Schur Multipliers of Some Sporadic Simple Groups

Robert L. Griess, Jr.
University of Michigan, Am Arbor, Michigan 48104
Communicated by W. Feit

Received September 26, 1972

Abstract

We determine the Schur multipliers of several of the sporadic simple groups, and in one case get an upper bound. The groups ireated are those of Held, Suzuki, Fischer, and Conway.

1. Introduction

This paper is a continuation of the author's work in "Schur multipliers of finite simple groups of Lie type," [19]. Here, we determine the multipliers of several sporadic simple groups (those which are not known to belong to infinite families). We state our results as follows:

Man Theorem. The sporadic simple groups below have multipliers as stated:

Group		Order	Multiplier
Held		$2^{10} 3^{3} 5^{2} 7^{3} 17$	1
Suzuki		$2^{13} 3^{7} 5^{2} 7.11 .13$	\mathbb{Z}_{6}
Fischer's	$M(22)$	$2^{17} 3^{9} 5^{2} 7.11 .13$	\mathbb{Z}_{6}
	$M(23)$	$2^{183^{13} 527.11 .13 .17 .23}$	1
	$M(24)^{\prime}$	$2^{213^{16} 5^{2} 7^{3} 11.13 .17 .23 .29}$	1 or \mathbb{Z}_{3}
Conway's	0.3	$2^{10} 3^{7} 5^{37} 7.11 .23$	1
	0.2	$2^{18} 3^{6} 5^{3} 7.11 .23$	1
	0.1	$2^{21} 3^{9} 5^{4} 7^{2} 11.13 .23$	\mathbb{Z}_{2}

Furthermore, $M(24)$, which contains $M(24)^{\prime}$ with index 2 , has trivial multiplier.
We remark that the multiplier of $M(24)^{\prime}$ is very likely to be \mathbb{Z}_{3} (the author had believed [19] until recently that the multiplier was trivial). The reason for this is the strong evidence that a simple group F (popularly called "the
monster') of order $2^{46} 3^{20} 5^{9} 7^{6} 11^{2} 13^{3} 17.19 .23 .29 .31 .41 .47 .59 .71$ exists $[15,18$, 37], and its existence would imply that an element $h \in F$ of order 3 has the properties: $C_{F}(h)=C_{F}(h)^{\prime}, C_{F}(h) \mid\langle h\rangle \cong M(24)^{\prime}$ and $N_{F}(\langle h\rangle \mid\langle h\rangle \cong M(24)$. Proving directly that $M(24)^{\prime}$ has multiplier of order 3 would be very difficult. If F is shown to exist, the ambiguity would be settled, of course.

Concerning other known simple groups, the multiplier situation is almost complete. For a general account of work on the Schur multipliers of finite simple groups, the reader is referred to the author's announcement [20]. The gaps in the tables of [20] are now filled, modulo the ambiguity concerning $M(24)^{\prime}$. Since [20] was written, several new simple groups have appeared, and we present what is known about their multipliers.

Sporadic group	Order	Multiplier
Rudvalis $[10,29]$	$2^{14} 3^{3} 5^{3} 7.13 .29$	\mathbb{Z}_{2}
O'Nan $[27]$	$2^{9} 3^{4} 5.7^{3} 11.19 .31$	\mathbb{Z}_{3}
$F_{1}[15,18,37]$	$2^{463^{20} 5^{9} 7^{6}} 11^{2} 13^{3} .17 .19 .23 .29 .31 .41 .47 .59 .71$	1
$F_{2}[13]$	$2^{41} 3^{13} 5^{6} 7^{2} 11.13 .17 .19 .23 .31 .47$	1 or \mathbb{Z}_{2}
$F_{3}[37]$	$2^{15} 3^{10} 5^{3} 7^{2} 13.19 .31$	$?$
$F_{5}[21]$	$2^{14} 3^{6} 5^{6} 7.11 .19$	$?$

The multiplier of the Rudvalis group was settled by the combined work of A. Rudvalis, W. Feit, and R. Lyons; they also showed that the outer automorphism group is trivial. See [27] for the multiplier of the O'Nan group and see [18] for the above bounds on the multipliers of F_{1} and F_{2} (the groups F_{i} are defined to be the central factor groups of the centralizer in $F=F_{1}$ of certain elements of order $i=1,2,3$, and 5). The existence question for the F_{i} has been settled affirmatively only for F_{3} and F_{5} as of this writing; both were handled with computer techniques by P. E. Smith of Cambridge. Also, the existence of F_{1} would prove that a simple group satisfying all the properties listed for F_{2} in [13] has multiplier of even order. A direct proof (independent of the existence question for F_{1}) that the multiplier of F_{2} is \mathbb{Z}_{2} has not yet been given.

Our main technique may be described as follows. Let G be one of the above groups, and let \tilde{G} be a central extension of G. We study the possible extensions \tilde{H} induced on various subgroups H of G to pinpoint information about \tilde{G}. Knowledge of the multipliers of other simple groups is very helpful in this regard, although it seems necessary to study nonsimple H (local subgroups, for example).

Most group theoretic notation used here is fairly standard; see [17] or [19]. Notation for groups of Lie type used here is that of [17, p. 491] and [5].

Other notation for classical groups is that found in [24]. Some notation special to this paper is the following:

$M(G)$	the multiplier of the group G,
$m(G)$	the order of $M(G)$,
$M_{p}(G)$	the Sylow p-subgroup of $M(G), p$ a prime,
$m_{p}(G)$	the order of $M_{p}(G)$,
$m_{p^{\prime}}(G)$	$m(G) / m_{p}(G)$,
$E_{p^{n}}$	an elementary abelian group of order p^{n}, p a prime, $n \geqslant 1$.

Also, for group elements x, y, we define $x^{y}=y^{-1} x y$ and $[x, y]=x^{-1} y^{-1} x y$. The Assumed Results of [19] are referred to by (1) through (14) and are listed at the end of this article.

2. Held's Group

Let G be the simple group discussed by Held in [22]; $|G|=2^{103^{3} 527317 .}$ We shall prove $m(G)=1$. Trivially, $m_{17}(G)=1$. There is an element $t \in G$ of order 3, central in a Sylow 3-subgroup such that $C_{G}(t)=C_{G}(t)^{\prime}$, $C_{G}(t) \mid\langle i\rangle \cong A_{7}$ [37, page 275]. Since $m\left(A_{7}\right)=6$, and $\left|C_{G}(t)\right|_{3}=|G|_{3}$, Gaschütz' theorem implies $m_{3}(G)=1$. Now, $G \supset S \cong \operatorname{Sp}(4,4)$ (unpublished). Since $|S|_{5}=|G|_{5}$ and $m(S)=1$, it follows as above that $m_{5}(G)=1$.

A Sylow 7-subgroup P of G is nonabelian of order 7^{3}, exponent 7 . It is easy to see that a covering group Q of P must have $A \subseteq Q \cap Z(Q), Q / A \cong P$, $A \cong Z_{7} \times Z_{7}$, and that A is generated by $[a, b],[a, c]$ where (denoting images of $Q \rightarrow P$ by ${ }^{-}$) $\langle\bar{a}\rangle=Z(P)$ and $\{\bar{b}, \bar{c}\}$ is any set of generators for P. Checking centralizer orders for 7 -elements in G, we find that $C_{G}(\bar{a}) \cong P \cdot Z_{3}$ and $C_{G}(s) \cong Z_{7} \times L_{2}(7)$ or $Z_{7} \times D_{14}$ for $|s|=7, s$ not conjugate in G to an element of $Z(P)$. Assume \tilde{G} is an extension of G by $B \cong Z_{y}, B \subseteq \tilde{G}^{\prime}$. Then $B \subseteq \tilde{P}^{\prime}$ by a transfer lemma. By (10), \tilde{P} is a quotient of some Q as above. Denote images of $Q \rightarrow \tilde{P}$ by \sim. Say $[\tilde{a}, \tilde{b}] \neq 1$ in \tilde{P}. If $C_{C}(\bar{b}) \cong Z_{8} \times L_{2}(7)$, choose $y, g \in L_{2}(7)$ with $|y|=7, y^{g}=y^{2}$. Since $\bar{a} \in C_{G}(\bar{b})$, we may assume $y=\bar{a} \overline{b^{j}}$. Let \tilde{y} be a preimage of y in \tilde{P}. Then, as $[\tilde{a}, \tilde{b}]$ is central, $[\tilde{a}, \tilde{b}]=$ $[\tilde{a}, \tilde{b}]^{g}=[\tilde{y}, \tilde{b}]^{g}=\left[\tilde{y^{2}}, \tilde{b}\right]=[\tilde{y}, \tilde{b}]^{2}=[\tilde{a}, \tilde{b}]^{2}$, which implies $[\tilde{a}, \tilde{b}]=1$. Similarly, if $C_{G}(\bar{b}) \cong Z_{7} \times D_{14}$, we get $[\tilde{a}, \tilde{b}]=[\tilde{a}, \tilde{b}]^{-1}$, implying $[\tilde{a}, \tilde{b}]=1$. So the image of $A \subseteq Q$ in \widetilde{P} is trivial. Thus, \widetilde{G} does not exist and so $m_{7}(G)=1$.

Proving $m_{2}(G)=1$ will finish the proof. The following information comes from Held's paper [22]. G has two conjugacy classes of involutions, represented by z and i; z is central in a Sylow 2-subgroup, i is not.

$$
\begin{gathered}
C_{G}(z) \cong\left(D_{8} \circ D_{8} \circ D_{8}\right) \cdot L_{2}(7), \\
{\left[C_{G}(i): C_{G}(i)^{\prime}\right]=2, C_{G}(i)^{\prime}=C_{G}(i)^{\prime}, Z\left(C_{G}(i)^{\prime}\right) \cong Z_{2} \times Z_{2},} \\
C_{G}(i)^{\prime} / Z\left(C_{G}(i)^{\prime}\right) \cong L_{3}(4), Z\left(C_{G}(i)\right)=\langle i\rangle .
\end{gathered}
$$

G has a subgroup $S \cong S p(4,4)=C_{2}(4)$. Let X be a one-parameter subgroup corresponding to a root of maximal height. Then X is a four-group lying in the center of a Sylow 2-subgroup of S and $C=C_{S}(X) \cong O_{2}(C) \cdot L_{2}(4)$, $N_{S}(X)=C \cdot Z_{3}, C=C^{\prime}, O_{2}(C)$ is elementary abelian of order 2^{6} and $L_{2}(4)$ acts "naturally" on $O_{2}(C) / X$. Since $5 \| C\left|, 5+\left|C_{G}(z)\right|, X^{*}\right.$ consists of G conjugates of i. We claim $C_{G}(X)=C_{G}(x)^{\prime}$, for $x \in X^{\#} .\left|C_{S}(X)\right|_{2}=2^{8}=$ $\left|C_{G}(x)^{\prime}\right|_{2}$ implies that the kernel of the map $C_{G}(x)^{\prime} \rightarrow L_{3}(4)$ is contained in $C_{S}(X)$. Since X is the only normal four-group in $C_{S}(x), X$ must be this kernel, i.e., $X=Z\left(C_{G}(x)^{\prime}\right)$. The structure of $C_{G}(x)$ now establishes the claim. Since $\left[N_{S}(X): C_{S}(X)\right]=3$, we must have $N_{G}(X) / N_{G}(X)^{\prime \prime} \cong \Sigma_{3}, N_{G}(X)^{\prime \prime}=$ $C_{G}(X)=C_{G}(x)^{\prime}$. Under conjugation, $N_{G}(X)$ is transitive on X^{*}.

