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1. InTRODUCTION

For G = G(g), a Chevalley group defined over the field [, of characteristic
p, let I(G, p) be the smallest integer ¢ > 1 such that G has a projective
irreducible representation of degree ¢ over a field of characteristic other than
p. In this paper we present lower bounds for the numbers (G, p). As a
corollary we determine those Chevalley groups having an irreducible complex
character of prime degree. Recently there have been a number of results
making use of lower bounds on the degrees of representations of Chevalley
groups. See for example Curtis, Kantor, and Seitz [4], Hering [9], and
Patton [11]. Also in Fong and Seitz [7] such bounds played an important role,
although there the representations considered were over fields of characteristicp.

For most types of Chevalley groups and for most primes p it is not difficult
to obtain reasonable lower bounds for the complex irreducible characters of
G = G(g), using the existence of certain p-subgroups of G resembling
extraspecial groups. Indeed this was carried out in Landazuri [10]. However
to be complete we must take into certain problems that occur with fields of
characteristic 2 and 3. Also, since we are considering projective irreducible
representations the groups with exceptional Schur multipliers present some
difficulties. There is also the problem of deciding whether or not a lower
bound is “good.” In some cases our bounds are actually attained and there is
no problem in this regard. Otherwise let {G(¢)} be a family of Chevalley
groups of given type and with ¢ ranging over suitable prime powers. Then our
bounds will be in the form of a polynomial in ¢. In Curtis, Iwahori, and
Kilmoyer [3] there is a list of certain character degrees for the family {G(q)}
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which are also polynomials in g. For most cases the degree of the polynomial
(G(q), p) will equal that of one of the polynomials in [3]. We were also
guided by the needs of Hering [9] in obtaining our bounds, as he uses the
results in this paper.

Throughout the paper we use the term Chevalley group to mean a group
(of normal or twisted type), G = G{g), generated by its root subgroups and
having trivial center. Once we have a bound {(G, ¢) we will also have the same
bound for all groups of Chevalley type G such that G < G/Z(G) < Aut(G)
as long as we only consider representations not having G’ in the kernel, where
GIZ(G) = G.

Tueorem. If G = G(g) is a Chevalley group ithen a lower bound for I{G, p)

is given in the following table.

G(g) Bound

Exceptions

PSL(Z, 9) {Udg—1,d=(2,9—1)

PSL(n, g),n > 2 grt—1

PSp(2n, @l > 2 gt — Dg — D),

geven

iq(q"‘1 — Dfig + 1),

%%(q" — 1),g0dd

#n odd
(g™ — D/(g + 1), neven
(¢t — D(g"* + 1),
g+2,35
gt —D,q=2,3,0r5
(v + D@2 -1

PSUm, g),n > 3

PSO(2n, ¢),n > 4

PSO~(2n,qY,n > 4

PSOQ2n + 1,q), gV g > 5
n > 3 and ¢q odd g™t —1D,g=30r5

YORCY @@ — 1
EAq) ¢%g* — 1)
Ed @ — 1)

g'(¢®* — 1), g odd
F@ {%q’(f — (g — 1),

g even

*Ey(g) et -+ D(g* — 1)
Gy gg® — 1}
D) @@ — D
2F) @2Feg— 1
Sz(q) (g/2)/*(g — 1}
Gy aglg — 1)

PSL(2,4),2) = 2,
I(PSL(2,9), 3) = 3
;l(PSL(& 2,2 =2,
| (PSL(3,4),2) = 4
gl(PSP(f:s 2y,2y =12,
1 (PSP(6,2),2) =7

§Z(PSU<4, 2,2 = 4,
I(PSU®4, 3),3) = 6

{PSC*(8,2),2) = 8

KPSO(T,3Y,3) > 27

I(F(2),2) > 44

CE(2,2) »3-2°
KGy3),3) > 14

{S=(8),2) > &
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CororLArY. Let G(q) be a Chevalley group and suppose that G(q) has a
complex trreducible character y such that (1) is prime. Then one of the following
holds:

(2) Glg) = PSL(2,q) and x(1) = ¢, }(¢ £ 1), or ¢ - 1,
(b) G(g) = PSL(n,2) and x(1) = 2»1 — 1,

(¢) Glg) = PSL(n, q) and x(1) = ¢" — 1/g — |,

(d) G(q) = PSp(2n, g), q odd, and x(1) = ¥g" £ 1),

(e) G(q) = PSp(6,2) and x(1) =T,

(f) Glg) = PSU(n, q), n odd, and x(1) = ¢" + 1/g + 1,
(8) Glg) = PSUB, 2), x(1) = 2,

(h) Glg) = PSU@4,2), x(1) = 5.

Proof. We illustrate the idea as follows. Suppose G(g) = PSp(2n, q)
with ¢ odd. Then #(g™ — 1) < (1) [ | G(¢)] and | G(g)| divides

qnz(q2n _ 1)(q2(n—1) - 1) (qz _ 1)
=¢%(" — D@ + (g — D" + 1)~ (g — g+ D).

It follows that y(1)|¢g® — 1 or x(1)|¢® - 1. Write #(1) =¢"— 1 or
iy(1) = ¢ - 1 and obtain 2($(g™ — 1)) << ¢" + 1. As PSp(2, q) =~ PSL(2, q),
we may assume 7z > 2. It follows that £ = 1,2 and since x(1) is prime,
x(1) == (¢” + 1). The other cases are similar. For the exceptional groups
listed in the table it is handy to use the list of finite subgroups of GL(k, C)
for 1 < k <C 7 listed in [5].

We remark that for ¢ odd PSL(n, ¢) has an irreducible character of degree
g* — 1/g — 1 and that PSp(2n, q) does have irreducible characters of degree
$(g" - 1). Also PSp(6, 2) has an irreducible character of degree 7. As in the
Corollary the bounds presented in the theorem can be used to investigate
characters of Chevalley groups having small degree relative to a fixed prime
divisor 7, of | G(¢)|. For example, one could investigate characters of degree
¥+ 1 or 2r.

For most of the exceptions in the table m,(G(q)) % 1 (Schur multlpher)
and the lower bound given is a lower bound for the degree of a projective
representation of G(g) such that p divides the order of the center of the
representation group. The lower bounds for PSL(2, q), PSp(2n, ¢) q odd,
PSU(3,q), Sz(g), and 2G,y(g) are known to be best possible, as are the bounds
for the indicated exceptional groups.t

! Note added in proof: The second author has shown that the bounds for PSU(m, q)
are also best possible.
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The outline of the paper is as follows. In Section 2 we present preliminary
results and show how to construct groups resembling extraspecial groups.
This is carried out using properties of root systems. In Section 3 we prove
the theorem for certain families of groups where we make use of large abelian
subgroups of G. Then in Section 4 we handle all the other Chevalley groups
G = G(g) satisfying m,(G) = 1. In this section we make usc of the extra~
special groups as well as other methods. Finally Section 5 treats the finite
number of Chevalley groups having exceptional Schur multipliers.

We assume the reader is familiar with the basic properties of Chevalley
groups and root systems. At certain times we need detailed information on the
structure of certain parabolic subgroups. This information either follows
easily from the commutator relations or can be found in [4] or [7].

If G = G(g) is a Chevalley group defined over F, , then associated with G
is a root system 4. Let B be a Borel subgroup of G, and U = O,(B). Then
B = UH with H an abelian p'-group. The Weyl group W = N/H is a group
generated by reflections s ,..., 5, and W acts on the root system 4. Where
there is no problem with coset representatives we will consider s, ,..., 5, as
elements in G. Let w, be the element of 7 having greatest length as a word in
5 5e.y §5, - Next choose a fundamental system of positive roots oy ..., a, of 4,
and define Uy, = U Ures., If red and (a)w = r for some we W, we
write U, == (U, )?. Then U, is well-defined and is the root subgroup of &
associated with the root . For convenience we will write U i =1U,, .

2. PRELIMINARIES

Lemma 2.1, Let G be a perfect group, F a field and suppose that [(F) is the
smallest integer £ > 1 such that G has a projective irreducible F-representation of
degree t. If F < K, thenl(F) = I(K).

Proof. Suppose V is a representation space of degree [(F) of an irreducible
projective representation of G. Then there is central extension G of G such
that G acts irreducibly on V. K ®; V is a representation module of degree
I(F) for G over K. If W is an irreducible submodule of K &@; V then
dim(W) > 1. For suppose dim(W) = 1. Then G’ acts trivially on W and it
follows that G is trivial on a subspace of V. As ¥V is irreducible, G’ is trivial
on ¥ and dim(V') = 1, a contradiction. We now have I{F} > dim(W)} = (X},
proving the lemma.

Lemma 2.1 shows that in considering minimal degrees of projective
irreducible representations we may assume that the field is algebraicaily
closed.

Levmva 2.2, Let V be an n-dimensional vector space over a field F, , g = p°.

481/32[2-12
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Let F be an algebraically closed field of characteristic other than p. If ¢ 15 a
nontrivial linear character of V over F, then ker(p) contains a unique hyperplane
of V.

Proof. If V,is a hyperplane in V then there are precisely ¢ — 1 nontrivial
linear characters ¢ of ¥ having V, < ker(p). There are (¢® — 1)/(g — 1)
hyperplanes in ¥ and no nontrivial linear character of ¥ can have two distinct
hyperplanes in its kernel. So there are ¢ — 1 nontrivial linear characters ¢ of
V having a unique hyperplane in ker(gp). As | V'{ = ¢”, this proves the lemma.

