma(G) 1 3. 

All this gives m(G) j 6. But, G, must be a covering group of 
that m(G) = 6. 

4. FISCHER’S GROUP M(2) 

Let G = M(22). Fischer [14] has shown that 2 / m(GiY and [16] implies 
3 ] m(G), as Rudvalis has observed. We shall prove that m(G) i 6, and 
conclude m(G) = 6. 

/ G/ = 2173”527.11.13. So, m,(G) = 1 for 9 = 7, 11, 13. G contains a 
subgroup S g B,(3). Since m(Ba(3)) = 6 and / S ia = i G I3 = 39, we have 

m,(G) I 3. 
According to the character table of M(22) [23], a Sylow 5-subgroup P is 

elementary abelian and all elements of order 5 in G are conjugate. So, N(P) 
is transitive on P#. If N(P) effects a nonspecial transformation on the vector 
space P, we have mj(G) = 1, by (7). Assume otherwise. For x E P#, / C,(x)] = 
23.3.52, and if t E C,(X), / t j = 2, then t commutes with no element of 
order 5 in C,(x) outside (x) by [23]. If C,(X) does not have a normal 
5-complement, we get a nonspecial transformation, and we are done as above. 
So, assume C,(X) = O,(C,(x)) * F. But then F normalizes a Sylow 
2-subgroup (of order 23) in C,(X), and must centralize it, contradiction. 
Therefore, m,(G) = 1, and m,(G) = 3. 

G has an involution i wih C,(z)/{+ r U,(2) g 2LJ2) and C,(a) = Co(i)’ 
[14]. To show m,(G) / 2 we shall prove that if G is a central extension of G 

byA&Z,andC,r) i is split, then G is split. The result then folbws from 
JqU,(2)) cs 4 x 22 . 

j Co(;)1 = 2 j U,(2)j = 2163’j5.7.11. G) = C, x A by assumption. Let V 
be a Sylow 2-subgroup of C, x A, and let T be a Sylow 2-subgroup of G 
containing Y; lr : Y] = 2, V G T. If u is an involution central in a Sylow 
2-subgroup of K z U,(2), then C = C,(u) E O,(C) ~ U,(2), C’ = C, 
/O,(C)/ = 2s, and O,(C) is extra-special with center (u). If R = Co(i) z 67, 
is a perfect central extension of K by (i), then (ti, i> = Z(C), as C is perfect 
and it contains a. Sylow 2-subgroup W of K; also Z(@) = Z’(C) (see the 

iscussion of U,(2) in [19]). 
We may take p = C,, n I/. Z(V) = Z(R) x A is normal in T* Since i 

is not central in any Sylow 2-subgroup of G, it # i for t E a\V. But t nor- 
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malizes C,(Z( V)) = C x A and C = (C x A)‘. So we may assume t nor- 
malizes @, by the Frattini argument. Now T/m has order four and is abelian. 
A n @’ = 1 implies A $ T’. So, A g G’ by the transfer lemma (2) and we 
are done. 

5. FISCHER'S GROUP M(23) 

Let G = Il/ir(23), j G 1 = 218313527.11.13.17.23. G contains K, a perfect 
extension of M(22) by Z, . Since m(M(22)) is known and 1 K I2 = 1 G 12, 
I K 15 = I G Is > we get m,(G) = 1, for p = 2, 5. Trivially m(G), = 1 for 

p = 7, 11, 13, 17,23. By 18.3.4 of [14], G contains asubgroup S, S/S” = 
2, , S” = D,(3), a simple group. Since m,(D,(3)) = 1, an extension G of G 

by A z 2, must yield (s;;> split. As [ S/S” j3 = 3, A g (3)‘. As 1 S I3 = j G 1s , 
this implies A $ G’. So, G splits and m,(G) = 1. Thus, m(G) = 1. 

6. FISCHER'S GROUP M(24)’ 

Let G = M(24), GO = G’. / G 1 = 222316527311.13.17.23.29, [G : G,,] = 2, 
G,, simple. We let D denote the conjugacy class of 3-transpositions in G. 
Trivially, m,(G,,) = 1, p 3 11. Since G,, r) M(23), j GO j5 = I M(23)l,, 
m(M(23)) = 1, we have m,(G,) = 1. Fischer states (personal communication) 
G contains a subgroup X isomorphic to the holomorph of Z, x Z, . A Sylow 
7-subgroup P of G,, n X is then normalized by h E C(P’), / h / = 3, and h 
is fixed-point free on PIP’. We now get m,(G,,) = 1 by an argument similar 
to that for m,(Held) = 1. 

LEMMA 6.1. Say e = d,d, , dl , dz E D, d,d, = d,d, . Then if e = dad4 , 
d3, d4 E D, we have {dl , dz) = {d3 , d4}. Consequently, C(d,) n C(d,) has index 
2 in C(e). Also e E (C(d,) n C(d,))’ and C(d,) n C(d.J(e> 2 M(22). 

Proof. See Sections 17, 18, 19 of [14]. 
Set F = (Dd) = (d) x F’, F’ z M(23). Also set K = Cc(e), where 

e =dd’, d’cDb. Note that K n F’ is a perfect central extension of U,(2) 
by a four-group, and that e E Z(K n F’). 