Let \tilde{G} denote a central extension of G by $\langle\alpha\rangle \cong A=Z_{2}$. Since $Z_{4} \times Z_{4} \cong$ $M_{2}\left(L_{3}(4)\right)$ and any outer automarphism θ of order 3 acts fix point freely on $M_{2}\left(L_{3}(4)\right)$ (and on any quatient by a θ-invariant subgroup), the action of $N_{G}(X)$ on X implies $A \nsubseteq \widehat{\left(C_{G}(X)\right)^{\prime}}$. Thus $\widehat{C_{G}(X)}=C_{0} \times A$ where $C_{0} \cong$ $C_{G}(X)$. Each factor is invariant under $N_{G}(X)$ as $C_{0}=\left(C_{0} \times A\right)^{\prime}$ and $A=$ $Z\left(\widetilde{\left(N_{G}(X)\right)^{\prime}}\right)$. Also, if $\tilde{x} \in x \in X^{*}, \tilde{x}^{2}=1$ (i.e., $\tilde{i}^{2}=1$ for $\tilde{z} \in i$).

For $\tilde{z} \in z$, we show that $\tilde{z}^{2}=1$. Since $\langle z\rangle=Z(Q), Q$ a quaternion subgroup of $O_{2}\left(C_{G}(z)\right)=D_{8} \circ D_{8} \circ D_{8}$ [22, p. 204], $m(Q)=1$ implies $\tilde{z}^{2}=1$. In particular α has no square root in \widetilde{G}.

Now, $\overparen{\left(N_{G}(X)\right)}$ splits over A since $\left[N_{G}(X)^{\prime}: C_{G}(X)\right]=3$. Any $t \in N_{G}(X) \backslash N_{G}(X)^{\prime}$ effects an outer automorphism of $C_{G}(X) / X \cong L_{3}(4)$. Since $\operatorname{Out}\left(L_{3}(4)\right) \cong Z_{2} \times \Sigma_{3}$ [5], and is generated by the automorphism classes of the diagonal automorphism, the graph automorphism, and the field automorphism, there is in $\operatorname{Aut}\left(L_{3}(4)\right)$ a complement to the group of inner automorphisms. Hence, we may assume t has period two on $C_{G}(X) / X$. Then t^{2} induces a central automorphism of $C_{G}(X)$, a perfect group. Thus t^{2} is trivial on $C_{G}(X)$, forcing $t^{2}=1$ or $t^{2}=x \in X^{\neq}$. Pick $\tilde{t} \in t$. If $t^{2}=1$, then $\tilde{t}^{2}=1$ because α has no square root in G. In this case $\widehat{N_{G}(X)}$ splits, because \tilde{t} with a complement to A in $\widehat{\left(N_{G}(X)^{\prime}\right)}$ generates a complement to A. The other case is $t^{2}=x$. Choose $s \in X-\langle x\rangle$. Then $s^{t}=s x$. So, $(t s)^{2}=t^{2} s^{t} s=$ $x s x s=1$. Replacing t by $t s \in N_{G}(X)$, the same argument yields $\widehat{N_{G}(X)}$ split over A.

Checking centralizer orders, $2\left|C_{G}(i)\right|_{2}=\left|C_{G}(z)\right|_{2}=|G|_{2}$. Since $\overparen{N_{G}(X)}$ splits, the induced extension of some maximal subgroup of a Sylow 2-subgroup splits over A.

We now look at the induced extension of $C_{G}(z)$, which contains a Sylow 2-subgroup of G, and try to prove $\widetilde{C_{G}(z)}$ splits over A. Choose $L \subset C_{G}(z)$,
$L \cong L_{2}(7)$. Set $R=O_{2}\left(C_{G}(z)\right)$. As $\tilde{z}^{2}=1, \widetilde{\left(R^{\prime}\right)}$ is elementary abelian. $\widetilde{\left(R^{\prime}\right)} \supseteq Z\left(C_{G}(z)\right)$ obviously, but they are equal since $C_{G}(z)$ is perfect. So, L acts on $R_{0}=\tilde{R} /\langle\tilde{z}\rangle$, where we choose $\tilde{z} \in(\tilde{R})^{\prime} \cap z$ (conceivably, there are two choices for \tilde{z}). Let $A_{0}=\langle A, \tilde{z}\rangle \mid\langle\tilde{z}\rangle$. Since A is central in \tilde{G}, L preserves the bilinear form $R_{0} / A_{0} \times R_{0} / A_{0} \rightarrow A_{0}$ given by commutation. We claim this form is identically trivial, i.e., that R_{0} is abelian. Since the induced extension of a maximal subgroup of a Sylow 2 -subgroup of G splits over A, the same is true for a maximal subgroup of R. This means that R_{0} / A_{0} has a subspace of codimension 1 isotropic under the form. Hence, the radical of the form has codimension no more than 2 . Since R_{0} / A_{0} has the same irreducible constituents under L as R / R^{\prime} does (dimensions 3 and 3 for R / R^{\prime}), the radical must be the whole space R_{0} / A_{0}, as L leaves the radical invariant. This means R_{0} is abelian. Furthermore, R_{0} is elementary abelian. If not, L leaves invariant the kernel of the squaring endomorphism of R_{0}, which contains A_{0}. This would force R / R^{\prime} to have a 5 -dimensional L-invariant subspace, contradiction. Hence, \tilde{R} splits over A because A_{0} is a direct summand of R_{0}.

Let K be a subgroup of L isomorphic to $\Sigma_{4} . K$ contains a Sylow 2 -subgroup of L and $R K$ contains one of G. We aim to show $\widetilde{R K}$ splits over A.

Let X_{1}, X_{2} be the indecomposable constituents of L on R / R^{\prime} as described in [22, Sect. 1]. Set $X_{i}^{*} / R^{\prime}=X_{i} \cdot X_{i}^{*}$ is elementary abelian and so is $\widetilde{X_{i}^{*}}$, $i=1,2$. As before, R_{0} denotes $\tilde{R} \mid\langle\tilde{z}\rangle$ where $\langle\tilde{z}\rangle=(\tilde{R})^{\prime}$. Set $Y_{i}=\widetilde{X_{i}{ }^{*}} \mid\langle\tilde{z}\rangle$. Y_{i} is elementary abelian, $\left\langle Y_{1}, Y_{2}\right\rangle=R_{0}, Y_{1} \cap Y_{2}=B=A\langle\tilde{F}\rangle \mid\langle\tilde{z}\rangle \cong A$, $Y_{i} \mid=2^{4}, i=1,2$.
We claim it suffices to show that $Y_{i}=Y_{i 0} \oplus B$ as \tilde{K}-modules. For then, $Y \mid\langle\tilde{z}\rangle=\left\langle Y_{10}, Y_{20}\right\rangle$ is invariant under K and disjoint from B and $\widetilde{K R} / Y$ is a central extension of K by $B_{0} \cong A Y / Y=A$. Now, $B_{0} \nsubseteq(\widetilde{K R} / Y)^{\prime}$, or else some involution in $K=\Sigma_{4}$ is represented in $K R / Y$ by an element of order four (for example, the induced extension of $K^{\prime} \cong A_{4}$ would be isomorphic to $S L(2,3)$, whatever the covering of K), a contradiction. Taking preimages in $\widetilde{K R}$, this gives $A \nsubseteq(\widetilde{K R})^{\prime}$. By a transfer lemma, $A \nsubseteq \widetilde{G}^{\prime}$, and so \widetilde{G} splits, implying $m_{2}(G)=1$.

For convenience, we consider L (rather than \tilde{L}) as a group of operators on Y_{i}. There are two conjugacy classes of Σ_{4} in $L \cong S L(3,2)$ and for a fixed Y_{i} we choose K to be the stabilizer of a nonzero vector of X_{i}. Let V be the normal four-group of K and set $U=\left[Y_{i}, V\right] . U$ is K-invariant. If s is an element of order 3 in $K, Y_{i}=F_{1} \oplus F_{2}, F_{1}=C_{Y_{i}}(s), F_{2}=\left[Y_{i}, s\right]_{,}\left|F_{1}\right|=$ $\left|F_{2}\right|=4$. By the structure of L and the point-stabilizer $K,|U B / B|=2$.

We prove $|U|=2$. Since s acts trivially on B and $U B / B, U B=F_{1}$. Suppose $|U|=4$, i.e., $U \supset B$. We claim that $\beta=[y, v]$ where $\langle\beta\rangle=B$, $y \in Y_{i}, v \in V$. If not, $|U|=4$ implies that there are $y_{1}, y_{2} \in Y_{i}, v_{1}, v_{2} \in V$
with $\left[y_{1}, v_{1}\right]=u,\left[y_{2}, v_{2}\right]=u \beta$, for $u \in U \backslash B$. Conjugating the second by a power of s, we may assume $v_{1}=v_{2}$. Then $\left[y_{1} y_{2}, v_{1}\right]=\beta$. Recall that $\widetilde{X_{i}} *$ is elementary abelian. Choosing $\tilde{y} \in y_{1} y_{2}, \tilde{v}_{1} \in v_{1}$, the above implies that, in $\tilde{G},\left(\tilde{y} \tilde{v}_{1}\right)^{2}=\left[\tilde{y}, \tilde{v}_{1}\right]=\alpha \tilde{z}^{z}, k=0,1$. Now, in $C_{G}(z), L$ normalizes a complement W_{i} to $\langle z\rangle$ in X_{i}^{*} (see [22, p. 259]). Thus, $\left[\tilde{W}_{i}, L\right] \subseteq \tilde{W}_{i}$ which intersects $\widetilde{\langle z\rangle}$ in $\langle\alpha\rangle$. This forces $k=0$ and the equation reads $\left(\tilde{y} \tilde{v}_{1}\right)^{2}=\alpha$, a contradiction to α having no square root.