DErFINITION. A p-group Q is of extraspecial-type if 1 << Z(Q) =0 = D(Q)
and Z(Q/Qy) = Z(Q)]Qy Whenever 1 < 0y < Z(0).

Remarks.
(1) O is of extraspecial type if and only if 1 < Z(Q) = Q" = () and
[&, O] = Z(Q) forallg e Q — Z(Q).
(2) IfQ is of extraspecial type, then Z(Q) is elementary.

Lemma 2.3, Suppose Q is of extraspecial-type, | Q | = p™+° and
| Z(Q) = p*. If F is algebraically closed and charF = 0 or (charF, ¢) =1,
then Q has exactly p™ linear characters over F and p* — 1 nonlinear irreducible
characters over F. Moreover r is even, each nonlinear irreducible character y has

degree p™12, and y vanishes off Z(Q).

Proof. Suppose y is a nonlinear irreducible character of Q over F. As
Z(Q) is elementary Q, = Z(Q) N ker x has index p in Z(Q). We consider y
as an irreducible character of the extraspecial group O = Q/Q,. Let
£€0 — Z(Q). There exists an % € Q such that [, 4] # 1. Since [, £] € Z(0),
x(8) = x(&") = x(2[g, K]) = « - x(g) where 1  weF. Thus x(¢) = 0 and x
vanishes on Q — Z(Q). We then have

Pt =101= -Za X = % 1@ = px(1)%

£eZ(0)

and y(1) = p*/2. As y is determined by its action on Z(Q), the lemma follows.

Next we indicate a general procedure for finding a p-group Q of extraspecial
type in Chevalley groups defined over fields of characteristic p. These sub-
groups have the form O,(P) for P a suitable parabolic subgroup of G.

Let G = G(g) be a Chevalley group defined over [, generated by its root
subgroups and such that Z(G) = 1. Let W be the Weyl group of G and 4 the
associated root system. (We exclude G = 2F,(g) or PSU(n, q), n odd.)

Let 7 be the root of highest height in 4, and let w,: x — x — 2[(x, r)/(r, ¥)}r.
We define

R@r) = {sed*: ws) +* s}.
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Lemma 2.4 (Lemma 1, Section 2 of [107).
(1) reR(r).
2y Ifs,teR(r)and s + ted*, thens -+ t € R(r).

(3) For each r # s R(r), there exisis a umique tc R(r) such thai
s+ teR(r). Forthist,s +t =v.

Proof. (1) follows from w,(r) = —r. Let s€ 47. Then

w0,(5) = s — 2[(s, )tr, I
and seR(r) if and only if (5,7) £ 0. Moreover if 7 s se R{r), then
0 == 2(s, r)/(r,7)] = p — q where p,q satisy s — pr,...s, .., s+ gr are
roots and s — (p -+ 1), s + (¢ + 1)r are not roots. Since 7 is of highest
height, ¢ = 0. i p > 2, then s — 2r e 4~ and 2 — s € 4+. This contradicts
the fact that 7 has highest height. Therefore p = 1. So for se R(r),
w,{s) = s —rand r — se 4+, Also if {a, ,..., &} is a fundamental system of
roots of 4, then oy € R(r) if and only if 2[{w, , 7)/(r, )] = 1.
Lets,2eR@)and s +2ed™. Thenw s + &) = (s —r) + (t — ) =
(s F 1) — 2r # s+ t. Thus s 4 t € R(r) and (2) holds.
Suppose ¥ £ s€ R(r), s = > a;;. Then

1= 2[(s, )/, )] = % ail2(e 1)/ 7)]-
As 2a, , #)/(r, ¥) is a non-negative integer there is a unique a; % 0 such that
oy € R(r). For this &, a; = 1.

We now prove (3). Let 7 s~ seR(r). Then r —sed™ and setting
t=7 —swehavete R(r)ands + ¢t = r. Supposes + Ae R(r),t = A€ R(r).
Then r # 5 -+ A, Applying the results of the last paragraph we get a contra-
diction.

Levma 2.5. Let G = G(q) be a Chevalley group of normal type. If the
Dynkin diagram of 4 has a double bond assume (2, g} = 1, and if 4 is of type
G, assume (3,¢) = 1. If | R(z)| =1, then Q = (Ugse R(r)) is of extra-
special-type, | Q| = ¢, and | Z(Q) = q.

Proof. This is an easy consequence of the Chevalley commutator
identities and Lemma 2.4. Indeed Q is the central product of the subgroups
UU,_ U, for r # s € R(r) and each of these is of extraspecial-type and of
order g°.

3. Tue ABrLiaN CASE

Clearly Lemma 2.5 together with Lemma 2.3 can be used to obtain lower
bounds for (G, p) for many Chevalley groups G. Indeed in Section 4
p-groups of extraspecial type will be used as the basis of an inductive procedure
for obtaining lower bounds for {G, p) for certain Chevalley groups G.
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However for some of the classical groups another method gives a better
bound. These groups are handled in this section.

Levmma 3.1, Let G = PSL(n, q) and assume m,(G) = 1. If n = 2, then
UG, p) = (1/d)q — 1), whered = (2,q — 1). If n > 2, then [(G, p) = ¢"* — 1.

Proof. G permutes the 1-dimensional subspaces of an #-dimensional
vector space V over [, . Let P be the stabilizer of a fixed 1-space of V. Then P
is a parabolic subgroup of G. There is a normal elementary subgroup Q of P
with | Q| = g™ Suppose z > 2. Then P contains a subgroup RH|, where
R~ SL(n — 1, q), Hy is cyclic of order ¢ — 1, [R, H] = 1, and RH, acts
faithfully on Q, with Hj inducing scalar multiplication. Also RH is transitive
on Q% If n = 2, then P is Frobenius of order (1/d) ¢(g — 1), d = (2,9 — 1).

Now suppose M is a representation module of a projective irreducible
representation of G over a field F of characteristic O or relatively prime to g¢.
Then there is a perfect central extension G of G such that G acts irreducibly
on M. By hypothesis Z(G) is a p'-subgroup. So if Q/Z(G) =Q, then
0 = Q, X Z(G), where Q, is RH-isomorphic to Q.

By Lemma 2.1 we may assume F is algebraically closed. Clearly Q, is not
contained in the kernel of G on M. So there is some Qy-submodule 3, of M
such that I, affords a nontrivial 1-dimensional representation of Q, . Suppose
n > 2. As RH, is transitive on Q#, the preimage of RH, in G is transitive on
0Oy* and hence transitive on the nontrivial irreducible representations of Qy*
(see [2], Lemma 1). Thus dim(M) > ¢»* — 1. If n = 2, the preimage of P
has 1 or 2 nontrivial orbits on Qy#, of length (1/d}(g — 1), d = (2,¢ — 1).
Hence dim(M) = (1/d)g — 1).

Levma 3.2. Let G = PSp(2n, q) with q even, and suppose my(G) = 1.
Then I(G, p) > 3¢ (g — D(g"* — D).

Proof. Let V be the natural 2z-dimensional vector space over [, for
Sp(2n, g). Then G permutes the 1-spaces of 7 and we let P be the stabilizer
of a fixed 1-space. Then the structure of P is known (e.g., see [4], Section 3).
There is a normal elementary subgroup O of order ¢?*—tand P = Q(R X Hy),
where R ~ Sp(2(n — 1), q), H, is cyclic of order ¢ — 1, and Hj acts fixed-
point-free on Q. Also if 7 is the root of highest height in 4+, then P = Ng(U,),
U, <0, Q is indecomposable under the action of R, and R acts on Q/U, in
the usual way. We also note that G = PSp(2n, q) =~ PSOQ2n + 1, ¢)’, and Q
has a vector space structure on which R acts as SO2z — 1, q), U, is the
radical, and H,, induces scalar action.

We now proceed as in (3.1). Let M be a faithful irreducible representation
module over an algebraically closed field of odd characteristic for a perfect
central extension G of G.
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By hypothesis 0 = Q, x Z(G), U, = U, x Z{G) and Q, is P-isomorphic
to Q. Let Z be an irreducible P-composition factor of M with U, < ker(Z).
Then Z |0, = Z; @ - ® Z;, with the Z;s homogeneous and permuted
transitively by P. Actually Z(G) is represented as scalar multiplication on Z,
so we can consider P as permuting the Z,’s. Let L be the stabilizer of Z; and
L =L|Z(G).

By Lemma 2.2 L stabilizes the unique hyperplane O, of J, contained in
kerg (Zy). Then Qg = Oy X Uy and Oy , U, are L-invariant. Suppose 74 ek,
where 7€ R and /€ H, . Then 7 stabilizes Q; and since R o~ SO(2n — 1, gy,
7 is trivial on Q¢/Q, . Now #h fixes Z; and hence is trivial on Qy/kerg (Zy).
However H, is fixed-point-free on Q, . It follows that e Z(G) and L < R.

