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1. INTRODUCTION 

For G = G(q), a Chevalley group defined over the field iFQ of characteristic 
p, let Z(G,p) be th e smallest integer t > 1 such that G has a projective 
irreducible representation of degree t over a field of characteristic other than 
p. In this paper we present lower bounds for the numbers Z(G,p). As a 
corollary we determine those Chevalley groups having an irreducible complex 
character of prime degree. Recently there have been a number of results 
making use of lower bounds on the degrees of representations of Chevalley 
groups. See for example Curtis, Kantor, and Seitz [4], Hering [9], and 
Patton [l 11. Also in Fong and Seitz [7] such bounds played an important role, 
although there the representationsconsideredwere over fields of characteristicp. 

For most types of Chevalley groups and for most primes p it is not difficult 
to obtain reasonable lower bounds for the complex irreducible characters of 
G = G(q), using the existence of certain p-subgroups of G resembling 
extraspecial groups. Indeed this was carried out in Landazuri [lo]. However 
to be complete we must take into certain problems that occur with fields of 
characteristic 2 and 3. Also, since we are considering projective irreducible 
representations the groups with exceptional Schur multipliers present some 
dif3iculties. There is also the problem of deciding whether or not a lower 
bound is “good.” In some cases our bounds are actually attained and there is 
no problem in this regard. Otherwise let {G(q)} be a family of Chevalley 
groups of given type and with q ranging over suitable prime powers. Then our 
bounds will be in the form of a polynomial in q. In Curtis, Iwahori, and 
Kilmoyer [3] there is a list of certain character degrees for the family (G(p)) 

* Supported in part by NSF Grant GP 37982X. 

418 
Copyright 0 1974 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



FINITE CHEVALLEY GRQUPS 

which are also polynomials in 2. For most cases the degree of the poiynomia! 
I(G(qj9 p) will equal that of one of the polynomials in [IS]. We were also 
guided by the needs of Hering [9] in obtaining out bounds: as he uses the 
results in this paper. 

Throughout the paper we use the term ChevaHey group to mean a group 
(of normal or twisted type), G = G(q), g enerated by its root subgroups and 
having trivial center. Once we have a bound 2(G, 4) we will also have the same 
bound for all groups of Chevailey type G such that G < G/Z(G) < Aut(G) 
as long as we only consider representations not having C?’ in the kernel, where 
qz;e) = G. 

%,SECBEM. If G = G(q) is a Chevalley group then a lower bound for l(G, p) 
is given in, t~e~~llowing table. 

Bound Exceptions 

PSL(n, q)7 n > 2 

PSPGh 41, n > 2 

Pso+(2?2, q)‘, n > 4 

PSO-(%a, q)‘, n > 4 

PSO(2n + i, n)‘, 
n> 3andqodd 

-s(O) 

E,(q) 

-Kkd 

UldXq - 11, d = t&q - 1) 

q”-l - 1 

~(4” - 11, cz odd 
&q”-l(q”-l - l)(q - I), 

q even 

i 

4(9n”;d; 1)/k + 11, 

(4” - l)/(q + l), n even 

(q%-l - l)(q”-z + I), 

4 i: 2, 3, 5 
fp(q”-l - l), q = 2, 3, or 5 

(q”-1 + l)(q”-” - I) 

qyl), q > 5 
q+-l(q+-l - I), q = 3 or 5 

4w - 1) 
qyq2 - 1) 

q?‘(qZ - 1) 

! 

@(q” - I), q odd 
84’W - l)(q - I), 

i 
Z(PSL(2, 4), 2) = 2, 
l(PSL(2,9), 3) = 3 

I 
l(PSL(3, 2), 2) = 2, 

, l(PSL(3, 4), 2) = 4 

i 
l(PS$(4, 2)‘, 2) = 2, 

, VSP(6, Q, 21 = 7 

1 l(PSU(4, E(PSU(4, 3), 2), 3) 2) = = 6 4, 
, 

Z(PSQ’(8, Z), 2) = 8 

l(PScq-7, 3)‘, 3) > 27 

I(F*(2), 2) > 44 

p&&(2), 2) > 3 * 29 

E(G,W, 3) > 14 

Z(Sz@), 2) > 8 
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COROLLARY. Let G(q) be a Chevalley group and suppose that G(q) has a 
complex irreducible character x such that x( 1) is prime. Then one of the following 
holds: 

(a) G(q) = PsL(2, q) and x(l) = q, Hq ZII l), o* q 5 1, 

(b) G(q) = PSL(n, 2) and x(1) = 2”-l - 1, 

(c) G(q) = PSL(n, q) and x(1) = q” - l/q - 1, 

(4 G(q) = PSp(2n, q), q odd, and x(l) = 6(q” + I), 
(e) G(q) = PSp(6, 2) and x(1) = 7, 

(f) G(q) = PSU(n, q), n odd, and x(l) = q” + l/q + 1, 

(g) G(q) = pSu(3,2), x(l) = 2, 

(h) G(q) = PSU(4,2), x(1) = 5. 