So, $|U|=2$. Setting $W=\left[Y_{i}, s\right]$, we have $|\langle W, U\rangle|=8$ and the definitions of U and W imply that $Y_{i 0}=\langle W, U\rangle$ is K-invariant. This gives the required decomposition of $Y_{i} . Y_{i 0}$ is L-invariant since it is invariant under K (of odd index in L), by Gaschütz' theorem. So each $Y_{i 0}, i=1,2$, is K-invariant for any $K \subset L, K \cong \Sigma_{4}$ (even though K is not a vector stabilizer for both $X_{1}{ }^{\#}$ and $X_{2}{ }^{*}$).

The proof of $m(G)=1$ is complete.

3. Suzuki's Group

Let G be the simple group constructed by Suzuki [41]. We shall prove $m(G)=6$. By Lindsey [26], it is enough to prove $m(G) \mid 6$. Now, $|G|=$ $2^{133^{7}} 5^{2} .7 .11 .13$ and $G \supset G_{1} \cong G_{2}(4)$, simple of order $2^{12} 3^{3} 5^{2} .7 .13$. Since we know $m\left(G_{1}\right)=2$ (see [19,20]), we need only determine $m_{p}(G)$ for $p=2,3$ by Gaschütz' theorem and the cyclicity of a Sylow 11-subgroup of G.

Let U be the standard uniputent (Sylow 2-) subgroup of G_{1}, and let H be the standard Cartan subgroup. If $U \subseteq T$, an S_{2} of G, then $[T: U]=2$ and $U \triangleleft T$. If $N=N_{G}(U)$, then $N \supseteq\langle H, T\rangle, H \cong Z_{3} \times Z_{3}$. Let $C \subseteq N$ be the subgroup inducing trivial automorphisms on $U / U^{\prime} .|N / C|$ is n or $2 n$, n odd. In either case, N / C has a normal 2-complement and H maps isomorphically into N / C by Theorem 1.4 of [17], since H is faithful on U and $(|H|, 2)=1$.

Suppose \tilde{G} is a central extension of G by $A \cong Z_{2}$ such that \tilde{G}_{1} splits. Then $\tilde{U} \cong U \times A$. Furthermore, by the structure of a Borel subgroup in $G_{2}(4) \cong$ $G_{1}, U / U^{\prime}=\left[U / U^{\prime}, H\right]$. So, we may write $\widetilde{U}=U_{0} \times A$, where each factor is H-invariant, $U_{0} \cong U$ as H-groups. Note $U_{0}^{\prime}=\tilde{U}^{\prime}$ is characteristic in \tilde{U}. In particular, $U_{0} / U_{0}{ }^{\prime}=\left[U_{0} / U_{0}{ }^{\prime}, \tilde{H}\right]$. Take $\tilde{t} \in \tilde{T} \backslash \tilde{U}$. Its image in $\tilde{N} / \tilde{C} \simeq N / C$ normalizes $\left[U_{0} / U_{0}{ }^{\prime}, L\right]=X$ where $L=O_{2^{\prime}}(N / C)$. But $U_{0} / U_{0}^{\prime} \supseteq X \supseteq$ $\left[U_{0} / U_{0}^{\prime}, H\right]=U_{0} / U_{0}^{\prime}$. So equality holds, and \tilde{t} normalizes U_{0}. Since \tilde{T} is a Sylow 2-subgroup of \widetilde{G}, and $U_{0} \triangleleft \widetilde{T},\left[\widetilde{T}: U_{0}\right]=4$, we have \tilde{T} / U_{0} abelian with $A \nsubseteq \tilde{T}^{\prime}$. By a transfer lemma (2), $A \nsubseteq \tilde{G}^{\prime}$, and so \tilde{G} splits.

The conclusion is that if \tilde{G} is a perfect central extension of G by a 2 -group A, then $A \subseteq \tilde{G}_{1}{ }^{\prime}$. Now, $m\left(G_{1}\right)=2$ implies $m_{2}(G) \mid 2$.

Lindsey [26] discusses a group $G_{0}, G_{0}=G_{0}{ }^{\prime}, Z\left(G_{0}\right) \cong Z_{6}, G_{0} / Z\left(G_{0}\right) \cong G$. These results, together with [25], imply that there is a subgroup $S \subset G_{0}$, $S=S^{\prime}, Z(S) \cong Z_{3} \times Z_{3}, S / Z(S) \cong U_{4}(3) \cong{ }^{2} A_{3}(3)$. Since $m\left(U_{4}(3)\right)=$ $2^{2} 3^{2}$ (see [19, 20]) and S contains a Sylow 3-subgroup of $G_{0}, M_{3}\left(G_{0}\right)=1$ by Gaschütz' theorem. Thus, $M_{y}(G) \mid 3$.

All this gives $m(G) \mid 6$. But, G_{0} must be a covering group of G, exhibiting that $m(G)=6$.

4. Fischer's Group $M(22)$

Let $G=M(22)$. Fischer [14] has shown that $2 \mid m(G)$, and [16] implies $3 \mid m(G)$, as Rudvalis has observed. We shall prove that $m(G) \mid 6$, and conclude $m(G)=6$.
$|G|=2^{17} 3^{95} 5^{2} .11 .13$. So, $m_{p}(G)=1$ for $p=7,11,13$. G contains a subgroup $S \cong B_{3}(3)$. Since $m\left(B_{3}(3)\right)=6$ and $|S|_{3}=|G|_{3}=3^{8}$, we have $m_{3}(G) \mid 3$.

According to the character table of $M(22)$ [23], a Sylow 5 -subgroup P is elementary abelian and all elements of order 5 in G are conjugate. So, $N\left(\rho^{P}\right)$ is transitive on P^{*}. If $N(P)$ effects a nonspecial transformation on the vector space P, we have $m_{5}(G)=1$, by (7). Assume otherwise. For $x \in P^{*},\left|C_{G}(x)\right|=$ $2^{3} .3 .5^{2}$, and if $t \in C_{G}(x),|t|=2$, then t commutes with no element of order 5 in $C_{G}(x)$ outside $\langle x\rangle$ by [23]. If $C_{G}(x)$ does not have a normal 5 -complement, we get a nonspecial transformation, and we are done as above. So, assume $C_{G}(x)=O_{5^{\prime}}\left(C_{G}(x)\right) \cdot P$. But then P normalizes a Sylow 2-subgroup (of order 2^{3}) in $C_{G}(x)$, and must centralize it, contradiction. Therefore, $m_{5}(G)=1$, and $m_{e^{\prime}}(G)=3$.
G has an involution i wih $C_{G}(i) \mid\langle i\rangle \cong U_{6}(2) \cong{ }^{2} A_{5}(2)$ and $C_{G}(i)=C_{G}(i)^{\prime}$ [14]. To show $m_{2}(G) \mid 2$ we shall prove that if \tilde{G} is a central extension of G by $A \cong Z_{2}$ and $\widetilde{C_{G}(i)}$ is split, then \tilde{G} is split. The result then follows from $M_{2}\left(U_{6}(2)\right) \cong Z_{2} \times Z_{2}$.
$\left|C_{G}(i)\right|=2\left|U_{6}(2)\right|=2^{16} 3^{6} 5.7 .11 . \widehat{C_{G}(i)}=C_{0} \times A$ by assumption. Let V be a Sylow 2 -subgroup of $C_{0} \times A$, and let T be a Sylow 2 -subgroup of G containing V; $[T: V]=2, V \triangleleft T$. If u is an involution central in a Sylow 2-subgroup of $K \cong U_{6}(2)$, then $C=C_{K}(u) \cong O_{2}(C) \cdot U_{4}(2), C^{t}=C$, $\left|O_{2}(C)\right|=2^{9}$, and $O_{2}(C)$ is extra-special with center $\langle u\rangle$. If $\hat{K}=C_{G}(i) \cong C_{0}$ is a perfect central extension of K by $\langle i\rangle$, then $\langle\hat{u}, i\rangle=Z(\hat{C})$, as C is perfect and it contains a Sylow 2 -subgroup W of K; also $Z(\hat{W})=Z(\hat{C})$ (see the discussion of $U_{6}(2)$ in [19]).

We may take $\hat{W}=C_{0} \cap V . Z(V)=Z(\hat{W}) \times A$ is normal in T. Since i is not central in any Sylow 2 -subgroup of $G, i^{b} \neq i$ for $l \in T \backslash V$. But t nor-
malizes $C_{G}(Z(V))=\hat{C} \times A$ and $\hat{C}=(\hat{C} \times A)^{\prime}$. So we may assume t normalizes \hat{W}, by the Frattini argument. Now T / \hat{W} has order four and is abelian. $A \cap \hat{W}=1$ implies $A \nsubseteq T^{\prime}$. So, $A \nsubseteq \tilde{G}^{\prime}$ by the transfer lemma (2), and we are done.

5. Fischer's Group $M(23)$

Let $G=M(23),|G|=2^{18} 3^{13} 5^{2} 7.11 .13 .17 .23 . G$ contains K, a perfect extension of $M(22)$ by Z_{2}. Since $m(M(22))$ is known and $|K|_{2}=|G|_{2}$, $|K|_{5}=|G|_{5}$, we get $m_{p}(G)=1$, for $p=2,5$. Trivially $m(G)_{p}=1$ for $p=7,11,13,17,23$. By 18.3 .4 of [14], G contains a subgroup $S, S / S^{\prime \prime}=$ $\Sigma_{3}, S^{\prime \prime}=D_{4}(3)$, a simple group. Since $m_{3}\left(D_{4}(3)\right)=1$, an extension \widetilde{G} of G by $A \cong Z_{3}$ must yield $\widetilde{\left(S^{\prime \prime}\right)}$ split. As $\left|S / S^{\prime \prime}\right|_{3}=3, A \nsubseteq(\tilde{S})^{\prime}$. As $|S|_{3}=|G|_{3}$, this implies $A \nsubseteq \tilde{G}^{\prime}$. So, \tilde{G} splits and $m_{3}(G)=1$. Thus, $m(G)=1$.

6. Fischer's Group $M(24)^{\prime}$

Let $G=M(24), G_{0}=G^{\prime} .|G|=2^{22} 3^{16} 5^{2} 7^{3} 11.13 .17 .23 .29,\left[G: G_{0}\right]=2$, G_{0} simple. We let D denote the conjugacy class of 3-transpositions in G. Trivially, $m_{p}\left(G_{0}\right)=1, p \geqslant 11$. Since $G_{0} \supset M(23),\left|G_{0}\right|_{5}=|M(23)|_{5}$, $m(M(23))=1$, we have $m_{5}\left(G_{0}\right)=1$. Fischer states (personal communication) G contains a subgroup X isomorphic to the holomorph of $Z_{7} \times Z_{7}$. A Sylow 7-subgroup P of $G_{0} \cap X$ is then normalized by $h \in C\left(P^{\prime}\right),|h|=3$, and h is fixed-point free on P / P^{\prime}. We now get $m_{7}\left(G_{0}\right)=1$ by an argument similar to that for $m_{7}(\mathrm{Held})=1$.