With respect to the quadratic form on Qy , 0, > Ujand so Oyt = Uy and
0, is nondegenerate. Then L is contained in a subgroup of SO(2n — 1, ¢)’
isomorphic to O(2n — 2, g). Checking orders we have

|R:L| = "¢ —1) and  |P:L]Z=4g"Hg"* — Dlg— 1
Thus dim{Z) > {¢" g™ — 1)(¢ — 1) and the lemma is proved.

Levma 3.3. Let G = PSO*(2n, q) with n > 4 or PSO(2n + 1, q) with
n > 3 and q odd. Assume that m,(G) = 1.

() If G=PSO*(2n,q) and q # 2,3,5, then

UG, p) =z (¢ — Dig"* + D)
2y If G = PSO*(2n, q)' withq = 2,3, or 5, then
UG, p) = ¢"g*t — 1)
(3) If G = PSO~(2n, q), then (G, p) = (g"~ + D(¢"* ~ 1.
4) If G=PSOQ2n -+ 1,q) and q > 5, then (G, p) = ¢V - 1.
(5) If G =PSOQ2n+1,q) andq=30r 5,then (G, q) = ¢"*g"*-1).

Proof. Let V be the natural orthogonal space corresponding to G and let
P < G be the stabilizer of an isotropic 1-space V; of V. We first describe the
structure of P. The group P contains a normal elementary subgroup Q of
order g%, where [ = dim(V') — 2. Write V = V | I, where ¥, is a hyper-
bolic plane containing V , and decompose Vyas Vi, =V | V,, where V,
is a hyperbolic plane. Then P = QRH,; where R is the subgroup of SO(V)’
that is trivial on ¥V, and that induces the group SO(V,) on Vy, and Hy = (b
is cyclic of order ¢ — 1 and normalizes R. The element / can be described as
follows. % is trivial on ¥, and on both ¥, and V, % induces the matrix (§ J-1)
where (&) = F* and where the matrix is given with respect to fixed hyper-
bolic pairs for V, and V, . Clearly H, is fixed-point-free on V, . Also A% = ik,
where &; € SO(V;), so that R(h®y = R(hyy and [R, (hy»] = 1. The group
H, = (h,> centralizes R and hence induces scalar action on Q. R acts on
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preserving a nondegenerate quadratic form. Finally, suppose ¢ is odd and ¢
is the involution in H, . It is easily seen that either SO(V,)" and SO(V)’ both
have trivial centers or they both have centers of order 2. In the latter case,
the product of the involution in Z(SO(V3)) and ¢ is the involution in
Z(SO(VY"), so that in G = PSO(V), these involutions are the same. So if
Z(SOWY)>1,then | RN H; | = 2.

Let M be a faithful irreducible representation module over an algebraically
closed field of characteristic differentfrom p foraperfect central extension G of G.

Let Z be an irreducible RQ-composition factor of M, such that O, K ker(Z),
where RQ/Z(G) = OR, 0/Z(G) = 0, and 0 = Q, X Z(G). Then Z | Q, =
Z, @ -+ @ Z; where the Z;’s are the distinct homogencous components of 0,
on Z. Let L be the stabilizer in RQ of Z,. Clearly << L, so set L =L/Q < R.
By 2.2 kery (Z,) contains a unique hyperplane Q; of Q, . Thus L stabilizes
O, (here we use the fact that L induces a subgroup of R on Q).

Suppose that rad(Q;) = 0. Then rad(Q,) is an isotropic 1-space of (),
stabilized by L and we can determine the subgroup L of R. We have described
the stabilizer, T, in R of rad(Q,). In particular it follows from that discussion
that T contains a normal subgroup T having index ¢ — 1 in T such that T,
1s trivial on Qp/(rad(Q;))* and T/T, is fixed-point-free on Qg/rad(Q;))*. Now L
fixes Z; , so L is trivial on Qgfkery, (Z;). This implies that L <C 7}, and con-
sequently dim(M) >k =|[R:L| = (¢~ 1)|R:T|.If G = PSO(2n, g,
PSO~(2n, q)', or PSO(2n + 1,q), then (¢ — 1) | R:T| is, respectively
(@ — D2+ 1), (@4 1" —1), or (¢ —1). So we are
done if rad(Q;) 5~ 0.

Now suppose rad(Q,) = 0. Since OR <] P, there is an irreducible P-com-
position factor, Z', M such that Z is RQ-isomorphic to a factor of Z'. Write
210y =2, @ - D Z, , where the Z, are homogencous. We may assume
that Z, is isomorphic to a factor of Z;". Then Q, is the unique hyperplane
of O, contained in kerg (Z;'). Let L, be the stabilizer in P of Z;/, so that
LNnR=L. SetL, =L;/Z(G) and Ly = L, " RH,, where H, is as in the
first paragraph.

We bave Qy =0, | O/, with O;' an anisotropic 1-space. Suppose
rhelLy, with € R and he H,. As h is scalar on Q,, 7 stabilizes O, , and
hence # stabilizes Q;*. Consequently 7 induces 41 on Q,*. However 74 is
trivial on Qy/kerp (Z;'), so rh is trivial on Q;* and % induces 4-1 on Q. Thus
Ly << Ry, where t = 1if 4+ ¢ — 1 and # is the involution in H, otherwise.
Thus dim(M) >m = | P:L| > |RH,:L,| = | RHy: RG)| | R < Ly |

If g is even then t =1, [RHy:R| =g¢g— 1, and Ly < R. In R the
stabilizer of Q, is SO(Q;Y. Since ¢ is even, G = PSO*(2n, ¢), |R| =
gimDn—D(gn-1 I 1)(g2®-2 — 1) -+ (g — 1) and

[ SO0, | = q(n—m?(qz(n—z) — 1) s (¢ — 1)
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Thus dim(M) = (g — Dg™ g™t F 1). So dim{M) = (¢"* F I)}(g" 2% & 1}
unless g = 2 and G = PSO*(2n, ¢). In the last case the bound in (2) holds.
From now on we may assume that ¢ is odd.

Suppose G = PSO*(2n,q). Then R o~ SO+*2(n — 1),4) and | R| =
LD (gn-1_ 1)(g%n2 ~ 1) -+ (g — 1). If 4 | g* — 1, then Z(SO(V)) > 1
and as mentioned earlier | RN H, | = 2. It follows that te R. If 4 1 ¢" — 1,
then 4+ g — 1and | H,|is odd. So in either case e R and L, <{ R. Now L,
acts trivially on Q; and induces a subgroup of SOX(Q,), on O;. Thus
Lo | < 379D — 1) (¢ — 1), and [RGD:Ly| =|R:Ly| =
g ¥g»* — 1). Thus dim{M) = | RHy: R | " %(¢g"* — 1), and | RH,: R| =
g — 1) or H{g — 1), depending on whether 419 — 1 or 4| g — 1. Conse-~
guently the bound in (1) holds if ¢ > 5 and the bound in (2) holds if ¢ < 5.
This proves the lemma for the case G = PSO*H(2x, q).

Next suppose that G = PSO~(2n, q)'. Then R =~ SO~(2(n — 1), g)’ and
|R| = Jgn00-2(gn-t 4 1)(g2n2 — 1) - (g* — 1). If 4]g+ 1, then
Hyl =3¢ —1)isoddand ]l =¢teR If41g+ 1, thenl s5¢andi¢ R
In the first case we proceed as above and get dim(3) = 4{g — 1)g" g™ + 1},
so that the bound in (c) holds. Suppose then that 4 + ¢ + 1, so that R() =
R X (#). Then Ly < R (), where R, is the stabilizer in Rof @) . Let R, < Ry
be the kernel of the action of Ry on Q;*. Then | B, : Ry | = 2, R, is trivial on
Oy%, and R, induces SO(Q,) on O; . Thus

| Ry X <] = 4| Ry| = 22— — 1) - (g — 1).

Also t¢L,, so | Ly X {t>:Ly]| =2. Then dim(M) = | RHy: RGO R < &)
Ry X GOV Ry X (8y:Ly X ] Ly X {tp: Ly | = g - D(E)¢"Hg" ™ - 1)2 =
Hg — Dg* g + 1) = (¢t + 1){g" 2 — 1). Again we have the bound in
(c) holding, proving the lemma for G = PSO~(2x, g)'.

The last case is PSOQ2n 4 1, ¢). Here R >~ SOQ2H—1)+ 1, g)

and .

|R| = (1/2) q(n—nz(qzm—n — 1) (g2 — 1.

Ift=1, then Ly < R and |RH,: R| = (¢ — 1). Then L is trivial on
Oy and induces a subgroup of SO*(2(z — 1), ¢) on ;. Consequently
% Lo | < (%)q(n—l)(n—z)(qn—l F 1)(q2(n—2) — 1) (gz — 1) Therefore dlm(lW) >
Hg — Dg* g™ -+ 1). This gives the bound in (4) unless ¢ = 3 in which
case the bound in (5) holds. Next suppose # 5= 1. Then t¢ R, 49— 1,
RG> = R x (&) and we proceed as in the previous paragraph. Namely
Ly <Ly X (&) < Ry X<t),and | Ry : R, | = 2 where Ry =~ SO+2(n-1), ¢)'.
We obtain dim(M) = Hg — D)($)g"t + 1)2. Since 4 |g— 1, Hg— 1) = 1
and we obtain the bound in (4) or (5). This completes the proof of (3.3).
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4. THE ExTRASPECIAL CASE

In this section we will use groups of extraspecial type together with other
arguments to obtain the required bound for the groups G' = G{g) that have
not yet been considered and that satisfy m,(G) = 1. We first handle the
rank 1 groups.