Proof. We illustrate the idea as follows. Suppose G(q) = PSp(2n, q) 
with q odd. Then &(q” - 1) < x(1) 1 / G(q)/ and / G(q)1 divides 

qnyq2n - l)(qZh-1) - 1) . . . (42 - 1) 

zzz !f(q” - l)(q” + l)(q”-l - l)(q”-l + 1) *.* (4 - l)(q + 1). 

It follows that x(1) 1 qn - 1 or x(1) / q” + 1. Write tx( 1) = qn - 1 or 
tx(1) = qn + 1 and obtain t(-$(q” - 1)) < q” + 1. As PS’(2, q) g PSL(2, q), 
we may assume n > 2. It follows that t = 1, 2 and since x( 1) is prime, 
x(1) = +(q” & 1). The other cases are similar. For the exceptional groups 
listed in the table it is handy to use the list of finite subgroups of GL(h, C) 
for 1 < K < 7 listed in [5]. 

We remark that for q odd PSL(n, q) h as an irreducible character of degree 
qn - l/q - 1 and that PSp(2n, q) d oes have irreducible characters of degree 
+(q” & 1). Also PSp(6,2) has an irreducible character of degree 7. As in the 
Corollary the bounds presented in the theorem can be used to investigate 
characters of Chevalley groups having small degree relative to a fixed prime 
divisor r, of / G(q)]. For example, one could investigate characters of degree 
r + 1 or 2~. 

For most of the exceptions in the table m,(G(q)) # 1 (Schur multiplier), 
and the lower bound given is a lower bound for the degree of a projective 
representation of G(q) such that p divides the order of the center of the 
representation group. The lower bounds for PSL(2, q), PSp(2n, q) q odd, 
PSU(3,q), Sk(q), and 2G2(q) are known to be best possible, as are the bounds 
for the indicated exceptional gr0ups.l 

1 Note added in proof The second author has shown that the bounds for PSU(m, q) 
are also best possible. 
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The outline of the paper is as follows. In Section 2 we present preliminary 
results and show how to construct groups resembling extraspecial groups. 
This is carried out using properties of root systems. En Section 3 we prove 
the theorem for certain families of groups where we make use of large abelian 
subgroups of 6. Then in Section 4 we handle all the other ChevalIey groups 
G = G[q) satisfying m,(G) = 1. In th is section we make use of the extra- 
special groups as well as other methods. Finally Section 5 treats the finite 
number of Chevalley groups having exceptional Schur multipliers. 

We assume the reader is familiar with the basic properties of Chevalley 
groups and root systems. At certain times we need detailed information on the 
structure of certain parabolic subgroups. This information either foliows 
easily from the commutator relations or can be found in [4] or [73. 

If G = G(q) is a Chevaliey group defined over F, , then associated with G 
is a root system rl. Let B be a Bore1 subgroup of G, and U = OD(B). Then 
32 = U-H with f-l an abeiian $-group. The Weyl group W = IV/H is a group 
generated by reflections s1 ,..., s, and W acts on the root system a. Where 
there is no problem with coset representatives we will consider sp ?,..) s, as 
elements in G. Let ws be the element of W having greatest length as a word in 
sp )...) s, , Next choose a fundamental system of positive roots ap )..., cy, of d, 
acd define U = U n Uwosi. If Y E A and (c&z = 7 for some w E WY we 
write U, = (s$‘. Then U, is well-defined and is the root subgroup of G 
associated w-ith the root Y. For convenience we will write UC = UUi . 

2. PRELIMINARIES 

LEMMA 2.1. Let G be a perfect group, F a$eM and suppose that l(F) is the 
smallest integer t > I such that G k2as a projective i~~e~~c~~~e ~~-~ep~e~e~t~t~Q~ 0f 

degree t, IfF < K, then E(F) 3 l(K). 

ProoJ. Suppose V is a representation space of degree t(F) of an irreducible 
projective representation of G. Then there is central extension G of G such 
that G acts irreducibly on V. K OF V is a representation modu’le of degree 
I(F) for G over K. If W is an irreducible submodule of K OF Y then 
dim(W) > I. For suppose dim(W) = 1. Then G’ acts trivially on W and it 
follows that G’ is trivial on a subspace of V. As V is irreducible, c is trivial 

on V and dim(V) = 1, a contradiction. We now have Z(F) > dim(W) > I(R), 
proving the lemma. 

Lemma 2.1 shows that in considering minimal degrees of projective 
irreducible representations we may assume that the field is algebraically 
closed. 

LEMMA 2.2. Let V be an n-dimensional vector space over aJield lFq ) q = pa0 
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Let F be an a&ebraically closed Jield of characteristic other than p. If y is a 
nontrivial linear character of V over F, then ker(p) contains a unique hyperplane 
of v. 

Proof. If V, is a hyperplane in V then there are precisely q - 1 nontrivial 
linear characters g, of V having V,, < ker(y). There are (q” - l)/(q - 1) 
hyperplanes in V and no nontrivial linear character of V can have two distinct 
hyperplanes in its kernel. So there are q” - 1 nontrivial linear characters 9) of 
V having a unique hyperplane in ker(F). As / V j = q”, this proves the lemma. 