Lemma 6.1. $S a y e=d_{1} d_{2}, d_{1}, d_{2} \in D, d_{1} d_{2}=d_{2} d_{1}$. Then if $e=d_{3} d_{4}$, $d_{3}, d_{4} \in D$, we have $\left\{d_{1}, d_{2}\right\}=\left\{d_{3}, d_{4}\right\}$. Consequently, $C\left(d_{1}\right) \cap C\left(d_{2}\right)$ has index 2 in $C(e)$. Also $e \in\left(C\left(d_{1}\right) \cap C\left(d_{2}\right)\right)^{\prime}$ and $C\left(d_{1}\right) \cap C\left(d_{2}\right) /\langle e\rangle \cong M(22)$.

Proof. See Sections 17, 18, 19 of [14].
Set $F=\left\langle D_{d}\right\rangle=\langle d\rangle \times F^{\prime}, F^{\prime} \cong M(23)$. Also set $K=C_{C}(e)$, where $e=d d^{\prime}, d^{\prime} \in D_{d}$. Note that $K \cap F^{\prime}$ is a perfect central extension of $U_{6}(2)$ by a four-group, and that $e \in Z\left(K \cap F^{\prime}\right)$.

Lemma 6.2. $\quad m_{2}(G)=1$ and $m_{2}\left(G_{0}\right)=1$.
Proof. Let \tilde{G} be an extension of G by $\langle\alpha\rangle=A \simeq Z_{2}$. We show $A \nsubseteq \tilde{G}^{\prime}$. In Fischer's notation, G contains a subgroup L, elementary abelian of order 2^{12}, and $N / L \cong M_{24}$, the Mathieu group, where $N=N_{G}(L)$. Furthermore, L has a subgroup L_{0} of index 2 consisting of elements of L which are products
of an even number of elements from $G \cap L . L_{0} \triangleleft N, d \notin L_{0}$ for $d \in D \cap L$, and $d \notin G^{\prime}$. In the notation of the previous paragraph, $A \nsubseteq \tilde{F}^{\prime}$ as $m(F)=1$. For $d_{i}, d_{j} \in D \cap L, d_{i} \neq d_{j}$, select coset representatives $\overline{e_{i j}}$ for $e_{i j}=d_{i} d_{j}$ by the rule $\left\{\widehat{e_{i j}}\right\}=e_{i j} \cap \tilde{F}^{\prime}$. Let $K_{i j}=C_{G}\left(e_{i j}\right)$. Since $\left\langle e_{i j}\right\rangle=Z\left(K_{i j}^{\prime}\right)$ and $m_{2}\left(K_{i j}\right)=1$, we see that $\overline{e_{i j}}$ is not \tilde{G}-conjugate to $\widehat{e_{i j}}$ and that $e_{i j} \cap \tilde{F}^{\prime}=$ $e_{i j} \cap \widetilde{K_{i j^{\prime \prime}}}$.

Since the set $\left\{d_{i} d_{j} \mid d_{i} \neq d_{j}\right.$ in $\left.D \cap L\right\}$ generates L_{0}, the associated $\widetilde{e_{i j}}$ in \tilde{L} generate a subgroup L_{1} of \tilde{L} normalized by \tilde{N}. We claim $A \leftrightarrows L_{1}$. If $\alpha \in L_{1}$, then α is some product of the $\widehat{e_{i j}}$'s. But each $\widetilde{e_{i j}} \in \widetilde{F}^{\prime}$ and $A \nsubseteq \widetilde{F}^{\prime}$. So, $L_{1} \cap A=1$. Then \tilde{N} / L_{1} is a central extension of $Z_{2} \times M_{24}$ by A. Since $m\left(M_{24}\right)=1$, $A \nsubseteq \tilde{N}^{\prime}$. This implies $A \nsubseteq \tilde{G}^{\prime}$ as $|N|_{2}=|G|_{2}$. Thus, $m_{2}(G)=1$. Since G is a split extension $G_{0}\langle d\rangle, m_{2}\left(G_{0}\right)=1$ by (9).

The following arguments show that the 3 -part of the multiplier of $M(24)^{\prime}$ has order at most 3. We use Fischer's paper [14] and the following information about a subgroup of $M(24)$ (due to private correspondence with B. Fischer).

There is a D-subgroup H with $V=O_{3}(H)$ elementary of order 3^{7}, $H \| \cong P O(7,3)$. Set $E=D \cap H$. Then, there is a nondegenerate, symmetric, bilinear form f on V, preserved by H / V, so that members of E act as reflections

$$
x \mapsto x+\pi f(x, a) a
$$

where $f(a, a)=\pi$ is either 1 or -1 . By replacing f with $-f$, if necessary, we may assume that f has discriminant 1 . Since $E \cap H^{\prime}=\varnothing$, the structure of $P O(7,3)$ implies that $\pi=-1$. Also, for $d \in E,\left\langle E_{d}\right\rangle \cong O^{+}(6,3)=$ $O^{+-(6,3)}$, in Fischer's notation.

Lemva 6.3. Let V be the above module for $\operatorname{PO}(7,3)$. Then,

$$
H^{1}(P O(7,3), V)=0 \quad \text { and } \quad H^{1}(\Omega(7,3), V)=0
$$

Proof. Choose $u \in V$ with $f(u, u)=1$. Let J be the subgroup of $\Omega(7,3)$ stabilizing $\langle u\rangle$. Then, J stabilizes $\langle u\rangle \perp$ and the form f restricted to $\langle u\rangle{ }^{\perp}$ has discriminant 1 , whence J is isomorphic to a subgroup of index 2 in $\mathrm{GO}^{-}(6,3)$. Also, $Z(J) \subset J^{\prime},|Z(J)|=2,\left|J: J^{\prime}\right|=2$, and elements of $J J^{\prime}$ invert $\langle u\rangle$. We have $|J|=2^{9} 3^{6} 5.7$, and so J contains a Sylow 2 -subgroup of $\Omega(7,3)$.

Let w generate $Z(J)$. Then, w has six eigenvalues -1 , one 1 . Let $w^{\prime}=w^{\prime}$ be a conjugate of w in $\Omega(7,3)$ which commutes with w and $z w^{\prime}+w$. Then $w^{\prime} \in J$. Since w and w^{\prime} have the same eigenvalues, w^{\prime} inverts $C_{V}(w)=\langle u\rangle$.

Set $\mathscr{L}=\left\{\left\langle w, w^{\prime}\right\rangle, J, J^{g}\right\}$. By above remarks, $H^{0}(L, V)=0$, for each $L \in \mathscr{L}$. Since $\left\langle w, w^{\prime}\right\rangle$ is a 2-group, $H^{1}\left(\left\langle w, w^{\prime}\right\rangle, V\right)-0$. Write $V-\langle a\rangle \oplus W$ as a J-module, where $W=[V, w]$. The argument of $[24, p .124]$ shows that $H^{1}(J, W)=0$. Since $\left|J: J^{\prime}\right|=2$ is prime to $3, H^{\prime}(J,\langle u\rangle)$ is isomorphic to a subgroup of $H^{1}\left(J^{\prime},\langle u\rangle\right)$, by [3]. Since $\langle u\rangle$ is a trivial J^{\prime}-module, the
latter is $\operatorname{Hom}\left(J^{\prime},\langle u\rangle\right)=0$ (see [4]). So, $H^{1}(J,\langle u\rangle)=0$. The decomposition of V as a direct sum now implies that $H^{1}(J, V)=0$. Similarly, $H^{1}\left(J^{g}, V\right)=0$.

Since the members of \mathscr{L} generate $\Omega(7,3)$ and $H^{i}(L, V)=0$, for each $L \in \mathscr{L}, i=0,1$, the hypotheses of the "Vanishing Theorem" of Alperin and Gorenstein [1] are satisfied. We conclude that $H^{1}(\Omega(7,3), V)=0$. Since $|P O(7,3): \Omega(7,3)|=2$ is prime to 3 , we also get $H^{1}(P O(7,3), V)=0$. The lemma is proven.

Now we are ready to show that $m_{3}(G) \leqslant 3$. Let $G_{0}=M(24)^{\prime}$ and let \tilde{G}_{0} be a central extension of G_{0} by an abelian 3-group A. For any subgroup G_{1} of G_{0}, we let \widetilde{G}_{1} denote the extension of G_{1} induced by \widetilde{G}_{0}.

Set $K=H^{\prime}=H \cap G_{0}$. Since K acts irreducibly on V and since $|V|$ is an odd power of $3, V$ must be elementary abelian. By a well-known isomorphism $\operatorname{Ext}_{z_{3} K}\left(Z_{3}, V\right) \cong H^{1}(K, V)$ (see [4]), Lemma 6.3 implies that we may write $V=V^{*} \oplus A$, as \hat{K}-modules, with $V^{*}=[\tilde{V}, K]$. Now, \tilde{K} / V^{*} is a central extension of K / V by $A / A \cap V^{*} \simeq A$. Since $m_{3}(\Omega(7,3))=3$, this extension is possibly nonsplit. If it were split, then \widetilde{G}_{0} would split over A, since ($\left.G_{0}: K \mid, 3\right)=1$. But, if $\tilde{G}_{0}=\tilde{G}_{0}{ }^{\prime}$, then $m_{3}(\Omega(7,3))=3$ and a transfer lemma (2) implies $|A| \leqslant 3$, i.e., $m_{3}\left(G_{0}\right) \leqslant 3$, as required.

It remains only to show that $m_{3}(M(24))=1$. Let $G=M(24)$. By (11), $m(G) \mid 3$. Assume $m(G)=3$ and let G be a perfect central extension of G by $A \cong \mathbb{Z}_{3}$. Then \tilde{H} (the induced extension on H) is nonsplit, since $(|G: H|, 3)=1$. The analysis in the last paragraph shows that $\tilde{V}=V^{*} \oplus A$, as H-modules, and that \widetilde{K} / V^{*} is a perfect central extension of $K / V \cong \Omega(7,3)$ by $\tilde{V} / V^{*} \cong \mathbb{Z}_{3}$. But $H / V \cong P O(7,3) \cong \operatorname{Aut}(\Omega(7,3))$. We shall have a contradiction if we show that an outer diagonal automorphism of $B_{3}(3)$ inverts $M_{3}\left(B_{3}(3)\right)$.

We need some detailed information about B^{*}, a perfect central extension of $B_{3}(3)$ by $A^{*} \cong Z_{3}$. Regard $B_{3}(3)$ as the quotient B^{*} / A^{*}. We may choose a system of representatives $y_{r}(t) \in B^{*}$ for $x_{r}(t) \in B_{3}(3)$, all $r \in \Sigma, t \in \mathbb{F}_{3}$, so that each $y_{r}(t)$ has order 3 and all Chevalley commutator relations holding between $x_{r}(t), x_{s}(u), r \neq \pm s$, hold between the corresponding $y_{r}(t), y_{s}(u)$, except for the following one:

Whenever r, s are roots of unequal length, with r orthogonal to s, and t, u are nonzero, then $\left[x_{r}(t), x_{s}(u)\right]=1$, while $1 \neq\left[y_{r}(t), y_{s}(u)\right] \in A^{*}$.