Lemma 4.1.

(@ If G= PSL(2, g), ¢q#9, then IG,p) = (1/d)g — 1), where
=2 q¢—1).

(b) If G =PSUQG, q),q > 2, then (G, p) = q(qg — 1).

() If G = S52(q), ¢ > 8, then (G, p) = (¢ — 1)(g/2)'*.

(d) If G = 2Gyq), then (G, p) = ¢(¢ — 1)

Proof. Let O be a Sylow p-subgroup of G, so that N(Q) = OH where H
is cyclic. If G = PSL(2, 2) or PSL(2, 3) the result holds. Let G be a perfect
central extension of G and let & act faithfully and irreducibly on a vector
space M over an algebraically closed field of characteristic other than p.
The assumptions on ¢ imply m,(G) = 1, and hence O = Q, x Z(G) where
0, is N(Q)-isomorphic to Q. Write M | Q, = M, @ --- @ M, where the M,’s
are the homogeneous Wedderburn components of O, on M.

If G = PSL(2, g), then Oy is elementary of order g and H has d orbits of
equal size on Qy*, where d = (2,9 — 1). Since Q, is not trivial on M,
k 2= (1/d)(g — 1) and (a) holds.

If G = PSU(3, q), g > 2, then Q is of extraspecial-type of order ¢* and H
is transitive on Z(Q)*. By Lemma 2.3 ¢ £ j implies that M| Z(Q,) and
M; | Z(Q,) are inequivalent. Thus H permutes the M,’s and % > ¢ — 1.
Moreover Lemma 2.3 implies that dim(d4;) > ¢, and dim(M) = ¢(g — 1),
proving (b).

If G = Sz(q) then we use the results in [12], Section 4 to obtain the
structure of Q) =~ Q. We have Q, = Z(0,) = D(Q,) = 2,(Q,). The elements
of O, can be labeled g = g(«, §) where o, BelF, and g(a, B) g(y, 8) =
gla -+ y, oy? + B + 8) where O is the field automorphism x — %7, r = 27,
and ¢ = 2¥+%, Then [g(o, B), £(y, 8)] = g(a, ya¥ — ay®). We claim that if
T < Z(Q) and | Z(Qp): T'| = 2, then Q,/T is the central product of Z, with
an extraspecial group of order ¢. T'o see this it suffices to show that Z(Q,/T)
has order 4. As ¢ is an odd power of 2, Z(Qo/T) > Z(Q,)/T. Suppose
2€Qs—Z(Qp)and gT e Z(Q,/T). We will show that Z(Q,/T) = {gT, Z(Qp)/ T>-
As H is transitive on (Qy/Z(Q,))* we may assume that g = g(1, 0). Then the
above commutator relation implies that T = {g(0, y — y%): v € F,}. Suppose
that « e F,* and g(e, B)T € Z(Qy/T). The same commutator relation shows



FINITE CHEVALLEY GROUPS 429

that for each y €F,, there is a 8 & F, such that ya® — ay? = § — 89, Note
that x¢" = %12, Letting y = o0, we have | — o2 = 8 — §%and o = 1 + «
where xe[F,, 0] = {{— (% (eF}. Then for yeF,, yaf — xy® =
y — 3% L yxl — xy® = § — 89 for some 8. Thus yx? — xyCe[F,, O] for
each y. If x =% 0, then as above x = 1 - y for some y € [F,, €], and hence
1efF,, @] a contradiction. Thus x =0, « = 1, and gle, f)7" = g(L, O)7.
This proves the claim.

We may assume that Z(Q,) is nontrivial on M, . Set 7' = ker z(g (M) and
obtain | Z(Q): T'| = 2. Then it follows from the claim and Lemma 2.3 that
dim{M;) = (g/2)"2. Thus dim(M,) = (g — 1)(¢/2}'/? and {c) holds.

Finally we consider G = 2G,(g). The structure of O is well-known. If
1>3 101 =¢ O =0(0), 10| — ¢, and | Z(Q) — ¢ Abo Q' is
elementary and Q' = Q" x Z(Q) where Q" = Cy(2) and ¢ is the involution
in H. Finally | H| = ¢ — 1, H is fixed-point-free on Q/Q" and on Z(Q), and
H[ty is fixed-point-free on Q". If g = 3, then G o Pri(2, 8), O is metacyclic
of order 3% and the result follows as in (b). So we may suppose ¢ > 3. Let
O = 0y X Z(Q,) X Z(G), where O; = Q", and consider

M (O X Z(Qo) = My @ - © M,

where the M,’s are the distinct homogeneous components of Oy X Z(Q).
Since G acts faithfully on M, there are some M;’s not having Z(0,) in its
kernel. These M,’s are permuted by QH. If O is in the kernel of each of these
M s thenQ; <1 Q, , which is not the case. So there is some M, with neither O,
nor Z(Q,) in its kernel. Let ¢ be the character of O; x Z((Q,) afforded by an
irreducible (Q; X Z(Qg))-submodule of M,. Then ¢ = g,p, where ¢; is
a nontrivial linear character of O; and ¢, is a nontrivial linear character of
Z(Q,)- Suppose ¢ = ¢ where g = wh for xeQ, ke H. Then £ fixes the
character g, of Z(Q,) and so & € Z(G). Thus g € 0. The stabilizer K of 3, in
OH stabilizespand Q' < K < Q. Ifge0 — O, then [0, , g] = Z(Q,) (see[13],
Section 3). Thus there is an element ¢, € O, such that [g,, g] ¢ ker @, . We

then have o(g1) = g4(q1) and ¢(gy?) = (@41, gD) = Palaea{{9r, £]) and
g ¢ K. Thus K = Q' and if follows that [ > ¢(g — 1), proving {d).

Levvia 4.2. Let G = G{(q) and let U, << U be a root subgroup such that
| Z(U,) = q. If G(q) 2= PSp(2n, q) with q odd (we allow n = 1), then H is
transitive on Z(U,y*. Otherwise H has two orbits of length (g — 1) on Z{U, Y

Proof. f G has rank 1 this is easily checked. Otherwise let 4 be the root
system of G and let o ,..., «, be a fundamental system for 4. Then there is
some we W and 1 <7 < » such that (r)w = ;. Then U, is conjugate to
U, and we may assume 7 = «; . Let J be chosen such that co; + du; is a root
for some ¢ > 0, d >0, and set L == (U, , U‘:a)ﬂ Then L is a rank 2



430 LANDAZURI AND SEITZ

Chevalley group and LjZ(L) =~ PSL(3, q), PSp(4, ¢), PSU(4, q), PSU(S, q),
Gy(q), 3Dy(q), or 2F (g). By direct check it can be seen that H M L is transitive
on Z(U#) except in the case L/Z(L) =~ PSp(4, gq), g odd. Indeed for the classical
groups this can be seen by considering the geometry. For the cases Gjy(g)
and 3D,(q) this can be worked out from the commutator relations or using
the calculations in ([7], Section 9). The case of 2F,(q) is easy as {{Uxap,
Uy, >} = {SL(2, ¢), S2(q)} and q is even.

We must now observe that if L|Z(Ly =~ PSp(4, q), q odd, then G =
PSp(2n, q), PSO(22n -+ 1, q), or Fy(g) (this can be seen from the Dynkin
diagram). If G = F,(g), then there is a fundamental root o; such that
Ly = Uy, , Uy, satisfies L,|Z(L,) =~ PSL(3,g). So in this case H is
transitive on Z(U, )*. Suppose G = PSO(2n + 1, q)' withn > 3. If o; 5 o,
then there is a £ such that Ly = (Us,,, Uy, satisfies L[ Z(L,) = PSL(3, g).
Suppose o; = o, . Let V be the natural module for G — SO(2n + 1, 9)
and let L1 = <Uim s Uss, >~ SO(5, q)'. Then there is a nondegenerate
S-space Vi of V such that L1 is trivial on V. Considering orders we see that
stab(V) > SO(Vy) X SO(V,*YY. In fact stab(V)/SO(V) =~ O(V,). It
follows that H is transitive on U?’= 'Thus H is transitive on U7 . Finally, if
G = PSp(2n, ¢) and i = n, then H has 2 orbits on U# = U # each of
length (g — 1).