DEFINITION. Ap-group Q is of extraspecial-type if 1 < Z(Q) = Q’ = @(Q) 
and Z[Q/Qs) = Z(Q)/Qs whenever 1 < Q0 < Z(Q). 

Remarks. 

(1) Q is of extraspecial type if and only if 1 < Z(Q) = Q’ = @(Q) and 

kg, Ql = Z(Q) for allg E Q - Z(Q). 
(2) If Q is of extraspecial type, then Z(Q) is elementary. 

LEMMA 2.3. Suppose Q is of extraspecial-type, j Q / = pT+” and 

I Z(Q)1 = P’- If F is algebraically closed and char F = 0 or (char F, q) = 1, 
then Q has exactly p’ linear characters over F and ps - 1 nonlinear irreducible 
characters over F. Moreover Y is even, each nonlinear irreducible character x has 
degree p@, and x vanishes off Z(Q). 

Proof. Suppose x is a nonlinear irreducible character of Q over F. As 
Z(Q) is elementary Q,, = Z(Q) n ker x has index p in Z(Q). We consider x 
as an irreducible character of the extraspecial group Q = Q/Q0 . Let 
gE_O-Z(Q).Th ere exists an h E Q such that [,& h] f 1. Since [g, h] E Z(Q), 

x(&9 = x(2) = x(a~~m = ci * xw w h ere 1 f: 01 EF. Thus x(g) = 0 and x 
vanishes on Q - Z(Q). We then have 

P ?+I = I !2 I = c I xm2 = 1 I x(z9” = Px(1)2, 
&so &z(g) 

and x(1) = pr12. A s x is determined by its action on Z(Q), the lemma follows. 

Next we indicate a general procedure for finding ap-group Q of extraspecial 
type in Chevalley groups defined over fields of characteristic p. These sub- 
groups have the form O,(P) for P a suitable parabolic subgroup of G. 

Let G = G(q) be a Chevalley group defined over F, generated by its root 
subgroups and such that Z(G) = 1. Let W be the Weyl group of G and d the 
associated root system. (We exclude G = 2F4(q) or PSlJ(n, q), n odd.) 

Let Y be the root of highest height in d, and let w,: x --f x - Z[(x, Y)/(T, r)]r. 
We define 

R(Y) = (s E A+: w,(s) # s]. 
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LEMMA 2.4 (Lemma 1, Section 2 of [lo]). 

(1) r E R(Y). 

(2) Ifs,tER(r)ands+tEA+,thelzs+tE 

(3) Foor each Y # s E R(r), there exists a e t E R(r) such that 
s + t f R(Y). For this t, s + t = Y. 

Boof. (1) follows from Z+(Y) = --Y. Let s E &+. Then 

w,(s) = s - us, y)/(y, y)lr 

and s E R(r) if and only if (s, Y) f 0. Moreover if 7 # s E R(Y), then 
f 2[(s, Y)/(Y, r)] = p - q where p, p satisfy s - pi,.,., s, *.., s + qy are 

roots and s - (p + l)r, s + (4 + 1) Y are not roots. Since r is of highest 
height, 4 = 0. Ifp 3 2, then s - 2r E A- and 2r - s E A+, This contradicts 
the fact that Y has highest height. Therefore p = 1. So for s E 
Z+(S) = s - Y and Y - s E A+. Also if (01~ ,...) a,> is a fundamental system of 
roots of A, then 01~ E R(r) if and only if 2[(alc , Y)/(Y, r)] = 1. 

Lets,tER(Y)ands+tEA f. Then w,(s f t) = (s - T) + (t - Y) = 
(s + t) - 2~ f s f t. Thus s + t E R(r) and (2) holds 

Suppose r # s E R(r), s = C aimi . Then 

1 = 2[(s, y)/(y, ~11 = 1 ai[2(ai i rjl(r, r>i. 
As 2(01$ ) Y)/(Y, r) is a non-negative integer there is a unique aie # such that 
sk E R(r). For this k, a, = 1. 

We now prove (3). Let Y # s E R(r). Tllen T - s E A+ and s 
t=r-swehavetER(Y)ands+t=r.Supposes+AEW(r),t#A 
Then t # s + h. Applying the results of the last paragraph we get a contra- 
diction. 

LEMMA 2.5. Let G = G(q) be a Chevalkey group of normal ty’pe. If the 
Dynkin diagram of A has a double bond assume (2, q) = I, and $ A is of type 
6, assume (3, q) = 1. If / R(y)1 = I, then Q = (U,: s E 
special-type, 1 Q j = qz, and 1 Z(Q)\ = q. 

Proo;S. This is an easy consequence of the Chevalley commutator 
identities and Lemma 2.4. Indeed Q is the central product of the subgroups 
U,U,-,UV for Y # s E R(r) and each of these is of extraspecial-type and of 
order q3. 

3. THE ABELIAN CASE 

Clearly Lemma 2.5 together with Lemma 2.3 can be used to obtain lower 
bounds for Z(G, p) for many Chevalley groups G. Indeed in Section 4 
p-groups of extraspecial type will be used as the basis of an inductive procedure 
for obtaining lower bounds for l(G,p) for certain Chevalley groups G. 
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However for some of the classical groups another method gives a better 
bound. These groups are handled in this section. 