The multiplier of $B_{8}(3)$ has been determined by Steinberg in unpublished work.

We now leave to the reader the verification of the claim that the function

from fundamental roots to $\mathbb{F}_{3} \times$ extends to an outer diagonal automorphism
which inverts $M_{3}\left(B_{3}(3)\right)$. This completes the proof that $m(M(24))=1$ and $m\left(M(24)^{\prime}\right)=1$ or 3.

7. Conway's Group .3

We shall prove $m(.3)=1$. Our sources of information about .3 are [8] and [12].

It is easy to obtain $m_{p}(.3)=1$ for $p \neq 3 .|.3|=2^{103^{7}} 5^{37} 7.11 .23$. Since the Sylow 7-, 11-, and 23-subgroups are cyclic, $m_{p}(.3)=1$ for these primes. If z is an involution in .3 central in a Sylow 2 -subgroup, $C(z)$ is a perfect extension of $\operatorname{Sp}(6,2)$ by $\langle z\rangle$. Hence, any central extension of 3 by a 2 -group splits off $C(z)$, as this group is a covering group for $C(z) /\langle z\rangle$. By Gaschütz' theorem, $m_{2}(.3)=1$. We may show $m_{5}(.3)=1$ by a direct argument, or by noting that .3 contains .332 , which is isomorphic to the Higman-Sims group, and that $m_{5}(.332)=1[40],|.3|_{5}=5^{3}=|.322|_{5}$ imply $m_{5}(.3)=1$ as above.

Showing $m_{3}(.3)=1$ will finish the proof. L. Finkelstein points out that .3 contains a subgroup X containing .333 with $M=O_{3}(X)$ elementary abelian of order $3^{5}, X / M \cong Z_{2} \times M_{11}$. If t is an involution in X mapping onto a generator for Z_{2}, we claim t inverts M. By [12], t does not centralize M, since $3^{5} \uparrow|C(t)|$. Write $M=M_{1} \times M_{2}$, where M_{1} are the elements inverted by t, M_{2} are the elements centralized by t (use Fitting's theorcm). M_{1} and M_{2} are normal in X since the action of t commutes with the automorphisms of M induced by X. If $M_{2} \neq 1, M_{1}$ and M_{2} are centralized by the action of M_{11} (order 8.9.10.11) because M_{11} is simple and $11 \nmid 3^{k}-1$ for $0<k<5$. This leads to a contradiction which proves the claim. Since $C_{X}(t) \cap M=1$, the extension splits. Write $C_{X}(t)=\langle t\rangle \times M_{11}$.

Let .3 be a central extension of 3 by $\langle\alpha\rangle \cong Z_{3}$. Since $|M|$ is an odd power of 3 and $C_{X}(t)$ acts irreducibly on M, \tilde{M} is elementary abelian. Let $M_{0}=[\tilde{M}, t]$. Then $\tilde{M}=M_{0} \times\langle\alpha\rangle$, by Fitting's theorem for the action of $\langle t\rangle$ on M. The factors are M_{11}-invariant, hence normal in \tilde{X}. Then \tilde{X} / M_{0} is a central extension of $\langle t\rangle \times M_{11}$ by $\langle\alpha\rangle$. Since the former group has trivial multiplier and M_{11} is perfect, \tilde{X} splits. Since $|X|_{3}=|.3|_{3}$, Gaschütz' theorem implies . 3 splits, and we are done.

8. Conway's Group .2

Set $G=.2 ;|G|=2^{1836} 5^{3} 7.11 .23$. We will prove that $m(G)=1$. Easily, $m_{p}(G)=1$, for $p=7,11,13$. Since G contains .322 , which is isomorphic to McLaughlin's simple group, $M^{c} L$, we get $m_{5}(G)=1$ because $m_{5}(M C L)=1$ and .322 contains a Sylow 5 -subgroup of G.

Showing that $m_{3}(G)=1$ and $m_{2}(G)=1$ is more difficuit.

Lemma 8.1. Let Z be the center of a Sylow 3-subgroup of G. Then $N_{G}(Z)=$ $O_{3}\left(N_{G}(Z)\right) \cdot H$, where $O_{3}\left(N_{G}(Z)\right)$ is extra special of order 3^{5}, exponent 3 ; where $O_{2}(H) \cong Q_{8} \circ D_{8}, H / O_{2}(H) \cong \Sigma_{5}$.

Proof. We use the containments $U_{4}(3) \subset M^{c} L \subset G$. Let Z be a Sylow 3-center in $U_{4}(3)$. Its centralizer in $U_{4}(3)$ is a semidirect product $X S$, where X is a normal extra special group of order 3^{5} exponent 3 , and the unique involution of $S \cong S L(2,3)$ inverts X / X^{\prime}.

Now, let C be the centralizer of Z in $M^{c} L$. Using the character table of $M^{c} L$ (J. Thompson, unpublished), we see that $|C|=5|Z|$, and it is an easy exercise, using centralizer orders in $M^{c} L$, to get that X is normal in C and $C / X \cong S L(2,5)$ and $N_{G}(Z) / X$ is a covering group of Σ_{5}.

Finally, since $\left|M^{c} L\right|_{3}=|G|_{3}, Z$ is a Sylow 3-center in G, and the centralizer orders from the character table of G [9] force the conclusion of the Lemma, with $X=O_{3}\left(C_{G}(Z)\right)$.

Lemma 8.2. $\quad m_{3}\left(N_{G}(Z)\right)=1$.
Proof. Set $D=N_{G}(Z)$ and let \widetilde{D} be a central extension of D by $A \cong \mathbb{Z}_{3}$. Let $X=\dot{O}_{3}(D)$. We first show \tilde{X} splits over A.

Since X has class $2, \tilde{X}$ has class 2 or 3. Let $L(\tilde{X})=L_{1} \oplus L_{2} \oplus L_{3}$ be the Lie ring associated with \tilde{X}. Suppose $L_{3} \neq 0$, i.e., that $A=L_{3}$. Then there is $x \in L_{1}, y \in L_{2}$ whose Lie product $[x, y]$ generates L_{3}. Let $\langle j\rangle=Z(H)$. Then j acts on $L(\tilde{X})$ inverting L_{1}, centralizing L_{2}. So, $[x, y]^{j}=\left[x^{-1}, y\right]=$ $[x, y]^{-1}$. But this contradicts $A \subseteq Z(\tilde{D})$. So $L_{3}=0$.

Next, we suppose $A \subseteq \tilde{X}^{\prime}$, i.e., $A \subseteq L_{2}$. Since H / H^{\prime} inverts $X^{\prime}=Z$, we have $L_{2}=A \times B$, a decomposition as an H-module, with $B=\left[\tilde{X}^{\prime}, H\right]$. The group \tilde{X} / B is nonabelian, and commutation induces a nontrivial alternating form from $\tilde{X} / \tilde{X}^{\prime}$ into $A B / B \cong A$. This form is nondegenerate, since H acts irreducibly on $\tilde{X} / \tilde{X}^{\prime}$. Since $A \subseteq Z(\tilde{D})$, the action of \tilde{H} preserves this form, However, A is the kernel of this action of \tilde{H}, and so $\tilde{H} / \tilde{A} \cong H$ is faithful on $\tilde{X} \mid \tilde{X}^{\prime}$. However, H is not isomorphic to a subgroup of $\operatorname{Sp}(4,3)$, a contradiction. Thus, $A \nsubseteq \tilde{X}^{\prime}$.

Since H is irreducible on X / X^{\prime}, it follows that $\tilde{X} / \tilde{X}^{\prime}$ is elementary. Since j inverts X / X^{\prime} and centralizes A, we have a decomposition $\tilde{X}=Y \times A$ of H-groups, where $Y=[\tilde{X},\langle j\rangle]$. Now, \tilde{D} / Y is a central extension of H by A. Since H has cyclic Sylow 3-subgroups, $A \nsubseteq \tilde{H}^{\prime}$, and so $A \nsubseteq \tilde{D}^{\prime}$. Since \tilde{D} is an arbitrary central extension of D by $A, m_{3}(D)=1$, and the Lemma follows.

Since D contains a Sylow 3-subgroup of G, Gaschütz' Theorem and Lemma 2.2 imply the following.

Corollary 8.3. $\quad m_{3}(G)=1$.

Our next task is to show $m_{2}(G)=1$. Let $K M_{24}$ be the subgroup N of Conway's paper [8], $K=O_{2}(N)$ elementary abelian of order 2^{12}. Let $\left\{v_{1}, \ldots, v_{24}\right\}$ be an orthonormal basis for \mathbb{R}^{24} and let Λ be the Leech lattice. Take $G=.2$ as the subgroup of .0 fixing the vector $b=\sum a_{i} v_{i}$, where $\left\{i \mid a_{i} \neq 0\right\}=C$ is an octad and $a_{i}=2$, all $i \in C$.

Lemma 8.4. . 442 is a split extension of a normal extra special group of order 2^{3} by A_{7}.

Proof. .4 is isomorphic to the split extension $E_{211} M_{23}$, the subgroup of N fixing the vector $-8 v_{i}$ of type 4. Our lattice vector $v=\sum a_{k} v_{l c}$ of type 2 , along with the origin and $-8 v_{i}$ forms a triangle of type 442 .

Now, $C=\left\{k \mid a_{k} \neq 0\right\}$ is an octad. We argue that $L=.442 \cap O_{2}(.4)$ is elementary abelian of order 32. The transformations in L are the ϵ_{S}, where S is a \mathscr{C}-set disjoint from C. There are 32 such $S: 30$ octads, the 16 -set complementing C, and the empty set. Thus, $L \cong E_{2^{5}}$.

By our choice of triangle, we see that $.442 / L$ induces permutations of $\left\{\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{24}\right\rangle\right\}$ fixing v_{i} and those $\left\langle v_{k}\right\rangle$ with $k \in C$. By inspecting the stabilizer of an octad in M_{24}, we get that $.442 / L$ is the split extension $E_{2^{4}} A_{7}$. By inspecting the structure of N, we see that .442 is a split extension $L H$, where $H \subset M_{23}$. Since the subgroup of M_{24} stabilizing each of the 30 actads disjoint from C is trivial, H acts faithfully on L. Since H induces A_{7} on $L\left\langle\left\langle\epsilon_{\Omega+C}\right\rangle\right.$, the action of $O_{2}(H)$ on L makes $L \cdot O_{2}(H)$ extra-special with $\left\langle\epsilon_{\Omega+C}\right\rangle=\mathbb{Z}\left(L O_{2}(H)\right)$. This proves the lemma.