LEMMA 6.2. m,(G) = 1 and m&G,) = 1. 

Proof. Let G be an extension of G by (a) = A s 2,. We show A g G’. 
In Fischer’s notation, G contains a subgroup L, elementary abelian of order 
2i2, and NIL z Mz4 , the Mathieu group, where N = N,(L). Furthermore, 
L has a subgroup L, of index 2 consisting of elements of L which are products 
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of an even number of elements from G n L. L, u N, d # L, for J E D n L, 
and d $ G’. In the notation of the previous paragraph, A g P’ as m(F) = 1. 
For di ) d, E D n L, di # dj , select coset representatives G for eij = a,dj 
by the rule (Q = eij nP’. Let Kij = C,(eci). Since (e,J = Z(K,i,) and 
m&8&) = 1, we see that G is not G-conjugate to Z$ and that eij n E’ = 

Since the set (didj j di # dj in D n L) generates L, ) the associated G in L 
generate a subgroup L, of e normalized by m. We claim A g L, . If a! EL; ) 
then Q: is some product of the e,j’s. But each eij & and A gF’. So,& n A = I. 
Then @/& is a central extension of 2, x Ma, by ia. Since m(M& = 1: 
A $ ??‘- This implies A g G’ as j N ja = 1 G j2 1 Thus: m,(G) = 1. Since G 
is a split extension G,(d), m,(G,J = 1 by (9). 

The following arguments show that the ‘J-part of the multiplier of M(24)’ 
has order at most 3. We use Fischer’s paper [14] and the following information 
about a subgroup of M(24) (d ue o t p rivate correspondence with B. Fischer). 

There is a D-subgroup H with V = O,(H) elementary of order 3?, 
H/k/‘= PO(7, 3). Set E = D n H. Then, there is a nondegenerate, sym- 
metric, bilinear form f on Y, preserved by H/V, so that members of I? act as 
reflections 

x tt x + Try-(x, a)a 

where f(a, a) = 7~ is either 1 or - 1. By replacing J with -/“, if necessary, 
we may assume that f has discriminant 1. Since B n N’ = a, the structure 
of PQ(7, 3) implies that ?T = -1. Also, for d E E, (Ea> g @(6, 3) = 
Q’-(6, 3) in Fischer’s notation. 

LEMMA 6.3. Let V be the above module for PQ(7, 3). Then, 

H”(PO(7, 3), V) = 0 and H1(Q(7, 3), V) = 0. 

Proof. Choose u E V with f (u, u) = 1. Let J be the subgroup of 8(7, 3) 
stabilizing (u}. Then, J stabilizes <u)~ and the formf restricted to (u)” has 
discriminant 1, whence J is isomorphic to a subgroup of index 2 in GO-(6,3). 
Also, Z(j) C j’, / Z(J)1 = 2, I J : J’ 1 = 2, and elements of J\.J’ invert (u). 
We have j J 1 = 2a3”5.7, and so J contains a Sylow 2-subgroup of Q(7, 3). 

Let w generate Z(J). Then, w has six eigenvalues - 1, one I. Let w’ = ZUQ 
be a conjugate of w in Q(7, 3) w IC commutes with w and w’ # w. Then h’ h 
w’ E /. Since w and w’ have the same eigenvalues, w’ inverts G,(w) = (u}. 

Set 2 = {(w, w’), J, J”>. By above remarks, No& V) = 0, for each 
L E 9. Since (w, w’> is a 2-group, EP(( w, w’), Y) = 0. Write V = (a) @ W 
as a J-module, where W = [V, w]. The argument of [24, p 124] shows that 
EF(J, W) = 0. Since [ J : J’ / = 2 is prime to 3, I+(-[, (u)) is isomorphic 

TV a subgroup of H1(J’, <u)). by [3]. S ince (u) is a trivia! Jr-module, the 
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latter is Hom(J’, (u>) = 0 (see [4]). So, H-I(J, (u>) = 0. The decomposition 
of V as a direct sum now implies that Hr(J, V) = 0. Similarly, Hl(Jg, V) = 0. 

Since the members of 9 generate Q(7,3) and Hi(L, V) = 0, for each 
L E 9, i = 0, 1, the hypotheses of the “Vanishing Theorem” of Alperin and 
Gorenstein [l] are satisfied. We conclude that Hl(Q(7, 3), V) = 0. Since 
) PO(7, 3) : Q(7, 3)J = 2 is prime to 3, we also get P(PO(7, 3), V) = 0. 
The lemma is proven. 

Now we are ready to show that m,(G) < 3. Let G, = M(24)’ and let G0 be 
a central extension of G0 by an abelian 3-group A. For any subgroup Gr of 
G, , we let Gr denote the extension of Gi induced by Ga . 