LEMMA 3.1. Let G = PSL(n, q) and assume m,(G) = 1. If n = 2, then 
Z(G, p) > (l/d)(q - l), where d = (2, q - 1). If n > 2, then Z(G, p) > q”-l - 1. 

Proof. G permutes the l-dimensional subspaces of an n-dimensional 
vector space I/ over E@ . Let P be the stabilizer of a fixed l-space of V. Then P 
is a parabolic subgroup of G. There is a normal elementary subgroup Q of P 
with / Q j = q”-l. Suppose n > 2. Then P contains a subgroup RH,, where 
R g SL(n - 1, q), Ho is cyclic of order q - 1, [R, H,,] = 1, and RH,, acts 
faithfully on Q, with H,, inducing scalar multiplication. Also RH, is transitive 
on Q+. If n = 2, then P is Frobenius of order (l/d) q(q - l), d = (2, q - 1). 

Now suppose M is a representation module of a projective irreducible 
representation of G over a field F of characteristic 0 or relatively prime to q. 
Then there is a perfect central extension G of G such that G acts irreducibly 
on M. By hypothesis Z(G) is a $-subgroup. So if Q/Z(G) = Q, then 
Q = Q,, x Z(G), where Q,, is @&-isomorphic to Q. 

By Lemma 2.1 we may assume F is algebraically closed. Clearly Q,, is not 
contained in the kernel of G on M. So there is some Q,-submodule M0 of M 
such that M0 affords a nontrivial l-dimensional representation of Q,, . Suppose 
n > 2. As RHO is transitive on Q+, the preimage of RH,, in G is transitive on 
QO# and hence transitive on the nontrivial irreducible representations of QO# 
(see [2], Lemma 1). Thus dim(M) 3 q”-l - 1. If n = 2, the preimage of P 
has 1 or 2 nontrivial orbits on Qo#, of length (l/d)(q - l), d = (2, q - 1). 
Hence dim(M) 3 (l/d)(q - 1). 

LEMMA 3.2. Let G = PSp(2~1, q) with q even, and suppose m,(G) = 1. 
Then Z(G, p) 3 &q”-l(q - l)(q”-1 - 1). 

Proof. Let V be the natural 2n-dimensional vector space over IF, for 
5”(2n, q). Then G p ermutes the l-spaces of V and we let P be the stabilizer 
of a fixed l-space. Then the structure of P is known (e.g., see [4], Section 3). 
There is a normal elementary subgroup Q of order q2+l and P = Q(R x H,,), 
where R g Sp(2(n - l), q), H, is cyclic of order q - 1, and &, acts fixed- 
point-free on Q. Also if Y is the root of highest height in d+, then P = NG( U,), 
U, < Q, Q is indecomposable under the action of R, and R acts on Q/U, in 
the usual way. We also note that G = PSp(2n, q) s PSO(2n + 1, q)‘, and Q 
has a vector space structure on which R acts as SO(2n - 1, q)‘, U,. is the 
radical, and H, induces scalar action. 

We now proceed as in (3.1). Let Mb e a faithful irreducible representation 
module over an algebraically closed field of odd characteristic for a perfect 
central extension G of G. 
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By hypothesis Q = Q,, x Z(e)>, u+. = Us x Z(G) and 
to Q. Let Z be an irreducible p-composition factor of M with U, < ker(Z). 
Then Z ! Q,, = 2, @ .** @ Z, with the Zis homogeneous and permuted 
transitively by p. Actually Z(G) is represented as scalar m~ltiplicati~~ on ZX 
so we can consider P as permuting the &‘s. Let E be the stabilizer of Z, and 
L = LjZ(G). 

By Lemma 2.2 L stabilizes the unique hyperplane Qi of 
keroO(Z,). Then Q0 = Q1 x Us and Q1, U, are L-invariant. 
where F E w and h E R,, . Then 5 stabilizes Q1 and since R z SO(2n - 1, p)‘, 
F is trivial on Q,JQi . Now 6 fixes Z, and hence is trivial on Q~/ke~~~(Z~~= 

owever H0 is fixed-point-free on Q,, . It follows that h E Z(e) and L < 2. 
With respect to the quadratic form on Q0 , Qi’ > U, and so Q1’ = Us and 

Q1 is nondegenerate. Then L is contained in a subgroup of S 
isomorphic to 0*(2n - 2,q). Checking orders we have 

IR:LI 3 $4”~l(q”-l- 1) and / P :E j 3 $q+l(q”-1 - l)(q - 1) 

i +-l Thus dim(Z) > 2q (4 +-l - l)(q - 1) and the lemma is proved. 

LEMMA 3.3. Let G = PSO*(2n, q)’ with n > 4 OP PSO(2n + I, q)’ with 
n > 3 and q odd. Assume that m,(G) = 1. 

(1) If G = PS0+(2n, q)’ and q # 2, 3, 5, then 

Z(G,$) 3 (q”-” - l)(q”-2 + 1). 