At this point we list the Dynkin diagrams for the groups G(q) 5= 2F,(¢) not
considered so far and produce certain p-groups of extraspacial-type.

c, ot e (G(g) = PSU(2n, g) or
2 n—l = PSP(2n, ), g odd)
BC, o v == (G(g) = PSU@2n +1,9))
1 3 4 5 6
Eq | (G(g) = Eq(9))
2
1 3 4 5 6 7
E, ! (G(9) = E+(9))
2
1 3 4 5 6 71 8
E, | (Glg) = Exq))
2
F, T (Glq) = Fi(q) or *E¢(9))
G, == (G(q) = Ga(q) or *Dy(q))-
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In each root system 4 (omit BC,) let 7 be the root of highest height (see the
tables of roots in [1]). Let « ,..., o, be a fundamental system of roots in 4+
Thenif 1 <& << i, Py = (B, Sy youy Sy » S »++» Sy 18 @ maximal parabolic
subgroup and O, = O,(P,) = 1, U, where the product is taken over those
s = ¥ ¢,y in A% with ¢, > 0. Using the root structure given in Bourbaki [1]
it is easily checked that in each of the above cases R(r) (see Section 2) contains
precisely one «, . It then follows (see the proof of (2.4)) that (U se 4,
se R(r)) = O, . The values for % are as follows:

4=C, k=1
4=E k=2
4=E, k=1
Ad=FE k=38
4=F, k=1
4=G, k=2

If G = G(g) is one of the remaining groups (other than PSU(2n + 1, g))
letQ =0, P =P,,and R = (Uy, 11 # k). Then by Lemma 2.5 Q is of
extraspecial-type provided that G is of normal type and G # F,{g™), g even,
G # Gg), g =3%IG = PSUQ2n + 1, 9),1et Q0 =0 = O,(P.), P =Py,
and R = (Us 11> 1). If G=PSUQ2n+1,q), PSUQ2n, q), *Egq), or
F(2%), then the structure of Q and P is described in [4], Sections 3-4. If
G = Gy{q) or 3D,(g) then the structure of Q and P is obtained in [7], Section 9
(for Gy(g) this is easily obtained from the Chevalley commutator relations).
If G =2F,(q) let O =, and P = P,, where the ordering is such that
R = (U,, U_y> =~ Sz(q). We will use the structural properties obtained in
Section 10 of [7]. We have the following:

Levmva 4.3. If G == F{q), q even or Gyg), g = 3%, then Q is of extra-
special-type, | Z(Q)| = g, and | Q| is as follows:
PS U(zn, q) q4(n—1)+1
PSp(2n, q), q odd  g*n D
PSUQ2n + 1, q) gARn—+1

Eyq) 7
EAq) g%
Eyq) 77
Fyq) g%
Eq(q) 7
Gy(g) ¢

@

*Dy(9) q
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Leviva 4.4, Let G £ 2F,(q) have rank at least 2, m,(G) = 1, and Q as in
4.3).

() If G = PSp(2n, q) for q odd, or if G = PSU(n, q), then (G, p) =
min{2/s(g — 1) | Q: Z(Q)I'?, (1/s)(g — 1) [ Q= Z(Q)'® + UR|Z(R), g)}, where
s =24 G = PSp(2n, q) and s = 1 if G = PSU(#n, q).

(b) If G is an exceptional group and G = F,(q) then

UG, p) =z ¢7(¢" — 1) | Q: Z(O)M.

Proof. Let G be a perfect central extension of G acting nontrivially on a
finite dimensional vector space M over a field of characteristic other than p.
Then O = Q, X Z(G) where Q, is P-isomorphic to Q. Also Z(Q) =
Z(Qy) X Z(G). There is a root s € At such that s %  and s is conjugate to
7 by an element of W. Checking the root systems we see that U, < R ==
{Usg, ¢ > 1) in case (a) and that in cases (b) s may be chosen such that
U, <O0.

Write M = M, ® M, where M, = C3(Z(Q,)) and M, = [Z(Q,), M].
Then M, , M, are P-invariant and M, #£ 0. Next we write M, |Q, =
Vi® - @V, where the V; are the distinct homogeneous Wedderburn
components of Q, on M,. On each V; Z(Q,) is nontrivial and induces scalar
multiplication, and by Lemma 2.3 ¢ + j implies that V; | Z(Q,) and V; | Z(Q,)
are inequivalent. Now Lemma 4.2 shows that £ = g — 1 if G 5= PSp(2n, q)
and k£ =¢q — 1 or ¥(g — 1) if G = PSp(2n, q). Also Lemma 2.3 implies that
101 ZQ)ME = | Oy : Z(Q)V* divides dim(V).

First suppose we are in case (b). Then U, <Q, U, = Z(U,), and
U, =L x Z(G) where L << Q, and L N Z(Q,) = 1. If @ is the character of
Q, afforded by M, , then Lemma 2.3 shows that @ vanishes on L# and hence
0| L = ¢p; , where py is the regular character of L. Then ¢ = (1/¢) dim(J4,) >
(Yg)(g—1)| Q:Z(Q)*/2 and L fixes each vector in a subspace of M, of dimension
(1/g)g—1) | O : Z(Q)*2. As L and Z(Q,) are conjugate, and as Z(Q,) fixes no
nonzero vector in M, , it follows that dim(M;) > 1/g(¢ — 1) | Q : Z(Q)|V/~
Then dim(M) = dim M; + dim M, = g ¢ — 1) | O: Z(Q)|/? and the
result follows.

Next suppose we are in case (a). Here U, <{ R. Write R = R, X Z where
R, is a central extension of R and Z < Z(G). Unless R = PSL(2, 3), we may
assume that R; is a perfect central extension. If R = PSL(2,3) we may
assume R; = SL(2, 3) or PSL(2, 3). In either case L < R; and LA =R,
where L X Z(G) = U, .

So if L acts nontrivially on 8, , then dim(,) > I(R/Z(R), 9) (note that
IR|Z(R), q) = 1) if R = PSL(2, 3)) and

dim(M) = (1/s0g — 1) | Q : Z(QM2 + UR|Z(R), ¢)-
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Suppose then that L acts trivially on M, . Since L and Z((Q,) are conjugate, L
can fix no nonzero vector in M, .

From Lemma 4.2 it follows that A acts irreducibly on Z(U,). Since
(U N R)H normalizes Z(U,) = Z(Q) and since U N R centralizes a non-
identity element of Z((Q), it follows that U N R < CR{Z(0)) <1 R, and con~
sequently R centralizes Z(Q). Therefore R centralizes Z{0Q,) and stabilizes
V4 ooy Vi . In particular (U, , U_,» fixeseach V. Set I, = H N (U, U_).
Then considering the possibilities for the rank ! group (U, U_;> we see
that H, is either transitive on Z(U)* or H; has two orbits of length {{g — 1)
on Z(U)*. Consider Z(U)H, = LH, acting on V.

V; IL == Wil @D ﬂ/z'ti:

where the W,; are the distinct homogeneous Wedderburn components of L
on V;. Now H,; permutes the W;; and L is trivial on no W,; . Thus each
orbit of H; on the W;/s has length ¢~ 1 or ¥(g—1). So dim(V,) is divisible
by g—1 or }(g—1) and bence {g— 1) | Q: Z(O) or §(g - 1) | O : Z(Q)"
divides dim({¥V,). If ¢ > 3, then dim(V}) = 2 | O : Z(O)YV3, dim{M,) >
(1/s)}(g — 1) dim(¥/;) and the result follows. Suppose ¢ = 2. Then | Z(U,)| =
L | = 2 and L induces scalar action on M, . But then [L, Q,] = | whereas
[Z(U,), 0] # 1. Suppose ¢ = 3. Here | Z(Qy)l = 3 = |L|. As above L
cannot be scalar on M, . Therefore Z((,) is not scalar on M, (ie., & > 1),
So M,=V,®V, and dim(M)>2dim(V,) =2|0:Z(Q)2 I
G = PSp(2n, 3), then 2| Q0 : Z(Q)? = 2s(g — 1) | O : Z{Q)|¥%, 2nd we are
done. The only remaining case is G = PSU(n, 3). If H N R is not transitive
on Z(U,)#, then by Lemma 4.2 R = PSL(2,3) and n = 4. But here
m,{G) # 1 ([8]). So H N R is transitive on Z(U,)* and as before 2 = g — 1
divides dim(¥) and dim(M) > dim(M,) > 2 dim(V;) = 4| Q : Z(Q)[*? and
the result holds. This completes the proof of Lemina 4.3.

Lavma 4.5, If G = Egq), £Aq), Eslq), Gilg) with g + 4, 3% or D3g),
then the Theorem holds.

Proof. 'This follows directly from Lemma 4.4(b) and the facts in (4.3).

Levnma 4.6.

{(a) If G = PSp(2n, q) for g odd, then (G, p) = ¥(g" — 1}.

(b) If G=PSUQ2n,q) with n =2 and q =4 if n =2, (G, p) >
@ — Dig + 1.

(¢) If G=PSUQ2n+ 1,q) with n =2, then UG, p) = (¢*" — 1)
g/(g + 1)-

481[32]2-13
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Progf. We use Lemma 4.4 and induction. Suppose G = PSp(2n, q) for
g odd. If n = 1, the result follows from Lemma 4.1(a). If » > 1, then
Lemma 4.3(a) implies

UG, p) = min{(g — 1) ¢" ™% 3(¢g — 1) ¢" 7 -+ Hg" ™" — 1)} = Hg" — 1)-

This proves (a).

Next we consider (b). Let G = PSU(4, q) with g >> 4. Lemma 4.4(a)
shows that /(G, p) = min{2(g — 1) ¢% (g — 1) ¢ + I(PSL(2, g), 9)}. In the
proof of Lemma 4.4(a) we actually showed that

UG, p) = min{2(q — 1) ¢% (¢ — 1) ¢* + (RH|Z(RH), q)}.