Set K = H’ = H n Go . Since K acts irreducibly on V and since / V [ 
is an odd power of 3, V must be elementary abelian. By a well-known iso- 
morphism ExtZJZa , V) g F(K, V) (see [4]), Lemma 6.3 implies that we 
may write Y = v* @ A, as K-modules, with V* = [r, K]. Now, z/V* is 
a central extension of K/V by A/A n v* g A. Since ma(Q(7, 3)) = 3, this 
extension is possibly nonsplit. If it were split, then G, would split over A, since 
(1 G,,: KJ, 3) = 1. But, if G,, = G,,‘, then m&9(7, 3)) = 3 and a transfer 
lemma (2) implies / A 1 < 3, i.e., m,(G,,) < 3, as required. 

It remains only to show that ms(M(24)) = 1. Let G = n/1(24). By (1 l), 
m(G) ( 3. Assume m(G) = 3 and let G be a perfect central extension of G by 
A g Z, . Then i? (the induced extension on H) is nonsplit, since 
(1 G: H /, 3) = 1. The analysis in the last paragraph shows that P = v* @ A, 
as H-modules, and that E/Y* is a perfect central extension of K/V E 547, 3) 
by p/iv* g Z, . But H/V= PO(7, 3) g Aut(Q(7, 3)). We shall have a 
contradiction if we show that an outer diagonal automorphism of B,(3) inverts 

J&P&3)). 
We need some detailed information about B*, a perfect central extension 

of B,(3) by A* g Z, . Regard B,(3) as the quotient B*IA*. We may choose 
a system of representatives yr(t) E B* for xr(t) E B,(3), all r E Z, t c IFa , so 
that each yr(t) has order 3 and all Chevalley commutator relations holding 
between x,(t), xs(u), Y f -&, hold between the corresponding yT(t), ys(u), 
except for the following one: 

Whenever Y, s are roots of unequal length, with r orthogonal to s, and t, 
u are nonzero, then [xr(t), x,(u)] = 1, while 1 f [y,(t), y,(u)] E A*. 

The multiplier of B,(3) h as b een determined by Steinberg in unpublished 
work. 

We now leave to the reader the verification of the claim that the function 

1 
- (Dynkln dlogrom for B31 
T 1 

I 1 -1 

from fundamental roots to Fax extends to an outer diagonal automorphism 
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which inverts Ma(Ba(3)). Th is completes the proof that ~(~(24)) = 1 and 
~(~(24)‘) = 1 or 3. 

7. CONWAY’S GROUP 3 

We shall prove m(.3) = 1. Our sources of information about .3 are [g] 
and [12]. 

It is easy to obtain mJ.3) = 1 forp # 3. / .3 / = 21037537.11.23. Since the 
Sylow 7-, ll-, and 23-subgroups are cyclic, m,(.3) = 1 for these primes. 
If z is an involution in .3 central in a Sylow 2-subgroup, C(z) is a perfect 
extension of Sp(6,2) by (a). H ence, any central extension of .3 by a Z-group 
splits off C(z), as this group is a covering group for C(z)/(x). By Gaschiitz’ 
theorem, maf.3) = 1. We may show m,(.3) = 1 by a direct argument, or by 
noting that .3 contains .332, which is isomorphic to the Higman-Sims group, 
and that &.332) = 1 [4Q], / .3 i5 = 53 = / .322 jj imply anJ.3) = 1 as 
above. 

Showmg m,(.3) = 1 will finish the proof. I,. Finkelstein points out that .3 
contains a subgroup X containing .333 with M = O,(X) elementary abelian 
of order 35, X/M g Z, X Al,, . If t is an involution in X mapping onto a 
generator for Z, , we claim t inverts IV. By [IZj, t does not centralize MT since 
35 7 1 C(t)I* Write M = Ml x n/r, , where n/r, are the elements inverted by t, 
Ma are the elements centralized by t (use Fitting’s theorem). Mr and M, are 
normal in X since the action of t commutes with the a~t~mor~bisms of M 
induced by X. If M, + 1, 111, and Mz are centralized by the action of MI1 
(order 8.9.lO.Il) because Mr, is simple and 11 f 3” - 1 for 0 < K < 5. 
This leads to a contradiction which proves the claim. Since Cx(t) n iM = 1, 
the extension splits. Write C*(t) = (t) x Ml, . 

Let .4 be a central extension of .3 by (a) G 2, . Since 1 M j is an odd power 
of3 and C,(t) acts irreducibly on M, @is elementary abelian. Let -Ma = [a9 t]. 
Then & = MO x (ol), by Fitting’s theorem for the action of (i) on M. The 
factors are Mu-invariant, hence normal in 8. Then X/Ma is a central exten- 
sion of (t) x -&II1 by (a). Since the former group has trivial multiplier and 
MI1 is perfect, X splits. Since ! X I3 = / .3 ja , Gaschiitz’ theorem implies .3 

8. CONWAY’S GROUP 2 

Set G = .2; / G ! = 21836537.1 1.23. We will prove that m(G) = I. 
Easily, m,(G) = 1, for p = 7, 11, 13. Since G contains .322, which is 
isomorphic to I&Laughlin’s simple group, MC& we get m5(G) = E because 
m,(McL) = il and .322 contains a Sylow S-subgroup of 6. 

Showing that m,(G) = 1 and m,(G) = 1 is more difficult. 
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LEMMA 8.1. Let Z be the center of a Sylow 3-subgroup of G. Then N,JZ) = 
O,(N,(Z)) . H, where O,(N,(Z)) is extra special of oTder 35, exponent 3; where 

O,(H) z $A 0 D, , W,(H) s & . 