Set $z=\epsilon_{\Omega+C}$. According to [8], $F=C_{G}(z)$ has order $2^{18} 3^{4} 5 \cdot 7$. Let B be the copy of .442 mentioned in the proof of Lemma 8.4, and set $Y=$ $L O_{2}(H)=O_{2}(B)$. Also, set $X_{1}=L, X_{2}=O_{2}(H)\langle z\rangle$. We have $X_{k} \triangleleft B$, $\left|X_{k}\right|=2^{5}, k=1,2$. Finally, let D be a subgroup of H isomorphic to A_{7}; D complements Y in B. Since D is contained in the "standard" copy of M_{23} in N, the involutions of D have eigenvalues $\{$ sixteen +1 , eight -1$\}$ in the 24 -dimensional representation. Since $X_{2} \cap I I$ is also containcd in M_{23}, a group with one conjugacy class of involutions, the involutions of $X_{2} \cap H$ have the same set of eigenvalues as those of D. Now a look at the class list [9] shows that the involutions of D and those of $X_{2} \cap H$ fuse in G.

Lemma 8.5. The sublattice Λ_{1} of Λ consisting of vectors fixed by z is fixed pointwise by Y. Also $Y \triangleleft F$ and $F / Y \cong \operatorname{Sp}(6,2)$.

Proof. Λ_{1} consists of all $\sum b_{k} v_{k} \in \Lambda$ for which $b_{k} \neq 0$ implies $k \in C$. The first statcment is now clcar from the way N acts on Λ. There are 240 vectors of type 2 in Λ_{1}, and it is straightforward to select eight of them whose inner product matrix identifies Λ_{1} as a lattice of type E_{8}. Note that D acts faithfully on Λ_{1}. Let F_{1} be the subgroup of F which acts trivially on Λ_{1} and
set $\bar{F}=F / F_{1} ; \bar{F}$ contains a copy of A_{7}, with index dividing $2^{6} 3^{2}$. The Frattini argument would produce an element of ordér 21 in G, and a contradiction, if any 3 -element were to act trivially on Λ_{1}. So F_{1} is a 2 -group. Similarly, \bar{F} must be simple. Let $|\bar{F}|=\left|A_{7}\right| 2^{n} 3^{2}$. Since an element of order 7 in G has centralizer order $2^{3} .7, D$ acts on $N_{F_{1}}(Y) / Y$ in such a way that an element of order 7 is fixed point free. So, $n=0$ or 6 . But $n=0$ is out by simplicity of \bar{F}. Thus, $|\bar{F}|=2^{9} 3^{45.7}=|\operatorname{Sp}(6,2)|$. Since the action of F on Λ_{1} stabilizes v, \bar{F} is identified as a subgroup of $\operatorname{Sp}(6,2)$, the commutator subgroup of the Weyl group of E_{7}. The lemma is proven.

Lemma 8.6. $1 \rightarrow\langle z\rangle \rightarrow X_{i} \rightarrow X_{i} \mid\langle z\rangle \rightarrow 1$ is a split extension of $\mathbb{F}_{2} D$ modules, $i=1,2$.

Proof. We consider extensions

$$
\text { (*) }^{*} 1 \rightarrow Y_{i} \rightarrow E \rightarrow T \rightarrow 1
$$

of the module Y_{i} dual to $X_{i} \mid\langle z\rangle$, where T is the one-dimensional trivial $\mathbb{F}_{2} D$ module, and where E is dual to X_{i}. By taking annihilators, we get a one-to-one correspondence between subgroups of Y and those of E which inverts the lattice of submodules. To prove the lemma, it sufficies to show that $\left({ }^{*}\right)$ is split.

Any Sylow 3-subgroup P of D must act fixed-point-freely on Y_{i}, hence P fixes a unique element v of $E \backslash Y_{i}$. Choose x, y in P so that $\langle x\rangle \cap\langle y\rangle=1$ and x, y each act fixed point freely on Y_{i}. The only element of $E \backslash Y_{i}$ fixed by either x or y is v, and the same is true for any Sylow 3-subgroup of D containing either x or y. Since D is generated by all such Sylow 3-subgroups, it follows that D fixes $\langle v\rangle$, and so the extension splits.

Remark. This "generation" argument closely resembles ideas in [1]. This Lemma actually shows that $H^{1}\left(A_{7}, Y_{i}\right)=\operatorname{Ext}_{\mathrm{F}_{2} A_{7}}\left(\mathbb{F}_{2}, Y_{i}\right)=0$.

Notation: write $X_{i}=X_{i 0} \oplus\langle z\rangle$ as Λ_{7}-modulcs, $i=1,2$. In previous notation, we have $X_{2} \cap H=X_{20}$.

Lemma 8.7. Let V be the irreducible $\mathbb{F}_{2} \bar{F}$-module Y / Y^{\prime} of order 2^{8}. Then any extension $1 \rightarrow V \rightarrow W \rightarrow T \rightarrow 1$ of V by a trivial $\mathbb{F}_{2} \bar{F}$-module T is split. Also, any extension $1 \rightarrow T \rightarrow W_{0} \rightarrow V \rightarrow 1$ is split.

Proof. The group D is isomorphically contained in \bar{F}. Hence, \bar{F} contains an element of order 3 acting fixed point freely on V, because V is isomorphic to $X_{1} \mid\langle z\rangle \oplus X_{2} /\langle z\rangle$ as $\mathbb{F}_{2} D$-modules. By looking at the extension associated with the module dual to W, a generation argument as in the last lemma will imply the splitting. We omit details. The second assertion follows from the first, since V is a self-dual module.

Lemma 8.8. In the (unique) nonsplit central extension \hat{S} of $S=S p(6,2)$ by \mathbb{Z}_{2}, there is an involution in S represented by an element of order four in \hat{S}. Any subgroup of S isomorphic to A_{7} contains such an involution.

Proof. Consider the 7-dimensional rational representation of S which comes from identifying S as the commutator subgroup of the Weyl group E_{7}. The embeds S in the real orthogonal group $S O(7, \mathbb{R})$. The latter group has the property that an involution having -1 as an eigenvalue k times is represented in $\operatorname{Spin}(7, \mathbb{R})$ by an element of order fout if and only if $k \equiv 2(\bmod 4)$ [7].

Any subgroup of S isomorphic to A_{7} must have an irreducible constituents of dimension 1 and 6 , and the trace of an involution in A_{7} on the 7-dimensional space is $3=2(-1)+5(1)$. Thus, the preimages of A_{7} and S in $\operatorname{Spin}(7, \mathbb{R})$ are not split extensions of those groups by the center of $\operatorname{Spin}(7, \mathbb{R})$ 。 Since $m(S)=2$, this extension is unique up to isomorphism, and the parts of the Lemma follow.

Lemma 8.9. F/Y acts transitively on the nontrivial cosets of $Y^{\prime \prime}$ in Y which contain involutions.

Proof. Since $Y \cong D_{8} \circ D_{8} \circ D_{8} \circ D_{8}$, there are 135 such cosets. The stabilizer of one of these in $\operatorname{Out}(Y) \cong O^{+}(8,2)$ is isomorphic to $E_{2^{6}} \cdot O^{+}(6,2) \cong$ $E_{26} \cdot \Sigma_{8}$. We have $A_{7} \cong D \subset F$, and D acts on $X_{i} \subset Y, i=1,2$. The stabilizer in D of $x Y^{\prime}$, for $x \in X_{i^{*}}$, is isomorphic to $G L(3,2)$. Therefore, the stabilizer L of $x Y^{\prime}$ in F / Y has index dividing $|S p(6,2)| /|G L(3,2)|=$ $\left(2^{93} 3^{4} 5.7 / 2^{33} .7\right)=2^{6} 3^{35}$. Now, all subgroups of order 5 in F / Y are conjugate. If we take an element h of order 5 in $D Y / Y$, we see that h acts fixed point freely on X_{1} and X_{2}. Thus, 5 divides $|F| Y: L \mid$. If $|L|$ were divisible by 3^{32}, then, since $L / O_{2}(L)$ contains a subgroup isomorphic to $C L(3,2)$ (a maximal subgroup of A_{7}) and since $L / O_{2}(L)$ is isomorphic to a subgroup of Σ_{8}, we would have a contradiction. Thus, 5 and 3^{3} divide $|F / Y: L|$, and so $|F| Y: L \mid=3^{35}=135$.

Now, we consider a central extension \tilde{G} of G by $A \cong \mathbb{Z}_{2}$ and consider the extensions induced on subgroups. To get $m_{2}(G)=1$, it suffices to show \tilde{F} splits.

Lemma 8.10. \tilde{Y} splits over A.
Proof. Since F is perfect, the preimage of $\mathbb{Z}(F)=Y^{\prime}$ in F is $\mathbb{Z}(\tilde{F})$. Thus, \tilde{Y} has nilpotence class 2 . Since $\tilde{Y} / \mathbb{Z}(\tilde{Y})$ is elementary, so is $(\tilde{Y})^{\prime}$. Also, $\tilde{X}_{i 0}$ is elementary abelian, $i=1,2$ because D acts transitively on $X_{i 0}^{*}$.

Let α generate A. Suppose $A \subseteq(\tilde{Y})^{\prime}$. Then $(\tilde{Y})^{\prime}$ is a four-group. Also, α must be a product of commutators of the form $\left[\tilde{x}_{1}, \tilde{x}_{2}\right], x_{i} \in X_{i 0}, i=1,2$. Since $\left[\tilde{x}_{1}, \tilde{x}_{2}\right]$ is central in \tilde{F} and D is transitive on $X_{i 0}^{*}$, we may assume that
all the x_{1} accurring in our expression for α are all congruent modulo A. Bilinearity of commutation then implies that we may assume $\alpha=\left[\tilde{x}_{1}, \tilde{x}_{2}\right]=$ $\left(\tilde{x}_{1} \tilde{x}_{2}\right)^{2}$. That is, α has a square root in $\tilde{Y} \backslash(\tilde{Y})^{\prime}$. By the previous lemma, we may conjugate $x_{1} x_{2} Y^{\prime}$ to $x_{1} Y^{\prime}$ in F. Then, $\tilde{x}_{1}^{2}=\alpha$, which contradicts the splitting of $\tilde{X}_{i 0}$ over A. Thus $A \cap(\tilde{Y})^{\prime}=1$. Since $\tilde{Y}=\left\langle\tilde{X}_{1}, \tilde{X}_{2}\right\rangle, \tilde{Y} /(\tilde{Y})^{\prime}$ is elementary abelian, which implies the Lemma.

Lemma 8.11. \tilde{F} splits over A.