Now RH|Z(RH) = PGL(2, ¢) and as in Lemma 4.1 we have [(PGL(2, q), p) >
g — 1 provided ¢ = 9 (i.e., m,(PGL(2, q)) = 1). Since my(PSU(4,9)) =1
([8]) no 3-fold covering group of RH|Z(RH) will appear in a perfect central
extension of PSU(4, 9). It follows that [(RH|Z(RH), p) == q¢ — 1 in all cases
and (G, p) = (g — 1)(¢* + 1). Inductively let G = PSU(2n,q). Then
UG, p) > min{2q — 1)g**, (¢ — 1) g2 + (PSUQn — 2, q), g} >
min2(g — )¢ 2 (g — D2+ (@2 = Dilg + 1) =g — g2 +
@ — Dig + 1)} = (¢ — Df(g + 1). This proves (b).
The proof of (c) is similar (use Lemma 4.1(b)).

Levma 4.7, If G = Gy(q) with g = 3° > 3, then (G, p) = q¢(¢* — 1).

Proof. Consider Q as in (4.3). Let o be a short root and o, a long root.
Then Q= Un Us= U,UpUs*2Ui%Ujst. However Q is not of extraspecial-
type because the commutator relations imply that [Ujz, Uj2®1] = 1. In fact
O = UpUiz*t x UyUstUpr% and U, U U2 is of extraspecial-type of order ¢3.
Also (Uy, Uy = R =~ SL(2, q) acts in a natural way on Uj2Us2*t and on
UZUgl Uglsz/Ugﬁz.

Let G be a perfect central extension of G and assume that G acts faithfully
and irreducibly on a vector space M over an algebraically closed field of
characteristic other than 3. Write O == Q; X O, X Z(G) where

OZ(G)Z(G) = UpU*  and  QuZ(G)Z(G) = U,UsUy™.

Let My, = [M, Z(Q,)]. First suppose that [M, ,O;] = 1. Then Q, acts on
[M,,Oq] and (2.3) implies that ¢ divides the dimension of [M; , O;]. Also
RQ, acts on [M, 0] and O, acts without fixed points. As R is transitive on
the nontrivial linear representations of Q, , it follows that ¢ — 1 divides
dim[M, , O,]. Hence dim(M) == g(¢®> — 1). So we may assume that Q; is
trivial on M, . Next write M = M; @ Ci{Z(Q,)) and Cy(Z(Q,)) = M, D M,
where M, — [Cy(Z(Q2)), O] = 1 and M, — Cy(Z(Q3) O Cou(Qy). The
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group RQ; acts on M, and O, acts without fixed points. It follows that M,
contains each nontrivial linear representation of §, an equal number of times
and dim(My) = x(g®> — 1), Let U = U, X Z(G) and U, = Uyy x Z(G).
It is easy to see that Uy is contained in the kernel of precisely ¢ — 1 nontrivial
linear representations of Q; and that Uy, is of extraspecial~type with
Z(UyQy) = Uy Thus My = Cor (Uy) X [My , Uy, dim(Cye (Uy) — #(g— 1)
and on [M,, U], Uy, induces x{g — 1) copies of the regular representation
of Uy . We now have dim(Cyy (Up)) = #{g — 1) and dim(Cy (Uye)) <
2x(g — 1).

Next we consider Uy, acting on M . First we note that the elements of
(Uz%2)* are all conjugate in P (actually in H)yso My =M, @ - D M, 5
where the M, ;| O, are homogeneous and conjugate under the action of P.
So there is an integer y such that dim(M, ;) = yg and dim(M,) = vg(g — 1}.
Suppose that dim(Cy, (Uyp)) > £39(g — 1). If € G and 1Z(G) = 5, , then
dim(Cy,,(UL) > 34(g — 1) and so dim(Cyy ((Uyg, Ulpd)) > 34la — 1.
Let K = (Uyy, Ulyy. Then KZ(G)[Z(G) = R and if if g € O, — Z(Q,) then
(K, K% Z(G)|Z(G) = RU,UUg*. But Co (K) N Cyp (K¥) 5 0, and this
implies that Cy, ((K, K%) # 0, and so Cy (Z(Qy)) # 0 which is not the
case. Thus dim(Cyy (Uge)) < 2g(g — 1).

We. now have Ldim(C'M(Uo)} = dim M, -+ x{g — 1)+ vg(g — 1} and
dim{Cr(Upe)) < dim My -+ 2x(qg — 1) + 2yg9(¢ — 1). As Uy and Uy, are
conjugate in G it follows that 2x(qg — 1) + 33g(g — 1) = x{g — 1) - yg(g — 1)
and & 2= (})yg. Consequently dim([M, Uy]) = dim({M, , U) = x(¢? — ¢) =
(2)3gq — 1) and dim([M, Z(Q))) — ya(g — 1), As g > 3, dim([M, Uy]) >
dim[ M, Z(0,)].

Now the graph automorphism of G interchanges U; and U,, U* and
U3, and the maximal parabolic subgroups P and P’ of G, where P’ = (B, 5,)>.
Thus we could have started with the parabolic subgroup P’ and considered
O4(P"). Arguing as above we would obtain dim[M, Z(Q,)]) > dim([#, U,
and this is a contradiction. The proof of 4.7 is complete.

Levma 4.8.

(@) G =Fg)andq =2 > 2, then (G, 2) = 3q(¢" — Dig — 1.
(b)Y If G = F,(q) and q odd, then (G, p) = ¢*{g® — 1).
(©) IfG =Efq)andq > 2, then (G, p) = ¢%¢* -+ D@ — 1).

Proof. To prove the lemma we use the results of [4], Section 4 giving the
structure of the parabolic subgroup P = P, . P contains a normal subgroup
T = O,(P) and a subgroup R such that R o~ SO(7, q) if G = F{g) and
R SO(8,q9) if G =2Eyq). Then P = TRH. There is an elementary
subgroup K << T'suchthat K <{ P, | K| = ¢°if G =Fy(g)and | K| = ¢%if
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G == 2E4(q). Moreover R acts in a natural way on K preserving a non-
degenerate quadratic form. Also P acts irreducibly on T/K.

Let G be a perfect central extension of G acting faithfully and irreducibly
on a vector space M over an algebraically closed field of characteristic other
than p. Write T = T, X Z(G), K = K, X Z(G), and U, = U, x Z(G),
where s is the root o + 20, + 305 + 20, . If G = 2Eg(g) then | U, | = ¢?
and U, is a 2-space in K, o~ K. If G = F,(q) for q odd, then U, is a 1-space in
K, ,and is G = Fy(q) for g even, then U; = rad(K).

If G == F,(q) with ¢ even, that R acts irreducibly on T/K, and on K; and
hence K, < Z(T,). Suppose G = F,(q) with ¢ even. The graph automor-
phism of G interchanges the parabolic subgroups P; and P, . The structure
of O = O,(P,) is given in [4], Lemma 4.5, and it follows from this that
K, = Z(T,). So in all cases Ky << Z(Ty)-

Let M, be an irreducible P-submodule of M such that U, < kerp(44;).
Write M, | Ky = Z; @B -+ B Z,,, where the Z,'s are the distinct homogeneous
Wedderburn components of K, on A . Let K, be the unique hyperplane of
K, such that K, < kerg (Z;) (Lemma 2.3). We may assume that U, & K,
and hence K, = K; + U,.

Since K, < Z(Ty), T, fixes each Z,. In particular T fixes Z; and To/K;
acts on Z; . We claim that T,/K, is of extraspecial-type. To see this we first
note that 7/K =~ T] U, where the product is direct and taken over all short
roots £ in 4+ such that ¢ has a nonzero coefficient of «, . For each such z, s — #
is another such root and so U,U,_,U, is of extraspacial type of order | U, 3.
If G = F,(q), | U;| = qand if G = 2E(q), then | U, | = ¢2 Thus Ty/K, is
of extraspecial type of order ¢° or g%, respectively. We now have that
dim(Z,) = ¢* if G =F,(g) and dim(Z,) = ¢® if G = 2E(g).

Let L be the stabilizer in P of Z; and L, = L N R. Suppose G = F,(q).
Then there is a subgroup H, of H such that RH, = R x H,, Hy is cyclic
or order ¢ — 1. Indeed choose & = h(y) such that y{a;) = y(a) = x(g) = 1
and y(o,) = 5 where (&> = F#; then Hy = (h)>.lf t € A4+ and U, < K, then
the coefficient of o, in £ is 2 (see [4, Section 4]). So H,, is scalar on K of order
(g — D/(2, g — 1). If ¢ is even we proceed as in the proof of Lemma 3.2 and
obtain | P:L | = ($)¢*(¢® — 1)(g — 1). Suppose ¢ is odd. In this case we
proceed as in the proof of Lemma 3.3 and obtain | P : L | == ¢% — 1 (note that
here | Hy| = g — 1 rather than (g — 1) as in (3.3)).

Suppose G = 2Eg(g). If rad(K;) = 0, then proceeding as in the first part
of the proof of 3.3 we have |R:L,| = (¢* + 1)(¢* — 1). Now suppose
rad(K;) = 0. If ¢ is even, L; < R < OX(7,q) =~ Sp(6,q) and | R:L, | >

(gt - 1) > (¢* + 1)(g® — 1). If g is odd, then since L, is trivial on K;*, L

induces a subgroup of SOX(7,49) on K, . Checking orders we again have
|R:L] 2 ¢+ 1) > @+ D@ — 1),

Since | P:L|=|R:L;|,wehave | P:L|2=¢%—1,(¢*¢® — (g — 1),
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or (¢* + 1)(g® — 1) according as G = F(g) g odd, F,{g) g even, or 2Eq).
But | P:L| is the number of conjugates of Z; and hence dim(}M) >
dim(My) > gig® — 1), (Dg(e® — Dlg — 1), ¢¥g* + 1)(g* — 1) according as
G =F,(qy q odd, Fy(q) q even, or 2E¢(q). This completes the proof of
Lemma 4.8.