(2) If G = PS0+(2n, q)’ with q = 2, 3, or 5, then 

Z(G,p) 3 q”-2(q”-1 - 1). 

(3) If G = PSO-(2~2, q)‘, then Z(G, p) > (qn-I + l)(qaW2 - 1). 
(4) If G = PSO(2n + 1, q)’ and q > 5, then E(G, p) 3 q2(n--i) - I. 

(5) If G = PSO(2n + 1, q)’ and q = 3 or 5, then k(G, qj > qnpP 

Proof. Let V be the natural orthogonal space corresponding to 
P < G be the stabilizer of an isotropic l-space of V. We first describe the 
structure of P. The group P contains a norm elementary subgroup Q of 
order qz, where 1 = dim(V) - 2. Write V = V, i Vt where V2 is a hyper- 
bolic plane containing VI , and decompose V0 as V, = V, 1 V4 , where V4 
is a hyperbolic plane. Then P = QRH, where R is the subgroup of SO(V)’ 
that is trivial on V, and that induces the group SO( V,,)’ on V, , and H1 = (h) 
is cyclic of order q - 1 and normalizes R. The element h can be described as 
follows h is trivial on V, and on both Vz and V4 h induces the matrix (z ,“-I) 
where (a) = F,# and where the matrix is given with respect to fixed hyper- 
bolic pairs for V, and V, . Clearly HI is fixed-point- 
where 62, E SO(VJ, so that R(?z2) = R(h,) and 
H,, = (lz,) centralizes R and hence induces Scala 
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preserving a nondegenerate quadratic form. Finally, suppose 4 is odd and t 
is the involution in 23r . It is easily seen that either SO( V,)’ and SO(V)’ both 
have trivial centers or they both have centers of order 2. In the latter case, 
the product of the involution in Z(SO(V,)‘) and t is the involution in 
2(80(V)‘), so that in G = PSO(V)‘, these involutions are the same. So if 
Z(SO( V)‘) > 1, then 1 R n Hl 1 = 2. 

Let M be a faithful irreducible representation module over an algebraically 
closed field of characteristic differentfromp for a perfect central extension Gof G. 

Let Z be an irreducible RQ-composition factor of M, such that Q0 $ ker(Z), 
where @/Z(G) = QR, Q/Z(G) = Q, and & = Q0 x Z(G). Then Z j Q,, = 
Z, @ ... @ Z, where the Za’s are the distinct homogeneous components of Q,, 
on Z. Let E be the stabilizer in @ of Z,. Clearly & GE, so set L = L/Q < R. 
By 2.2 ker,$ZJ contains a unique hyperplane Q1 of Q0 . Thus e stabilizes 
Qr (here we use the fact that L induces a subgroup of R on Q,,). 

Suppose that rad(QJ # 0. Th en rad(Q,) is an isotropic l-space of Q0 
stabilized byE and we can determine the subgroup L of R. We have described 
the stabilizer, T, in R of rad(Q,). In particular it follows from that discussion 
that T-contains a normal subgroup To having index q - 1 in T such that T,, 
is trivial on Q,/(rad(Q,))‘- and T/To is fixed-point-free on Q,,/rad(Q,))‘-. Now L 
fixes Z, , so L is trivial on Qo/kerpO(Zr). This implies that L < T,, and con- 
sequently dim(M) > K = j R : L / > (q - 1) j R : T 1. If G = PS0+(2n, q)‘, 
PSO-(272, Q)‘, or PSO(2n + 1, a)‘, then (4 - 1) 1 R : T 1 is, respectively 
(q+l - l)(qne2 + l), (4%-l + l)(qne2 - l), or (q2(+l) - 1). So we are 
done if rad(QJ # 0. 

Now suppose rad(Q,) = 0. S ince @? a p, there is an irreducible p-corn- 
position factor, Z’, M such that Z is RQ-isomorphic to a factor of Z’. Write 
Z’IQo=Z(@..-@Zm’, where the Zi’ are homogeneous. We may assume 
that Z, is isomorphic to a factor of Z,‘. Then Q1 is the unique hyperplane 
of Q,, contained in kergO(Z,‘). Let & be the stabilizer in P of Z,‘, so that 
& n R = E. Set L, = L,/Z(G) and L, = Ll n RH,, , where Ho is as in the 
first paragraph. 

We have Q,, = Q1 i QrI, with Qr’ an anisotropic l-space. Suppose 
rh ELO, with Y E R and h E Ho . As h is scalar on Q0 , Y stabilizes Qr , and 
hence Y stabilizes Qr”. Consequently Y induces fl on Qr’. However rh is 
trivial on Q,-jkero,(Zr’), so rh is trivial on Q1” and h induces fl on Q,, . Thus 
L, < R(t), where t = 1 if 4 /c q - 1 and t is the involution in H,, otherwise. 
Thusdim(M)>wz=~/:E/>jRH,:L,I=IRH,,:R(t)~jR(t):L,I. 