Proof. We use the containments U,(3) C MCL C G. Let 2 be a Sylow 
3-center in U,(3). Its centralizer in U,(3) is a semidirect product XS, where X 
is a normal extra special group of order 35 exponent 3, and the unique 
involution of S z SL(2, 3) inverts X/X’. 

Now, let C be the centralizer of 2 in McL. Using the character table of MCL 
(J. Thompson, unpublished), we see that j C / = 5 j 2 /, and it is an easy 
exercise, using centralizer orders in MCL, to get that X is normal in C and 
C/X g SL(2, 5) and N&)/X is a covering group of & . 

Finally, since 1 MCL I3 = 1 G I3 , Z is a Sylow 3-center in G, and the 
centralizer orders from the character table of G [9] force the conclusion of 
the Lemma, with X = O,(C,(Z)). 

LEMMA 8.2. m,(N,(Z)) = 1. 

Proof. Set D = No(Z) and let B be a central extension of D by A s Z, . 
Let X = o,(D). We first show X splits over A. 

Since X has class 2, 2 has class 2 or 3. Let L(T) = L, @L, @L, be the 
Lie ring associated with 2. Suppose L, # 0, i.e., that A = L, . Then there 
is xEL1, y EL, whose Lie product [x, y] generates L, . Let (j) = Z(H). 
Then j acts on L(z) inverting L, , centralizing L, . So, [x, y]j = [x-l, y] = 
[x, y]-i. But this contradicts A c Z(B). So L, = 0. 

Next, we suppose A C X’, i.e., A _C L, . Since H/H’ inverts X’ = 2, we 
have E, = A x B, a decomposition as an H-module, with B = [p, H]. 
The group x/B is nonabelian, and commutation induces a nontrivial alter- 
nating form from T/p into ABIB z A. This form is nondegenerate, since H 
acts irreducibly on X/X’. Since A C Z(D), the action of B preserves this form. 
However, A is the kernel of this action of i?, and so I?/A s H is faithful on 
X/X’. However, His not isomorphic to a subgroup of Sp(4, 3), a contradiction. 
Thus, A g p. 

Since H is irreducible on X/X’, it follows that X/X’ is elementary. Since 
j inverts X/X’ and centralizes A, we have a decomposition 2 = Y x A of 
H-groups, where Y = [X, (j)]. Now, b/Y is a central extension of H by A. 
Since H has cyclic Sylow 3-subgroups, A g R’, and so A $ i?. Since s is an 
arbitrary central extension of D by A, m,(D) = 1, and the Lemma follows. 

Since D contains a Sylow 3-subgroup of G, Gaschiitz’ Theorem and 
Lemma 2.2 imply the following. 

COROLLARY 8.3. m,(G) = 1. 
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Our next task is to show m,(G) = 1. Let KMz, be the subgroup N of 
Conway’s paper [8], K = O,(N) elementary abelian of order 2?. Let 
h >..‘, us4) be an orthonormal basis for R** and let A be the Leech lattice. 
Take G = 2 as the subgroup of .O fixing the vector b = C aivi , where 
(i 1 a, # 0} = C is an octad and ai = 2, all i E C. 

LEMMA 8.4. .442 is a split extension of a normal extra special gro@ of 
order 23 by A, ‘ 

Proof. 4 is isomorphic to the split extension E&!I,, , the subgroup of AJ 
fixing the vector -871, of type 4. Our lattice vector v = C alcvlc of type 2, 
along with the origin and -8v, forms a triangle of type 442. 

Now, C = (K j ak f 0) is an octad. We argue that L = .442 n 8,(.4) is 
elementary abelian of order 32. The transformations in L are the Ed ) where S 
is a V-set disjoint from C. There are 32 such S: 30 octads, the 16-set com- 
plementing C, and the empty set. Thus, L s I&S . 

By OUT choice of triangle, we see that .442/L induces permutations of 
((v,), . . ., (o&) fixing vi and those (v& with k E C. y inspecting the stabilizer 
of an oetad in Ma,, we get that .442/L is the split extension 7’ BY 
inspecting the structure of N, we see that .442 is a split extension where 
HCik&. Since the subgroup of Mz, stabilizing each of the 30 octads 
disjoint from C is trivial, H acts faithfully on L. Since 6-I induces A, on 

w en+&, the action of O,(N) on L makes L . O,(H) extra-special with 
(<o+& = Z(LO,(H)). This proves the lemma. 

Set z = ~o+~. According to [8], F = C,(x) has order 2r83”5*7. Let B 
be the copy of .442 mentioned in the proof of Lemma 8.4, and set Y = 
LO,(H) = O,(B). Also, set X, = L, X, = O,(H)(x). e have X,& C B, 
/ Xk ( = 2j, R = I, 2. Finally, let D be a subgroup of N isomorphic to A,; 
D complements Y in B. Since D is contained in the “standard” copy of Maa 
in AJ, the involutions of D have eigenvalues {sixteen $1, eight - I} in the 
24-dimensional representation. Since X, PI H is also contained in i&a ) 
a group with one conjugacy class of involutions, the involutions of X, n H 
have the same set of eigenvalues as those of D. No look at the class list [9] 
shows that the involutions of D and those of X2 n fuse in @. 