Levma 4.9. If G = 2F(q), then I(G, 2) > (g/2)2¢*q — 1).

Proof. Let Let G be a central extension of G such that Z(G) < G’ and
suppose that G acts faithfully and irreducibly on a module M over an
algebraically closed field of odd characteristic or characteristic 0. Then
(G} = 1 (see Greiss [8]).

WriteQ = 0, X Z(G). ThenQ, =~ O and the structure of J, is determined
in Section 10 of [7]. Let M = M, @ --- @ M, be the decomposition of I into
the distinct homogeneous Wedderburn components of Q. We consider the
action of P on Q to be the same as that of P on Q. P = Q(R X H,) where
R =2 Sz(g), H, is cyclic of order g — 1, and H, acts fixed-point-free on (.
Write U™ = U, X Z(G), O’ =0y X Z(G).

We may assume that £,(Ug) < ker My . Then O = kerg (My) 2,(U,).
Since | Oy | = ¢% and O is elementary abelian, there are ¢(g — 1) subgroups
of O, having index 2 and not containing £2,({/;). We claim that these are
conjugate in OH,, . To see this we go to the group QH,, (see 6H of [7]). Then

01 = Q(U) x Up™ X 2(Ug™) x Up™™ x QU™

Let T = 2)(Us) x U x Upsr® x Q(Un*) x T, where Ty is a subgroup
of index 2 in 2,(Up®™). Let L = Nog (T). Since Q'/T has order 2, L <<
{H, is fixed-point-free on Q). At this point we apply the results in {7}, Section
10. We immediately see that N(T') = Q(Us) U Up 2" U220 (Uj%).
Suppose that abed € N(T) with ac U;, be Uy, ce Up®, and de Up. If
b ¢ 2,(Us), then using (10.11) (i) of [7] we have [b, Uf%%] = ,{Us%"). As
a, ¢, d € N{U*%) < N(Q(Ur™™), a, c € C(Ui*%), and [d, U] L Up®,
we have 2,(Us®®) < [abed, Uz1%] < [abed, T] < T, a contradiction. Thus
beR,(Us) < T and similarly ce 2,(Usr) < T. So ade N(T). If a # 1,
then (10.13) (i) and (10.15) of [7] show that [a, U3**]T > Q,(Us®%), Also
[d, Uir*] = 1. As above this leads to a contradiction. Thus ¢ = 1 and
similarly ¢ = 1. This proves that

NQOH(T) — Ql( U;l) Uizsl U;lszsx LT;zslszgl( U§152>

and so 7 has g%(g — 1) conjugates in Q,H, proving the claim.

1t follows from the claim that k2 > ¢¥g — 1). Also if T = T, X Z(G)
then Ty = kerzg, (M) for some i. Then U™t stabilizes M and as in
{4.1) {c) we have dlm(l ) = (g/2)'2. Thus dim{M) = (g/2)"%¢*g — 1) and

the lemma is proved.
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5. THE Cast m,(G) # 1

At this point we have handled all Chevalley groups G = G(g) such that
m,(G) = 1.1t remains to prove the theorem for the finite number of Chevalley
groups G = G(q) satisfying m,(G) = 1. The basic reference for information
concerning these groups will be Griess [8]. We keep the notation of Section 4.

Throughout G will denote a perfect central extension of G = G(g) acting
faithfully and irreducibly on a module M over an algebraically closed field
of characteristic other than p.

Levmma 35.1. Suppose G = G(q) and m,(G) = 1. Then G is one of the
Jollowing:
(iy PSL(2,4), PSL(2,9), PSL(3, 2), PSL(3, 4), PSL{4, 2).
(i) PSp(4,2), PSp(6, 2).
(i) SO, 3).
(iv) PSO*(8,2y.
(V) Gy(3), Gy(4)-
(vi) PSU4,2), PSU(4, 3), PSU(6, 2).
(vil) Sz(8).
(vild) 2Bq(2).
(ix) F,2).

Proof. See Griess [8].

Lemma 5.2.

(2) If G = PSL(2, 4), then (G, 2) = 2.
(b) If G = PSL(2,9), then I(G, 3) = 3.
() If G = PSL(3, 2), then I(G, 2) = 2.
(d) If G = PSL(3, 4), then I(G, 2) = 4.
() If G = PSL(4,2), then I(G, 2) = 7.

Proof. We first note that PSL(2,4) o~ PSL(2,5), PSL(2,9) =~ 4, <
PSL(3,4), PSL(3,2) ~ PSL(2,7), PSL(3,4) < PSU(4, 3)and PSL(4, 2) =~ A,.
Thus I(G, p) is at most the numbers given in the lemma. Clearly (a) and (c)
hold, as PSL(2, 4) and PSL(3, 2) are simple. If p + |Z(G)|, then the proof of
Lemma 3.1 shows that dim(}{) = ¢** — 1, where G = PSL(n, ¢). In each
of the cases /(G, p) < ¢g** — 1. So to prove the lemma we may assume that

P1IZ(G)].
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Suppose G = PSL(2,9). Since 3 | Z(G) the Sylow 3-subgroups of G are
nonabelian and hence dim(M) > 3. Suppose G = PSL(3,4). Then
2 [ | Z(G)| and G perfect implies that dim(M) is even. If dim(M) = 2, then
G < SL(2,r) for some odd prime power 7 and this would contradict the
structure of the Sylow 2-subgroups of G. Thus dim{M) > 4 as needed.

Finally suppose G = PSL(4, 2). Let P < G be the stabilizer of a 1-space
in the natural 4-dimensional module for G = PSL{4, 2) = GL(4, 2). Then
P = R where Q = O,(P) is elementary of order § and R =~ GL{3, 2) acts
in the natural way on Q. Consider O and let <v) be a Sylow 7-group of R.
Then (o) is transitive on Q* and since | Q | = 23 it easily follows that  is
abelian and 0 = Q, X Z(G) where Q, = O under the action of (o). At this
point we follow the proof of (3.1) to obtain dim{M) > 7.

Lremma 5.3.

(@) If G = PSp(4, 2), then i(G, 2) = 2.
(b) If G = PSp(6, 2), then I(G,2) = 7.

Proof. ¥ G = PSp(4,2) then G oz Ay~ PSL(2,9) and {2} holds.
Suppose G = PSp(6,2). Then G = SOH6, 2) o~ GL{4,2) and it follows
from (5.2) (e) that [(G, 2) 2> 7. Since G is the derived group of the Weyl
group of type E, , (G, 2) = 7.

Lemma 5.4. If G = SO(7, 3Y, then I(G, 3) = 27.

Proof. G = SO(7, 3Y = SO*(6, 3) o PSL{4,3). As m{PSL(4,3)) = 1,
we apply Lemma 3.1 and obtain (G, 3) = 3 — 1 = 26.If 3 i | Z(G)], then
3| dim(AM) and dim(M) > 27.1f 3 1 | Z(G)}, then we proceed as in Lemma 3.3
and obtain dim{M) > 32(32 — 1) > 27.

Lemma 5.5. If G = PSO*(8,2Y, then (G, 2) = 8.

Proof. If 2+ 1Z(G)|, then as in (3.3) dim(M) > 22(2% — 1)> 8. Suppose
2] | Z(G). Let P < G be the stabilizer of zn isotropic 1-space, so that
P = OR, where Q is elementary of order 26 and R ~ SO+(6, 2) =~ GL(4, 2).
Then (5.2) (e) shows that dim(M) > 7. However as | Z(G)| is even, dim(M)
is even so [{G, 2) = 8. On the other hand, PSO*(8, 2)’ 22 D,(2) is isomorphic
to the group (L{Z(L})' where L is the Weyl Group of type Ey. Thus D, (2)
does have a projective representation of degree § and (G, 2) = 8.

Levva 5.6.

(@) If G = Gy3), then I(G, 3) = 14.
(B) If G = Gy4), then (G, 4) > 60 — 4(4% — 1).
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Proof. First consider G = Gy(3). Suppose that 3 1| Z(G)|. In this case
we follow the proof of Lemma 4.7 although a change must be made at the
end of that argument. Namely, in the notation of 4.7 let M = M, © M, D M;,
where My = [M, Z(Q,)] and M, = [Cy,(Z(0,)), O4]- It was shown that
dim(M,) = q(g-1) =6 and dim(M,) > ¢*—1 =8. Thus dim(M) > 14.
Now suppose that 3 | | Z(G)|. Then by [8] G is a covering group of G and
generators and relations of G are known. Let Up® =L X Z(G), L = {x,
Z(G) = (y>. Then L X Z(G) = Z(Q) and O[<xy)> = Q/{x?y) is extraspecial
of order 35. If M, is a Q-composition of  then one of the subgroups of order
3 in Z(Q) is trivial on M, . However Z(G) induces scalar action on M and »
cannot be trivial on all such M . So we may assume that {xy> or {x%) is
trivial on M and hence dim(M;) > 32 = 9. It is easy to see that xy and %2y
are conjugate by an element & of H, so that M; @ M,* < M has dimension
at least 18. This proves (5.6) (a).