Proof. Since \tilde{Y} splits over $A, \tilde{Y} /(\tilde{Y})^{\prime}$ is an extension of the $\bar{F}=F / Y-$ modules Y / Y^{\prime} and A. By Lemma 2.11, this extension of modules is split. We write $\tilde{Y} /(\tilde{Y})^{\prime}=Y_{1} /(\tilde{Y})^{\prime} \oplus A(\tilde{Y})^{\prime} /(\tilde{Y})^{\prime}$, direct sum of F modules. Let $D \cong A_{7}$ be our complement to Y.

By the argument in the proof of the last Lemma, every involution of X_{2} is represented by an involution in \tilde{G}. Since the involutions of X_{20} and D are G-conjugate, every involution of D is represented by an involution in $\tilde{D} \subset \tilde{G}$. Since the unique perfect extension of A_{7} by \mathbb{Z}_{2} has quaternion Sylow 2-subgroups, we get that \tilde{D} splits over A. Since $Y_{1} \triangleleft \tilde{F}$ and $A \cap Y_{1}=1$. Lemma 8.12 tells us that \tilde{F} / Y_{1} splits over $A Y_{1} / Y_{1}$. Thus, $A \nsubseteq(\tilde{F})^{\prime}$, whence F is split over A, as required.

9. Conway's Group . 1

Set $G=.0 ;|G|=2^{22} 3^{9} 5^{4} 7^{2} 11.13 .23$. We first show that $m_{2}(G)=1$. This will imply $m_{2}(.1)=2$.

As in the last section, we consider the subgroup $M=K M_{24}$ of Conway's paper. The only proper M_{24}-submodule of K is $\left\langle\epsilon_{\Omega}\right\rangle=Z(G)$. Let V be the $\mathbb{F}_{2} M_{24}$-module dual to K, and let V_{0} be the unique maximal submodule of V; $\left|V: V_{0}\right|=2$.

Lemma 9.1. Let W be any $\mathbb{F}_{2} M_{y 4}$-module containing V_{u} as a submodule of index 2 with the property that $1 \rightarrow V_{0} \rightarrow W \rightarrow \mathbb{F}_{2} \rightarrow 1$ is a nonsplit extension. Then there is a vector $v \in W \backslash W_{0}$ whose stabilizer is (up to conjugacy) M_{23}.

Proof. Choose an element x in M_{24} of order 23. Since x necessarily acts fixed point freely on the submodule V_{0} of order 2^{11}, there is a unique nonzero vector $v \in W \backslash V_{0}$ fixed by x. The normalizer of $\langle x\rangle$ in M_{24} is a Frobenius group of order 11.23 [39], so we choose $y \in M_{24}$, an element of order 11 normalizing $\langle x\rangle$. Since $\langle x, y\rangle$ is a Frobenius group, $\left|C_{V_{0}}(y)\right|=2$, and so $\left|C_{W}(y)\right|=2^{2}$. Next, the normalizer of $\langle y\rangle$ in M_{24} is a Frohenius group of order 55 . Let u be an element of order 5 normalizing $\langle y\rangle$. Then, u leaves invariant $C_{W}(y)$, and must centralize it. Now, let S be the stabilizer of v in M_{24}. We know that $5 \cdot 11 \cdot 23$ divides $|S|$.

Let Ω be the usual 24 points on which M_{24} acts. Now, $\langle x, y\rangle$ fixes exactly one point of Ω. Let M be the subgroup of M_{21} fixing that point; $M \cong M_{23}$. It follows that $u \in M$, since u fixes each of the two points of Ω fixed by y.

Recall that $|M|=2^{73} 3^{25.7 .11 .23}$. So, $|S \cap M|=2.11 .23 . a$, where a divides 27327 . Since an element of order 11 is selfcentralizing and not conjugate to its inverse in M, the Frattini argument implies that $S \cap M$ is simple. Sylow's theorem implies that $5 a \equiv 1(\bmod 23)$ and $a \equiv 1(\bmod 11)$, whence $a=221+(11 \cdot 23) k-221+253 k$, for some $k \geqslant 0$. If $k=0$, 1 or 2 , a does not divide $|M|$. But $k \geqslant 3$ implies $|M: S \cap M|<8$, (and $k=31$). This gives $M=S \cap M$, or $S \supseteq M$, a maximal subgroup of M_{24}. Since our extension is nonsplit, all of M_{24} may not stabilize v. Therefore, $S=M$. This proves the lemma.

Lemma 9.2. Let $1 \rightarrow V_{0} \rightarrow X \rightarrow T \rightarrow 1$ be an extension of $\mathbb{F}_{2} M_{24}{ }^{-}$ modules, with T a trivial module, having the property that the exiension, when restricted to any proper submodule of T is nonsplit. Then $|T| \leqslant 2$.

Proof. Assume there is such an extension with $|T|>2$. Choose T_{1}, T_{2}, distinct submodules of T, each of dimension 1 . Let X_{1}, X_{2} be the extensions of V_{0} by T_{1}, respectively T_{2}, induced by X. By preceeding arguments and the fact that there is one conjugacy class of subgroups in M_{24} of index 24 , there is a subgroup $M \cong M_{23}$ of M_{24} fixing $t_{1} \in X_{1} \backslash V_{0}$ and $t_{2} \in X_{2} \mid V_{0}$. Let $t_{3}=t_{1} t_{2}$ and set $X_{3}=\left\langle V_{0}, t_{3}\right\rangle$. Choose $y \in M,|y|=11$, and $s \in M_{24},|s|=2$, s normalizing $\langle y\rangle$. Then s inverts y and so $\left[V_{0}, y\right]$. of dimension 10 , is a free $\mathbb{F}_{2}\langle s\rangle$-module. Also, s stabilizes $C_{X_{i}}(y)$, which has dimension 2, for $i=1,2,3$. Let $\langle w\rangle=C_{V_{0}}(y)$. If s were to fix $t_{i}, i=1$ or 2 , then $M_{24}=\langle M, s\rangle$ fixes t_{i} and then X_{i} would split, a contradiction. So, we must have $t_{1}{ }^{s}=t_{1} w$ and $t_{2}{ }^{s}=t_{2} w$. But then, $\left(t_{1} t_{2}\right)^{s}=t_{1} w t_{2} w=t_{1} t_{2}$, which implies the splitting of X_{3}, another contradiction. We conclude that $|T| \leqslant 2$.

Lemina 9.3. Let (*) $1 \rightarrow A \rightarrow L \rightarrow K \rightarrow 1$ be an extension of $\mathbb{F}_{2} M_{24^{-}}$ modules, with A a trivial module. Then, $L \cong K \oplus A$ as $\mathbb{F}_{2} M_{24}$-modules, i.e., the extension splits.

Proof. Let R denote the $\mathbb{F}_{2} M_{24}$-module dual to L. Then we have an exact sequence $1 \rightarrow V \rightarrow R \rightarrow A \rightarrow 1$ of $\mathbb{F}_{2} M_{24}$-modules. By considering the submodule V_{0} of V, we have another exact sequence (${ }^{* *}$) $1 \rightarrow V_{0} \rightarrow X \rightarrow$ $T \rightarrow 1$, with T a trivial module of order $2|A|$. If $\left(^{*}\right)$ were nonsplit, there would be a maximal subgroup A_{0} of $A\left(A_{0}\right.$ is also a submodule) so that the exact sequence with A and L replaced by, respectively, A / A_{0} and L / A_{0} is nonsplit. So, we may assume A has order 2 . Then (${ }^{* *}$) satisfies the hypotheses of the last lemma, which tells us $|T| \leqslant 2$. This contradiction proves the lemma.

Lemma 9.4. Let \tilde{N} be an extension of N by $A \cong \mathbb{Z}_{2}$. Then \tilde{N} splits.
Proof. Consider the induced extension \tilde{K} of K. Since there is an element of order 23 acting on K, there is also one acting on \widetilde{K}. This easily implies that \widetilde{K} is elementary abelian. By the last lemma, $\widetilde{K}=K_{0} \oplus A$, with $K_{0} \cong K$, as M_{24}-modules. So, K / K_{0} is isomorphic to a central extension of M_{24} by $A \cong A K_{0} / K_{0}$, and we get that $A \cap(\tilde{N})^{\prime}=1$, since $m\left(M_{24}\right)=1$. Since N is perfect, \tilde{N} splits.

Corollary 3.5. $\quad m_{2}(G)=1$.
Proof. Use Lemma 9.4, $|N|_{2}=|G|_{2}$, and Gaschütz' theorem.
It remains to show $m_{p}(G)=1$, for odd primes p. Since

$$
|G|=2^{223^{9} 5^{4} 7^{2} 11.13 .23}
$$

this is trivial for $p=11,13,23$.
Lemma 9.6. $\quad m_{7}(G)=1$.
Proof. From the list of centralizer orders, there are two conjugacy classes of elements of order 7 , represented by, say, x and y with $\left|C_{G}(x)\right|=$ $2^{4} 3^{25.7^{2}}$ and $\left|C_{G}(y)\right|=2^{43.7^{2}}$. So, the Sylow 7 -subgroup is elementary abelian. We may assume x and y commute. If $\overline{C(x)}=C(x) \mid\langle x\rangle$ had a normal 7-complement, the Frattini argument and the Schur-Zassenhaus Theorem would imply that the image \bar{y} of y normalizes, hence centralizes, a Sylow 3-subgroup of $\overline{C(x)}$. But 3^{2} does not divide the order of $C(y)$, contradiction. Therefore, there is a 7^{\prime}-element u of $C(x)$ with \bar{u} normalizing but not centralizing $\langle\bar{y}\rangle$. By an easy exercise, $\langle x, y, u\rangle$ has trivial multiplier. Since this subgroup contains a Sylow 7 -subgroup of $G, m_{7}(G)=1$ follows.

Lemma 9.7. $\quad m_{5}(G)=1$.
Proof. Consider the subgroup $.533 \cong U_{3}(5)$ of G. Its Sylow 5-subgroup has the form $P Q$, where $P=O_{5}(P Q)$ is a nonabelian group of order 5^{3}, exponent 5 , and Q is cyclic of order 8 with the involution of Q inverting P / P^{\prime}. Now, $m_{5}(P Q)=1$ [19]. Let S be a Sylow 5 -subgroup of G containing P; $|S|=5^{4}$. Set $H=\langle P Q, S\rangle$. Let \tilde{H} be a central extension of H by $A \cong \mathbb{Z}_{5}$. By the above, $A \cap(\tilde{P})^{\prime}=1$. Since the involution t of Q inverts P / P^{\prime}, we get $\tilde{P}=R \times A$, where $R=[\tilde{P}, t]$. Since the actions of t and S on P / P^{\prime} must commute, \tilde{S} normalizes R. Thus, \tilde{H} / R is isomorphic to a central extension of H / P by A. Since H / P has cyclic Sylow 5 -subgroups, we get $A \cap(\widetilde{H})^{\prime}=1$. This implies $m_{5}(H)=1$, and so $m_{5}(G)=1$.

Lemma 9.8. $\quad m_{3}(G)=1$.