Ifqiseven then t=l, jRH,,:R[=q-ljandL,<R.InR the 
stabilizer of Qr is SO(QJ’. Since q is even, G = PSO*(2n, q)‘, / R 1 = 
q(n--l)(n--a)(qn--l ‘F l)(q2(7+2) _ 1) 1.. (@ _ 1) and 

j SO(Q1)’ 1 = q+2)2(q2(7+2) _ 1) . . . (@ - 1). 
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Thus dim 3 (q - l)qa-2(qn-1 i 1). So dim(M) 3 (q”-1 F l)( 
less q = 2 and G = PSO+(2n, q). In the last case the bound in 
om now on we may assume that q is odd. 
Suppose G = PSO+(2n, q)‘. Then R s SO+@(n - I), 4)’ and / 

~qh-ll~n-2yqn-1 _ 1)(q2(n-2) _ 1) ..~ (q2 - 1). If 4 j 9% - II, then Z(SO(V)‘) > I 
and as mentioned earlier 1 R n HI j = 2. It follows th.at t E R. If 4 ii q” - I, 
then 4 Y q - 1 and / H, / is odd. So in either case 
acts trivially on Qr’ and induces a subgroup o 
IL, j < +q(n-2j2(qz(n-2) - 1) **. (q2 - l), and / : L, I = j R : Lo / 3 
pn-2(qn-1 - I). Thus dim(M) 3 j RN, : R / q+“(q 
+(q - I) or &(q - 1), d epending on whether 4 
quently the bound in (1) holds if q > 5 and the 
This proves the lemma for the case G = PSO+(2n, 4)‘. 

Next suppose that G = PSO-(2lz, q)‘. Then R G SO-(2(n - l), q)’ and 
j R / = &q(n-l)(n-2j(qQ-1+ l)(q2(+2) - 1) .*. (42 - 1). If 4 j q + 1, then 

/HoI =&(q-1)isoddandl =t~R.If4{q+l,thenl ftandt#R. 
In the first case we proceed as above and get dim(M) 3 &(q - I)qn-z(qn-l + I), 
so that the bound in (c) holds. Suppose then that 4 Y g + 1, so that R(t) = 
R x (t). Then L, < R,(t), where R, is the stab zerinRofCI,.ketR,< 
be the kernel of the action of R, on $I& : R, j = 2, R, is trivial on 
Qli, and R, induces SO(QJ on Q1 . Thus 

1 x (t)l = 4 / R, 1 = 2q+2)a(q2in-a) - 1) ..D (q'_ 1). 

Also t $L,, so IL,, x (t>:L, I = 2. Then dim(M) 2 I RI& : R(t)! / R x (t): 
1 x (t)l 1 Rl x (t):L, x (t)] IL, x (t):L, 1 > gq- )(*)q”-yqn-l f !>2 = 

i(q - l)qn-2(q”-1 + 1) > (q”-l + l)(qnm2 - 1). Again we have the bound in 
(c) holding, proving the lemma for G = PSO-(2n, q)‘. 

The last case is PSO(2n + 1, 4)‘. Here R s SO(2jn - 1) + 1, q)’ 
and 

j R 1 = (l/2)*("-Q"(q2("-1) - 1) *a" (42 - 1). 

If t = 1, then L, < R and 1 RH, : R j = +(q - 1)~ Then LG is trivial on 
Qr” and induces a subgroup of SO*(2(n - I), 4)’ on Qr s Consequently 
j L, / < (*)pl)(n-2yqn-l F l)(q2(“-2’ _ 1) ~.. (q2 - 1). Therefore dim 2 
$(q - l)pn-l(qn-l f 1). This gives the bound in (4) unless q = 3 in which 
case the bound in (5) holds. Next suppose t # 1. Then t 6 R, 4 / q - I, 
R(Q = R x (t) and we proceed as in the previous paragraph. Namely 
L,<L,~(t)~R~~(t),and/R,:R,j=2where 
We obtain dim(M) 3 $(q - l)($)q”-l + 1)2. Since 4 I q - 4, $(q - 1) >, I 
and we obtain the bound in (4) or (5). This completes the proof of (3.3). 
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4. THE EXTRASPECIAL CASE 

In this section we will use groups of extraspecial type together with other 
arguments to obtain the required bound for the groups G = G(q) that have 
not yet been considered and that satisfy m,(G) = 1. We first handle the 
rank 1 groups. 

LEMMA 4.1. 

(a) rf G = PSL(2, q), q # 9, then Z(G,p) > (l/d)(q - l), where 
d = (2, q - 1). 

(b) If G = PSU(3, q), q > 2, thez Z(G, p) 3 q(q - 1). 

(c) If G = 8x(q), q > 8, then Z(G, p) 3 (q - l)(q/2)1’2. 

(4 If G = Fa(q), i&-a I(G,p) 3 q(q - 1). 

Proof. Let Q be a Sylow p-subgroup of G, so that N(Q) = QH where H 
is cyclic. If G = PSL(2,2) or PSL(2,3) the result holds. Let G be a perfect 
central extension of G and let G act faithfully and irreducibly on a vector 
space M over an algebraically closed field of characteristic other than p. 
The assumptions on q imply m$(G) = 1, and hence Q = Q0 x Z(G) where 
Q,, is N(Q)-isomorphic to Q. Write M / Q,, = M1 @ ... @ n/l, where the &Ii’s 
are the homogeneous Wedderburn components of Qa on M. 