LEMMA 8.5. The sublattice A, of fl consisting of vectors fixed by .z is -fixed 
pointwise by Y. Also Y <I F andF/Y z Sp(6, 2). 

PYOOJC. A, consists of all C b,v, E A for which b, # 0 imphes K E C. 
The first statement is now clear from the way N acts on A. There are 240 
vectors of type 2 in A, , and it is straightforward to select eight of them whose 
inner product matrix identifies A, as a lattice of type ES . Note that D acts 
faithfully on A, . Let Fl be the subgroup of F which acts trivially on A, an 
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set F = FIF,; F contains a copy of A, , with index dividing 2632. The 
Frattini argument would produce an element of order 21 in G, and a contra- 
diction, if any 3-element were to act trivially on A,. So Fl is a 2-group. 
Similarly, P must be simple. Let 1 P 1 = j A, 1 2n32. Since an element of 
order 7 in G has centralizer order 23.7, D acts on N,-(Y)/Y in such a way 
that an element of order 7 is fixed point free. So, n =’ 0 or 6. But n = 0 is 
out by simplicity of F. Thus, 1 F I = 2s345.7 = 1 Sp(6,2)j. Since the action 
ofF on A, stabilizes ~1, P is identified as a subgroup of Sp(6,2), the commutator 
subgroup of the Weyl group of E, . The lemma is proven. 

LEMMA 8.6. 1 --j (x) --f Xi -+ Xi/(x> + 1 is a split extension of ff2D- 
modules, i = 1,2. 

Proof. We consider extensions 

(*) l+Yi+E+-T+l 

of the module Yi dual to Xi/(z), where T is the one-dimensional trivial F2D- 
module, and where E is dual to Xi . By taking annihilators, we get a one-to-one 
correspondence between subgroups of Y and those of E which inverts the 
lattice of submodules. To prove the lemma, it sufficies to show that (*) is 
split. 

Any Sylow 3-subgroup P of D must act fixed-point-freely on Yi , hence P 
fixes a unique element v of E\Y, . Choose x, y in P so that (x) n (y) = 1 
and x, y each act fixed point freely on Yi . The only element of E\Y, fixed 
by either x or y is v, and the same is true for any Sylow 3-subgroup of D 
containing either x or y. Since D is generated by all such Sylow 3-subgroups, 
it follows that D fixes (v}, and so the extension splits. 

Remark. This “generation” argument closely resembles ideas in [l]. 
This Lemma actually shows that H1(A, , YJ = ExtlFzA,(F2 , YJ = 0. 

Notation: write Xi = Xi, @ (z) as A,-modules, i = 1,2. In previous 
notation, we have X2 n H = X2, . 

LEMMA 8.7. Let V be the irreducible [F,p-module Y/Y’ of order 2*. Then any 
extension 1 ---f V -f W + T -+ 1 of V by a trivial [F,l%nodule T is split. Also, 
any extension 1 -+ T + W, ---f V -+ 1 is split. 

Proof. The group D is isomorphically contained in P. Hence, P contains 
an element of order 3 acting fixed point freely on V, because V is isomorphic 
to X,/(z> @ X,/(z) as [F,D-modules. By looking at the extension associated 
with the module dual to W, a generation argument as in the last lemma will 
imply the splitting. We omit details. The second assertion follows from the 
first, since V is a self-dual module. 
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.&. In the (unique) nonsplit central extemim l? of S = Sp(6,2) 
by Z, , there is an involution in S represented by aa element of or~e~~o~r in s, 
.Any subgroup of S isomorphic to A, contains such alz involution. 

Proof. Consider the 7-dimensional rational representation of S which 
comes from identifying S as the commutator subgroup of the Weyl group E, . 
The embeds S in the real orthogonal group SO(7, R). The latter group has 
the property that an involution having -1 as an eigenvalue K times is repre- 
sented in Spin (7, R) by an element of order four if and only if k s 2 (mod 4) 

[7T* 
Any subgroup of 5’ isomorphic to A, must have an irreducible constituents 

of dimension I and 6, and the trace of an involution in A, on the 7-dimen- 
sional space is 3 = 2(--l) + 5(l). Thus, the preimages of A, and S in 
Spin(7, R) are not split extensions of those groups by the center of Spin(7, R)* 
Since m(s) = 2, this extension is unique up to isomorphism, and the parts of 
the Lemma foollow. 

LEMMA 8.9. F/Y acts transitively on the lzontrivial cosets of Y’ i% Y which 
contain ilavolutions. 