Now assume that G = Gy(4). By Griess [8] Z(G) = 1 or | Z(G)| == 2.
If Z(G) = 1, we use the argument in (4.5). Suppose | Z(G)| = 2. We will.
show how in this case we can again use the argument in (4.5). We note that Q
is of extraspecial-type of order 45 and having center Ugt®s. Consider Ugt™,
(Usr*)* is fused under the action of H, so U§t® is quaternion or elementary
abelian. We check that U3+ is elementary of order 8. It follows that R
centralizes Us*» and this implies that Us': < Z(Q). Consider Uj™ as
a module for H,, where P/Q o~ P/Q = R x H,. Write U, = [Ua®, H,] =
[Ug%, H]. Then | Uy | = 4 and Ug® = U, x Z(G). We then have U, <] P
and the elements of Uy* are fused under the action of Hy < H. Alsos;s, = gis
such that Uy = Ust®. Write Uy, = U so that U, = Uy, X Z(G) and U,
and Uy, are conjugate. Write M = M; @ -~ D M, where the M,’s are
distinct and homogeneous under the action of 0. We may assume U, <
ker(M,). Then kerp(M;) = {x, y=>, where U, = (%, 3> and <) = Z(G),
and where Q/kers(My) is extraspecial. Also Uy, on M; is a multiple of the
regular representations. From these facts we can argue as in (4.5) to complete
the proof.

LeMMAa 5.7.

(a) If G = PSU(4,?2), then (G, 2) = 4.
(b) If G = PSU4, 3), then I(G, 3) = 6.
(¢) If G = PSU(6,2), then (G, 2) =21 = (2° — D}(2+ 1).

Proof. If p1]|Z(G)|, then the proof of (4.6) (b) yields the result. We
therefore assume that p | | Z(G)|. Since G’ acts irreducibly on M, Z(G) is
cyclic and Z(G) < G implies that | Z(G)| divides dim(}).

If G = PSU(4, 2), then G == PSp(4, 3) and we are done unless dim(4/) = 2.
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However G <{ SL(2, F) for F a field would contradict the structure of the
Sylow 2-subgroups of G (or of G). Thus (a) holds. Suppose G = PSU4, 3).
Then G < PSU(6,2) ([6]) and G, 3) < 6. We need only show that
dim(M) 2= 6. As 3 | dim(B4), the only problem would be that dim(#f) = 3.
If dim(M) = 3, then M | Oy(Q) is irreducible and hence Z(0,((Q)) is eyclic.
However it is easy to prove that O,(Z((Q)) is not cyclic, proving (b).

Finally we suppose that G = PSU(6, 2). Then Z(J) cyclic implies that
| 04Z(G))| = 2[8]. Recall that P acts irreducibly on Q/Z(0) and | Z(Q)| =
It follows that Z(0,(Q)) is elementary of order 4, say Z(04(0)) = (x> X (&>
where t € Z(G). If O(Q) = Z(040)), then Oy(0")/T is extraspecial of order
2% whenever T is a subgroup of order 2 in (x> X <z). Since Q acts faithfully
on M, M contains two distinct homogeneous components of { each of
dimension at least 2% Consequently dim(}M) > 32 > 21 and we are done.
Now suppose that | 0,(0")] = 2. Since | Q' | = 2, it follows that # ¢ O,(Q)
and we may assume (x) = O,(0'). Then M = M; @ M, where My = C,,(x)
and M, = [x, M]. The group O4(Q) acts on M, and dim(M,) > 16. Alsc
Oy(0)[<{x) acts nontrivially on J} . Decompose M, into homogeneous
components of O,(0)[<x>, say My = My, @ - D My, -

If R stabilizes M; for some j, then set §, = ker,, ,15)(My;}. Consequently
R'Qyisagroup.If £ ¢ R’, then a Sylow 2-subgroup of G has the form L x {5,
wherel is a Sylow 2- subgroup in R'Q, . This contradicts Gaschiitz’s Theorem.
Therefore i € R and R' =~ Sp(4, 3) ([8]). In G = G/Z(G) the involution Z is 2
transvection and conjugate to a central involution in R. Consequently there is
an involution v € R — {¢) such that x or &f is conjugate to v. Now Sp(4, 3)
has just 2 classes of involutions, so  and vt are fused in R, and consequently x
and xf are conjugate in G. Therefore M = [x, M] @ [x¢, M| and dim(M) >
32 > 21.

Finally, suppose R stabilizes no Mj; . Since R < S, | R: stabg(Myy)} > 5,
so that & > 5 and dim{M) > k£ - 16 > 21. This completes the proof of
(5.7).

Lemma 5.8, If G = Sx(8), then I(G,2) = 8

Proof. If Z(G) = 1, we proceed as in {(4.1) (c). Hence suppose Z(G) # 1.
Since the multiplier of G is Z, X Z, and Z(G) is cyclic, | Z(G)] = 2. As in
(4.1) let O be 2-Sylow in G. Then | N{(Q)| = OH, where | H| =7 and H
acts transitively on (Q/Z(Q)y* and on Z(Q)*. Consideration of the action of H
on Z(Q) shows that Z(Q) = O, X Z(G) where O, is elementary of order 8
and H-invariant. If Qp <1 O, then we consider O/Q, and show that O splits
over Z((), contradicting Gaschiitz’s Theorem. Thus Q, <70 and since
0,Z(G)H is maximal in QH, N{Q,) = Q,Z(G)H. Thus under the action of 0
there are eight distinct conjugates of Oy . On the other hand there are precisely
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eight subgroups of Z(Q) complementing Z(G), and we have Q transitive on
these subgroups. If M, << M is an irreducible Z(G) submodule of M, then
ker(M,) complements Z(G). Considering the conjugates of M, under O we
have the result.

Levma 5.9. If G = 2E(2), then (G, 2) = 3 - 2°.

Proof. If 21| Z(G)| then we proceed as in (4.8). Suppose then that
21 | Z(G)|. As the multiplier of 2E(2) is Z, X Z, [8] and Z(G) is cyclic,
2 exactly divides | Z(G)|. Let O be as in Lemma 4.3. Then Q is extraspecial of
order 2% and P acts irreducibly on Q/Z(Q) ([4, Section 4]). We proceed as in
(5.8). Let tp = Z(G). If | 0y(Q')| = 4, then M > M, @ M, where M, , M,
are acted on faithfully by an extraspecial group of order 22 In this case
dim(M) > 219 4 219 > 3 - 29 Now suppose that Oy Q') = (x) and
M = [M, x] ® Cy{x). Then dim([M, x]) > 2" and it suffices to show that
dim(Cyy(x)) = 2° InQ there is an element @ conjugate to . This can be seen
by noting that (&> = U, (r as in Section 2) and that there is a root s % r
conjugate to r such that U, <{ Q. Then x is conjugate to d = v or t.
Then on [M, x], {d) gives a multiple of the regular representation and hence
| Co(d) N [M, x]} = 2°. As d ~ x this means that we also have | Cy ()| = 2°
and dim(M) =3 - 2°.

Lemva 5.10. If G = Fy(2), then I(G, 2) > 44.

Proof. If Z(G) = 1, then we proceed as in (4.8) and obtain dim(M) >
12728 — 1) > 44. Suppose Z(G) > 1. Then | Z(G)| = 2 and generators
and relations are known for G [8]. If 4 is a root system of type F, and
G = (U,:r € 4> such that the usual commutator relations hold, then G is
generated by subgroups Y, of order 2 where there are certain commutator
relations holding as follows. Let U, = <u,> and Y, = {y,>. If », s do not
form an angle of 135° then [y, , y,] is the same as [#, , #,] with the obvious
change in notation. If 7, s form an angle of 135° then one of 7, s is long and
the other is short. Say 7 is long. Then [y, , ¥5] = VyisVy10:% Where (2> = Z(G).

We use the notation of 4.8. The group P, = TR, where T' = Oy(P,) and
R~ S80(7,2)y. T =L x S where L = {U,: tlong, U, < T is clementary
of order 2% and S = (Uj: # short, U, < T') is extraspecial of order 2°. Let s
be the short root such that U, = Z(S). Then LU, = L x U, and R acts on
L x U, preserving a nondegenerate quadratic form with radical U .

Checking the root system 4 and the commutator relations satisfied in G
we have the following: L = L, x {2}, with L, = {y,: t long, U, << T,
S =S8, x<{z> with Sy =<yt short and U, < TD, Z(S;) = {¥»
Ly x {¥,2) is R-invariant and R isomorphic to L X <u,> under the isomor-
phism sending y, — u, for ¢ long and u, — 2.
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Since (m)z — —m for each me M, we have M = M, @® M,, where

M, = Cyy,) and M, = Cyv). Moreover M is faithful, so M; £ 0,
M, 5= 0. Now y, acts as —1 on M, and Sy is extraspecial with center {y,>.
Thus S, acts on M, and dim(M,) > 24 Also R(L, X {¥,%)) acts on M, and
arguing as in (3.2) we see dim(M,) = § 23(2% — 1) = 28. Thus dim{M) > 44
and (5.10) is proved.
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