If G = PSL(2, q), then Q0 is elementary of order q and H has d orbits of 
equal size on QO+, where d = (2, q - 1). Since Q, is not trivial on M, 
K 3 (l/d)@ - 1) and (a) holds. 

If G = PSU(3, q), q > 2, then Q is of extraspecial-type of order q3 and H 
is transitive on Z(Q)+. By Lemma 2.3 i # j implies that Mi / Z(Q,,) and 
Mj j Z(Q,) are inequivalent. Thus i7 permutes the Mj’s and K > q - 1. 
Moreover Lemma 2.3 implies that dim(Mj) > q, and dim(M) 3 q(q - I), 
proving (b). 

If G = Sz(q) then we use the results in [12], Section 4 to obtain the 
structure of Q0 z Q. We have Q,, = Z(Q,) = @(Qa) = &$(Qs). The elements 
of Q0 can be labeled g = g(a, /3) w h ere 01, B E FG ad g(a, P> g(y, 8) = 
g(a + y, c@ + /3 + S) where 0 is the field automorphism x ---f xT, Y = 2”, 
and q = 22n+1. Then [g(ol, /I), g(y, S)] = g(a, y@ - c@). We claim that if 
T < Z(Q,) and j Z(Q,,): T 1 = 2, then Q,,/T is the central product of 2, with 
an extraspecial group of order q. To see this it suffices to show that Z(Q,/T) 
has order 4. As q is an odd power of 2, Z(Q,/T) > Z(Q,)/T. Suppose 
gEQO--Z(QD) andgTEZ(Q,/T). Wewillshow thatZ(Q,/T) = (gT, Z(QJT>. 
As H is transitive on (Q,,/Z(Q,))# we may assume that g = g( 1,O). Then the 
above commutator relation implies that T = {g(O, y - y@): y E ff,}. Suppose 
that 01 E lFg# and g(cz, B)T E Z(Q,,/T). Th e same commutator relation shows 
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that for each y E 5, , there is a S E lF4. such that y& - O@ = S - So. Note 
that x@ = xliz. Letting y = a-0, we have 1 - 0W = S - 6” and 01 = 1 + x 
where x E [ff, , fi] = (5 - {*: l E IF,}. Then for y E F, ) 7~8 - qP = 
y - y” $ yx” - xy” = S - S” for some 6. Thus y.@ - xy@ E [EC , O] for 

f x # 0, then as above x = 1 + y for some y E [F, , 01, and h 
] a contradiction. Thus x = 0, a = 1, and g(e, p)Y’ = g(k, 

This proves the claim. 
We may assume that Z(Q,) is nontrivial on A41 . Set 1’ = ker,(Q,~(lWJ and 

obtain / Z(Qa): 7’ 1 = 2. Then it follows from the claim and Lemma 2.3 that 
dina > (4/2)i12. Thus dim(MJ 2 (q - l)(q/2)1/2 and (c) holds. 

Finally we consider G = 2G,(g). The structure of Q is well-known. If 
2 > 3, ! Q / = q3? Q’ = Q(Q), 1 Q’ i = q2, and i Z(Q)] = 4. A~SQ Q’ is 

elementary and Q’ = Q” x Z(Q) where Q” = C’,(t) and t is the involution 
in H. Finally j If 1 = q - 1, H is fixed-point-free on Q/Q’ and on Z(Q), and 
H/(t) is fixed-point-free onQ”. If q = 3, then G E PrL(2, 8) Q is metacyclic 
of order 33 and the result follows as in (b). So we may suppose q > 3. Let 
p = Q1 x Z(Qo) x Z(c),, where Q1 = Q”, and consider 

where the A&‘s are the distinct homogeneous components of Q1 x Z(Q”,). 
Since G acts faithfully on M, there are some Mi’s not having Z(QJ in its 
kernel. These fl/li’s are permuted by QB. If Q1 is in the kernel of each of these 
Mi’s then 4 QO , which is not the case. So there is some A4( with neither 

car Z(g),) its kernel. Let 9 be the character of Q1 >: Z(Q,) afforded by 
irreducible (Qi x Z(Q,))- su mo u e b d 1 of A& s Then g, = palqn, where q1 is 
a nontrivial linear character of Qi and v2 is a nontrivial linear c 
Z(Q,). Suppose pg = y where g = xh for x EQ, h E R. Then h fixes the 
character y’z of Z(Qs) an d so h E Z(G). Thus g E Q. The stabilizer R of .M< in 
QR stabilizes g, and Q’ < K < Q. If g E Q - Q’: then ) g] = .Z(QJ (see [l?], 
Section 3). Thus there is an element qi E& such ti&fi,g]$kerqz.We 
then have dczJ = dd and dc~~) = dd~l p iI) = ~WP&Q Tg1) and 
g $ K. Thus K = Q’ and if follows that E 2 q(q - l), proving ( 