Proof. Since Y s D, 0 D, 0 Ds o II,, there are 235 such cosets. The 
stabilizer of one of these in Out(Y) g 0+(8,2) is isomorphic to .Ea6. 0+(5,2) g 

46 . L’a. We have A,zDCF, and D acts on XiCY, i=l,2. The 
stabilizer in D of xY’, for x E Xi+, is isomorphic to GE(3, 2). Therefore, the 
stabilizer k of xY’ in F/Y has index dividing j Sp(6,2)j// GL(3, 2)j = 
(2s345.7/233.7) = 26335. Now, all subgroups of order 5 in F/Y are conjugate. 
If we take an element h of order 5 in DYIY, we see that iz acts fixed point 
freely on XI and Xs . Thus, 5 divides 1 F/Y : L /. If j L j were divisible by 3”, 
then, since L/O,(L) contains a subgroup isomorphic to GL(3,2) (a maxima 
subgroup of A7) and since L/O,(L) is isomorphic to a subgroup of .Zs I: we 
would have a contradiction. Thus, 5 and 3s divide j F/Y : L 1, and so 
IF/V :L j = 335 = 135. 

Now, we consider a central extension G of G by A s Z, and consider the 
extensions induced on subgroups. To get m,(G) = 1, it su 
splits. 

LEMMA X.10. P splits over A. 

Proof. Since F is perfect, the preimage of Z(F) = Y’ in F is Z(p). Thus, 
P has nilpotence class 2. Since F/Z(P) is elementary, so is (P)‘. Also, &a 
is elementary abelian, i = 1, 2 because D acts transitively on X$ . 

Let 01 generate A. Suppose A _C (P)‘. Then (P)’ is a four-group. A!so, 
a: must be a product of commutators of the form [ZI , ,%a], xi E XgO , i = 1,2. 
Since L[gr ) LEJ is central inP and B is transitive on X$ , we may assume that 

481/32/3-Z 
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all the x1 occurring in our expression for 01 are all congruent modulo A. 
Bilinearity of commutation then implies that we may assume 01 = [Zr , a,] = 
(ZIQ2. That is, 01 has a square root in P\(P)‘. By the previous lemma, we may 
conjugate xIx2Y’ to x,Y’ in F. Then, Z12 = 01, which contradicts the splitting 
of Xi0 over A. Thus A n (P)’ = 1. Since P = (XI , X2>, p/(P)’ is elemen- 
tary abelian, which implies the Lemma. 

LEMMA 8.11. P splits over A. 

Proof. Since Y splits over A, p/(P)’ is an extension of the P = F/Y- 
modules Y/Y’ and A. By Lemma 2.11, this extension of modules is split. We 
write F/(P)’ = YJ( P)’ @ A(P)‘/(P)‘, direct sum of F modules. Let D g A, 
be our complement to Y. 

By the argument in the proof of the last Lemma, every involution of X2 is 
represented by an involution in G. Since the involutions of X2, and D are 
G-conjugate, every involution of D is represented by an involution in D C G. 
Since the unique perfect extension of A, by Z, has quaternion Sylow 
2-subgroups, we get that fi splits over A. Since Y, 4 p and A n Yl = 1. 
Lemma 8.12 tells us that p/Y1 splits over AY,/Y, . Thus, A $ (I;)‘, 
whence F is split over A, as required. 

9. CONWAY'S GROUP .1 

Set G = .O; j G 1 = 2223g547211.13.23. We first show that m,(G) = 1. 
This will imply m,(.l) = 2. 

As in the last section, we consider the subgroup M = KM,, of Conway’s 
paper. The only proper M,,-submodule of K is (E& = Z(G). Let V be the 
IF,M,,-module dual to K, and let V, be the unique maximal submodule of T/; 
/ V:V,[ =2. 

LEMMA 9.1. Let W be any [F,M,,-module containing V,, as a submodule of 
index 2 with the property that 1 + V, + W 3 IF, -+ 1 is a nonsplit extension. 
Then there is a vector v E W\ W,, whose stabilizer is (up to conjugacy) M2, . 

Proof. Choose an element x in M24 of order 23. Since x necessarily acts 
fixed point freely on the submodule V, of order 211, there.is a unique nonzero 
vector v E W\V, fixed by x. The normalizer of (x) in M24 is a Frobenius 
group of order 11.23 [39], so we choose y E M24 , an element of order 11 
normalizing (x). Since (x, y) is a Frobenius group, ] CVO(y)] = 2, and so 
/ C,(y)] = 22. Next, the normalizer of (y) in M,, is a Frobenius group of 
order 55. Let u be an element of order 5 normalizing (y). Then, u leaves 
invariant C,(y), and must centralize it. Now, let S be the stabilizer of v in 
n/r,, . We know that 5 . 11 . 23 divides ] S /. 
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Let Q be the usual 24 points on which I&, acts. Now, (x, y) fixes exactly 
one point of Q. Let M be the subgroup of AIs, fixing that point; 
It follows that u E M, since u fixes each of tbe two points of .Q fixe 

Recall that 1 M 1 = 27325.7.11.23. So: j S n M / = 2.11.2 
a divides 27327. Since an element of order 11 is selfcentralizing and 
not conjugate to its inverse in M, the Frattini argument implies that S C M 
is simple. Sylow’s theorem implies that 5a = I (mod 23) and a = I (mod 1 I>, 
whence a = 221 + (11 .23) k = 221 + 253k, for some K > 0. If k = 0, 
! or 2, ok does not divide / M I. But k > 3 implies / 192 : S n M 1 < 8, 
(and k = 31). Th is g ives M = S n M, or S > M, a maximal subgroup of 
Ma4 . Since our extension is nonsplit, all of Ma,, may not stabilize U. Therefore, 
S = M. This proves the lemma. 