Proof. Let Z be a Sylow 3-center of G. By the table of centralizer orders, $\left|N_{C}(Z)\right|=2^{939} 5$. Using the containment $.2 \subset G$, it is not difficult (see Lemma 8.1) to see that $N_{G}(Z)=P K \times B$, where $B=\mathbb{Z}(G), P=O_{3}\left(C_{G}(Z)\right)$ is extra special of order 3^{5}, exponent 5 , and $K \cap C_{G}(Z)=K^{\prime} \cong \operatorname{Sp}(4,3)$, and K complements P in $P K$. But the argument of Lemma 8.2 goes through here without change to give $m_{3}\left(N_{G}(Z)\right)=1$. Thus $m_{3}(G)=1$.

This completes the proof that $m(G)=1$ and $m(.1)=2$.

Assumed Results

Most of these may be found in [17] or [24]; if not, a source is noted. Fundamental results about multipliers and covering groups are nicely presented in [24].
(1) (Gaschiitz' Theorem). If G is a finite group, H a subgronp, M a finite G-module and $(|M|,|G: H|)=1$, then an extension of G by M splits if the restriction to H is a split extension.
(2) ("Transfer Lemma"). If P is a Sylow p-subgroup of G, x a p-element in $Z(G)$, then $x \notin P^{\prime}$ implies $x \notin G^{\prime}$.
(3) (Fitting's Lemma). If A is a group of automorphisms of the finite abelian group M and $(|M|,|A|)=1$, then $M=C_{M}(A) \times[M, A]$.
(4) An automorphism of order prime to p on P, a p-group, is nontrivial if and only if the induced automorphism of $P / \Phi(P)$ is nontrivial.
(5) The terms G_{i} of the lower central series of G satisfy $\left[G_{i}, G_{j}\right] \leqslant G_{i+j}$.
(6) (Cartan-Eilenberg). For $H \leqslant G$, the restriction map $H^{n}(G, M) \rightarrow$ $H^{n}(H, M)$, where $p \nmid|G: H|$, induces a monomorphism of the p-primary parts of the cohomology groups. The image is the set of clements of $H^{n}(H, M)$ stable with respect to $G[4$, Chap. XII].
(7) If a Sylow p-subgroup P of G is elementary abelian of order p^{2}, then $p \nmid m(G)$ if the normalizer of P effects a transtormation on P of determinant not 1. (This follows from [24, p. 644].)
(8) All covering groups of a perfect group are isomorphic [24, 30].
(9) An automorphism α of a perfect group can be lifted to an auto morphism of the covering group.

Proof. (Alperin) Let $1 \rightarrow R \rightarrow F \stackrel{\pi}{\rightarrow} G \rightarrow 1$ be a free presentation of the perfect group G. Say the free generators x_{i} of F map to g_{i}, $i=1, \ldots, n$, a set of generators for G. Suppose $g_{i}{ }^{\alpha}=h_{i}$. Write \dot{h}_{i} as a word $w_{i}\left(g_{1}, \ldots, g_{n}\right)$ in the g_{j}. Define an endomorphism $\beta: F \rightarrow F$
by $x_{i}{ }^{\beta}=w_{i}\left(x_{1}, \ldots, x_{n}\right)$. Then $\beta \pi=\pi \alpha$. Now, β maps R into itself because if a word $v=v\left(x_{1}, \ldots, x_{n}\right)$ lies in $R, v^{\beta}=v\left(x_{1}{ }^{\beta}, \ldots, x_{n}{ }^{\beta}\right)$ goes under π to $v\left(x_{1}^{\beta \pi}, \ldots, x_{n}^{\beta \pi}\right)=v\left(x_{1}^{\pi \alpha}, \ldots, x_{n}^{n \alpha}\right)=v\left(x_{1}^{\pi}, \ldots, x_{n}^{\pi}\right)^{\alpha}=1$ because $v \in R$ means $v^{\pi}=1$.

Since $G=G^{\prime}, R F^{\prime}=F . \beta$ leaves invariant each vertex of the diagram below.

A covering group of G is obtained by taking F / S, where $S /[R, F]$ is a complement to $R \cap F^{\prime} /[R, F]$ in $R /[R, F]$. In our case, taking incidence implies $F / S \cong F^{\prime} /[R, F]$ and β induces α on $F^{\prime} / R \cap F^{\prime} \cong$ F / R. We claim the endomorphism β^{*} induced by β is an automorphism of $E=F^{\prime} /[R, F]$. Clearly the product of the image of β^{*} on E with $R \cap F^{\prime} /[R, F]$ is E. But since $R \cap F^{\prime} /[R, F]$ is central, it lies in the Frattini subgroup of E. Hence β^{*} is onto and so an isomorphism.
(10) If $K / A \cong G, A \leqslant Z(K) \cap K^{\prime}$, then there is a covering group H of G with quotient isomorphic to $K[24,30]$.
(11) If $H \triangleleft G, H=H^{\prime}$, and $m_{p}(G / H)=1$, then $m_{p}(H)=1$ implies $m_{p}(G)=1$.

Proof. Take \tilde{G}, a central extension of G by a p-group A. Then $\tilde{H}=\tilde{H}^{\prime} \times A \cong H \times A$ and each factor is normal in G. Let $G^{*}=$ $\dot{G} \mid \tilde{H}^{\prime}$, a central extension of $G \mid H$. If $A^{*}=A \tilde{H}^{\prime} \mid \tilde{H}^{\prime}, m_{p}(G \mid H)=1$ implies $A \cap G^{* \prime}=1$. As \tilde{G} is arbitrary, we get $m_{p}(G)=1$ by (10).
(12) If $K / A=G, A \leqslant Z(K) \cap K^{\prime}$ and the ordinary representations of K over an algebraically closed field k of characteristic $p>0$ lift the projective representations of G over k, then $A \cong M(C) / M_{p}(G)$ (e.g., 3.2 of [35]).
(13) $[x y, z]=[x, z]^{y}[y, z],[x, y z]=[x, z][x, y]^{z}$.
(14) Let A, B be subgroups of G. Suppose $[A, B]$ centralizes A and B. Then $\left[a a^{\prime}, b\right]=[a, b]\left[a^{\prime}, b\right]$ and $\left[a, b b^{\prime}\right]=\left[a, b^{\prime}\right][a, b], a, a^{\prime} \in A$, $b, b^{\prime} \in B$. (We say here that $[$,$] is "biadditive" or "bimultiplicative.")$

References

1. J. Alperin and D. Gorenstein, A vanishing theorem for cohomology,
2. J. L. Alperin and D. Gorenstein, The multiplicators of certain simple groups, Proc. Amer. Math. Soc. 17 (1966), 515-519.
3. N. Bourbaki, "Groupes et Algèbres de Lie," Hermann, Paris, 1968.
4. H. Cartan and S. Eilenberg, "Homological Algebra," Princeton University Press, Princeton, 1956.
5. R. Canter, Simple groups and simple Lie algcbras, J. London Math. Soc. 40 (1965), 193-240.
6. C. Chevalley, Sur certains groupes simples, Tohoku Math. J. 7 (1955), 14-66.
7. C. Chevalley, "The Algebraic Theory of Spinors," Columbia University Press, New York, 1954.
8. J. Conway, A group of order $8,315,553,613,086,720,000$, J. London Math. Soc. 1 (1969), 79-88.
9. J. Conway, M. Guy, and N. Patterson, The character table and conjugacy classes of $.0, .2$, and Suz , (unpublished).
10. J. Conway and D. Wales, Construction of the Rudvalis group of order $145,926,144,000$, to appear.
11. J. Dieudonné, "La Géométrie des Groupes Classiques," Springer-Verlag, Berlin, 1963.
12. D. Fendel, A characterization of Conway's group .3, Bull. Amer. Math. Soc. 76 (1970), 1024.
13. B. Fischer, A note concerning $\{3,4\}$-transposition groups, unpublished.
14. B. Fischer, Finite groups generated by 3 -transpositions, to appear.
15. B. Fischer, Lecture, Bielefeld, November 1973.
16. B. Fischer, Subgroups of ${ }^{2} E_{6}(2)$ generated by 3 -transpositions, to appear.
17. D. Gorenstein, "Finite Groups," Harper and Row, New York, 1968.
18. R. Griess, On the subgroup structure of the group of order $2^{16} 3^{20} 5^{9} 7^{6} 11^{2} 13^{3} 17$. 19.23.29.31.41.47.59.71, in preparation.
19. R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc. 183 (1973), 355-421.
20. R. Griess, Schur multipliers of the known finite simple groups, Bull. Amer, Math. Soc. 78 (1972), 68-71.
21. K. Harada, unpublished.
22. D. Hzld, The simple groups related to M_{24}, J. Algebra 13 (1969), 253-296.
23. D. Hunt, Character tables of certain finite simple groups, Bull. Austr. Moth. Soc. 5 (1971), 1-42.
24. B. Huppert, "Endliche Gruppen I," Springer-Veriag, Berlin, 1967.
25. J. Lindsey, On a six-dimensional projective representation of $P S U(4,3)$, Pacific J. Math. 36 (1971), 407-425.
26. J. Lindsey, On the Suzuki and Conway groups, Bull. Amer. Math. Soc. 76 (1970), 1088.
27. M. O'Nan, Some evidence for the existence of a new simple group, to appear.
28. R. Ree, A family of simple groups associated with the simple Lie algebra of type (F_{4}), Amer. J. Math. 83 (1961), 401-420; A family of simple groups associated with the simple Lie algebra of type (G_{2}), Amer. J. Math. 83 (1961), 432-462.
29. A. Rudvalis, unpublished.
30. I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50; 132 (1907), 85-137.
31. I. Schur, Über die Darstellung der symmetrischen und der alternienden Gruppe gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
32. R. Steinberg, Générateurs, relations, et revêtements de groupes algébriques, in "Colloque sur la Théorie des Groupes Algébriques," pp. 113-127, Bruxelles, 1961.
33. R. Sternberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56.
34. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875-891.
35. R. Steinberg, "Lectures on Chevalley Groups," Yale University Notes, 1967.
36. M. Suzuki, A simple group of order $448,345,497,600$, from R. Brauer and C. H. Sah, ''Theory of Finite Groups," Benjamin, New York, 1969.
37. J. Thompson, unpublished.
38. J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.
39. J. Todd, A representation of the Mathieu group M_{24} as a collineation group, Ann. Mat. 71 (1966), 199-238.
40. D. Wales and J. McKay, The multiplier of the Higman-Sims simple group, Bull. London Math. Soc. 3 (1971), 283-285.
41. D. Wales and J. McKay, The multipliers of the Janko groups, J. Algebra 17 (1971), 262-272.
42. H. N. Ward, On the triviality of primary parts of the Schur multiplier, J. Algebra 10 (1968), 377-382.
43. K. Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 147-195.