LEMMA 9.2. Let 1 -+ V, -+ X + T + i be an extension oj F$!f,,- 
modules, with T a trivial module, having the property that the extension, wlaela 
restricted to any proper submodule of T is nonsplit. Then 1 T 1 < 2. 

Proof. Assume there is such an extension with ! T / > 2. Choose TI ) 
T, I distinct submodules of T, each of dimension 1. Let XI , X, be the 
extensions of V0 by Tl , respectively Ta ) induced by X. By preceeding 
arguments and the fact that there is one conjugacy class of subgroups in Mag 
of index 24, there is a subgroup M g M,, of AI*, fixing t, E X,\V, and 
tz~Xa\VO. Lett,==t,t,andsetX,=(V,,t,).Choosey~~~ jyl = IB, 
and s E Ma,, , / s / = 2, s normalizing (y). Then s inverts y and so [ V0 , y]. 
of dimension 10, is a free F,(s)-module. Also, s stabilizes Cx,(y), which has 
dimension 2, for i = 1,2, 3. Let (w> = GVO(y). If s were to fix ti s 2’ = i 
or 2, then Ma4 = (M, s) fixes ti and then Xi would split, a contradiction. 
So, we must have trS = t,w and tzS = t,w. But then, (tltJs = tIwt,w = tltz , 
which implies the splitting of Xa , another contradiction. We conclude that 

ITlG2. 

LEMMA 9.3. Let (*) 1 -+ A -+ L + K + 1 be an extensiolz of F,IU2,- 
modules, with A a trivial module. Then, L z K @ A as 52n~~~-~~od~~es, i.e., 
the extension splits. 

PcK$. Let R denote the F,Mz,-module dual to L. Then we have an exact 

sequence I -+ V + R -+ A -+ 1 of iF,Ma,-modules. By considering the 
submodule V, of V, we have another exact seqiuence (**) 1 +- &iG -Y X - 
T + I, with T a trivial module of order 2 I A /. If (*> were nonsplit, there 
would be a maximal subgroup A, of A (A, is also a submodule) so that the 
exact sequence with A and L replaced by, respectively, A/A, and L/A, is 
nonsplit. So, we may assume A has order 2. Then (**I satishes the hypotheses 
of the last lemma, which tells us 1 T 1 < 2. This contradiction proves the 
lemma. 
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LEMMA 9.4. Let N be an extension of N by A z b, . Then m splits. 

Proof. Consider the induced extension R of K. Since there is an element 
of order 23 acting on K, there is also one acting on K. This easily implies that 
R is elementary abelian. By the last lemma, R = K,, @ A, with K,, g K, 
as M,,-modules. So, K/K,, is isomorphic to a central extension of M,, by 
A g AKJK, , and we get that A n (m)’ = 1, since m(n/r,,) = 1. Since N 
is perfect, fl splits. 

COROLLARY 3.5. m,(G) = 1. 

Proof. Use Lemma 9.4, [ N 1s = ] G 1s , and Gaschiitz theorem. 
It remains to show m,(G) = 1, for odd primes p. Since 

1 G / = 2223g547211.13.23, 

this is trivial forp = 11, 13, 23. 

LEMMA 9.6. q(G) = 1. 

Proof. From the list of centralizer orders, there are two conjugacy 
classes of elements of order 7, represented by, say, x and y with [ C,(x)/ = 
24325.72 and ] C,(y)] = 243.72. So, the Sylow 7-subgroup is elementary - 
abelian. We may assume x and y commute. If C(X) = C(x)/(x) had a normal 
7-complement, the Frattini argument and the Schur-Zassenhaus Theorem 
would imply that the image y of y normalizes, hence centralizes, a Sylow 
3-subgroup of C(x). But 32 does not divide the order of C(y), contradiction. 
Therefore, there is a 7’-element u of C(x) with # normalizing but not cen- 
tralizing ( 7). By an easy exercise, <x, y, u) has trivial multiplier. Since this 
subgroup contains a Sylow 7-subgroup of G, m,(G) = 1 follows. 

LEMMA 9.7. m,(G) = 1. 

Proof. Consider the subgroup .533 s U,(5) of G. Its Sylow 5-subgroup 
has the form PQ, where P = O,(PQ) is a rionabelian group of order 53, 
exponent 5, and Q is cyclic of order 8 with the involution of Q inverting PIP’. 
Now, m,(PQ) = 1 [19]. Let S be a Sylow 5-subgroup of G containing P; 
1 S / = 54. Set H = (PQ, S). Let A be a central extension of H by A g Z, . 
By the above, A n (P”)’ = 1. Since the involution t of Q inverts P/P’, we get 
P = R x A, where R = Ip”, t]. Since the actions of t and S on P/P’ must 
commute, s normalizes R. Thus, I?/R is isomorphic to a central extension 
of H/P by A. Since H/P has cyclic Sylow 5-subgroups, we get A n (I?)’ = 1. 
This implies m,(H) = 1, and so m,(G) = 1. 

LEMMA 9.8. m,(G) = 1. 
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PYOO~. Let Z be a Sylow 3-center of 6. By the table of centralizer orders, 
/ NG(Z)/ = 2s3s5. Using the containment .2 C 6, it is not difficult (see 
Lemma 8.1) to see that N&J = PK x B, where 13 = Z(G), P = ~~(~~(~)) 
is extra special of order 35, exponent 5, and K n GiG(Z) = R’ g Sp(4, 3)1 
and K complements P in PK. But the argument of Lemma 8.2 goes through 
here without change to give m,(N,(Z)) = 1. Thus ma(G) = 1. 

This completes the proof that m(G) = 1 and m(.l) = 2. 

ASSUMED RESULTS 

Most of these may be found in /17] or [24]; if not, a source is noted. 
Fundamental results about multipliers and covering groups are nicely 
presented in [24]. 

(1) (Gaschtitz’ Theorem). If G is a finite group, I% a subgroup, M a 
finite G-module and (i M /, / G : H I) = 1, then an extension of G 
by M splits if the restriction to His a split extension. 

(2) (‘Transfer Lemma”). If P is a Syiow p-subgroup of G, x a 
p-element in Z(G), then x 4 P’ implies x 4 G’. 

(3) (Fitting’s Lemma). If A is a group of automorphisms of the finite 
abeiian group Mand (I J%’ 1) 1 A I) = 1, then M = GM(a) x [MT A]. 

(4) An automorphism of order prime to p on P, a p-group, is nontrivial 
if and only if the induced automorphism of P/@(P) is nontrivial. 

(5) The terms Gi of the lower central series of G satisfy [Gi , Gj] < G<+? . 

(S) (Cartan-Eilenberg). For H < G, the restriction map H”(G, M) + 
Hn(H, M), where p 7 1 G : H /, induces a monomorp~ism of the 
p-primary parts of the cohomology groups. The image is the set of 
elements of Hn(H, M) stable with respect to G [4, Chap. XII]. 

(7) If a Sylow p-subgroup P of G is elementary abelian of order pz, 
then p { m(G) if the normalizer of P effects a transformation cm P of 
determinant not I. (This follows from [24, pa 6441.) 

(8) All covering groups of a perfect group are isomorphic [24, 301. 

(9) An automorphism a: of a perfect group can be lifted to an auto- 
morphism of the covering group. 

Proof. (Alperin) Let 1 -+ R -+ P -% G 4 1 be a free presenta- 
tion of the perfect group G. Say the free generators Xi of 
i = I,..., n, a set of generators for G. Suppose giol = Ai 1 Write hi as 
a ward wi(gi ,...,g,) in the gj . Define an endomorphism ,8: F -+ P 
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by xi6 = w&i ,..., x,). Then /3~ = VU. Now, /3 maps R into itself 
because if a word v = ca(xl ,..., x,) lies in R, va = u(@ ,..., x,0) 
goes under rr to V(X~ ,..., or) = D(X~ ,..., 3;) = v(xi” ,..., xn”>” = 1 
because v E R means vz = 1. 

Since G = G’, RF’ = F. p leaves invariant each vertex of the 
diagram below. 

F=RF 

F’oy 

\ 

\ 

/------OR 
RnF’” 

I 

A covering group of G is obtained by taking F/S, where S/[R, F] 
is a complement to A n F’/[R, F] in R/[R,F]. In our case, taking 
incidence implies F/S g F’/[R, F] and p induces a onF’/R n F’ E 
FIR. We claim the endomorphism /3* induced by p is an automor- 
phism of E = F’/[R, F]. Clearly the product of the image of fl* on E 
with R n F’/[R, F] is E. But since R n F’/[R, F] is central, it lies in 
the Frattini subgroup of E. Hence is* is onto and so an isomorphism. 

(10) If K/A g G, A < Z(K) n K’, then there is a covering group H of G 
with quotient isomorphic to K [24, 301. 

(11) If H (i G, H = H’, and m,(G/H) = 1, then m,(H) = 1 implies 
m,(G) = 1. 

Proof. Take G, a central extension of G by a p-group A. Then 
fii = I?’ x A g H x A and each factor is normal in G. Let G* = 
G/i?‘, a central extension of G/H. If A* = AA’@‘, m,(G/H) = 1 
implies A n G*’ = 1. As G is arbitrary, we get m,(G) = 1 by 

UO). 

(12) If K/A = G, A < Z(K) n K’ and the ordinary representations of K 
over an algebraically closed field K of characteristic p > 0 lift the 
projective representations of G over k, then A g M(G)/M,(G) 
(e.g., 3.2 of [35]). 

(13) by, 21 = Lx, Zl”[Y, 4, kGY.4 = Lx, 4L;c,YlZ. 
(14) Let A, B be subgroups of G. Suppose [A, B] centralizes A and B. 

Then [aa’, b] = [u, b][a’, b] and [a, bb’] = [u, &][a, b], a, a’ E A, 
b, FEB. (We say here that [ , ] is “biadditive” or “bimultiplicative.“) 
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