LEMMA 4.2. Let G = G(q) and let U, < U be a root subgmzkp such thaw 
1 Z(U,)j = q. If G(q) c$. PSp(2n, q) with q odd (we allow 1z = I), t&m H is 
t?ansitive on Z(U,)#. Otherwise H has two orbits of length +(q - 1) on Z(d[i,)+. 

roof. If G has rank 1 this is easily checked. Otherwise let d be the root 
system of G and let 01~ ,..., a, be a fundamental system for 8. Then there is 
some w E W and 1 < i < n such that (7)~ = 01~. Then Ur is conjugate to 
Ua, and we may assume P = C+ . Letj be chosen such that czi + &zj is a root 
foi some c > 0, d > 0, and set L = (hi,,; , UQ, Then L is a rank 2 
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Chevalley group and L/Z(L) g PSL(3, q), PSp(4, q), PSU(4, q), PSU(5, q), 
G,(q), 3D,(q), or 2F,(q). By direct check it can be seen that H n L is transitive 
on Z( U=f) except in the caseL/Z(L) E PSp(4, q), q odd. Indeed for the classical 
groups his can be seen by considering the geometry. For the cases G,(q) 
and 3D,(q) this can be worked out from the commutator relations or using 
the calculations in ([7], Section 9). The case of 2F,(q) is easy as {(UQ, 

<UA,)> = (SW, q), Sx(q)) and q is even. 
We must now observe that if L/Z(L) E PSp(4, q), q odd, then G = 

PSp(2n, q), PSO(2n + 1, q)‘, or F,(q) (this can be seen from the Dynkin 
diagram). If G = F,(q), then there is a fundamental root olle such that 
LI = (U+ , U+,$ satisfies L,/Z(L,) g PSL(3, q). So in this case H is 
transitive on Z( UUi)#, Suppose G = PSO(2n + 1,q)’ with n 3 3. If 01~ f an, 
then there is a k such that L, = (U*,i, U+EB) satisfies L,/Z(L,) = PSL(3, q). 
Suppose 01~ = a, . Let V be the natural module for G = SO(2n + 1, q) 
and let E, = ( UA,~, U+m,-,> g SO(5, q)‘. Then there is a nondegenerate 
5-space V, of V such that & is trivial on V r-‘-. Considering orders we see that 
stab(V,) > SO( Vi)’ x SO( Vrl)‘. In fact stab( V,)/SO( VI’-)’ g 0( Vi). It 
follows that i;i is transitive on uzi . Thus H is transitive on lJz . Finally, if 
G = PSp(2n, q) and i = n, then H has 2 orbits on lJi# = b%+ each of 
length $(q - 1). 

At this point we list the Dynkin diagrams for the groups G(q) + 2Fq(p) not 
considered so far and produce certainp-groups of extraspacial-type. 

.-. . . . .(ZZ. 

1 2 n-l n 

.-. . . . .===. 
1 2 n-l n 

1 3 4 5 6 
.-.-.- .-. 

! 
2 

1 3 4 5 6 7 
.-.-. -. -. -. 

I 

i 

1 3 4 5 6 7 8 
.-• -*-. -. -* -. 

I 
i 

(G(q) = PSU(2n, q) or 

PSVn, q), q odd) 

(G(q) = PSU(2n + 1, 4)) 

(Gkd = -uq)) 

(GM = E,(d) 

(G(q) = &(q)) 

(WI) = Fdd or 2~&N 

(G(cz) = G(q) or 34We 
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In each root system A (omit BC,) let Y be the root of highest height (see the 
tables of roots in [l]). Let q ,..., a, be a fundamental system of roots in A+. 
Then if 1 < k < n, Pk = (B, sr ,..., skPl , sk+r ,..., s,) is a maximal parabolic 
subgroup and Qh = O,(P,) = rjts U, w h ere the product is taken over those 
s = C ciai in A+ with ck > 0. Using the root structure given in Bourbaki [l] 
it is easily checked that in each of the above cases R(r) (see Section 2) contains 
precisely one 01~ . It then follows (see the proof of (2.4)) that (U,: s E A+> 

The values for K are as follows: 

A = c, k=l 

A = E, k=2 

A = .I& R=l 

A = E, k=8 
A =F4 k=l 

A = G2 k=2 

G(q) is one of the remaining groups (other than PSU(2n 
P = P, , and R = (U+: i # k). Then by Lemma 2. 

extraspecial-type provided that G is of normal type and G # F,(q”), q even, 
G # G,(q), q = 3”. If G = PSU(2n + 1, q), let Q = Qr = O,(P,), P = Pi, , 
and R = (U+: i > 1). If G = PSU(2n + 1, a), PSU(2n, q), aE8(q), or 
F&2”), then the structure of Q and P is described in [4], Sections 3-4. If 
G = G,(q) or 3D,(q) then the structure of Q and P is obtained in [7], Section 9 
(for G,(q) this is easily obtained from the Chevalley commutator relations). 
f G = 2F4(q) let Q = Qr and P = PI, where the ordering is such that 

R = (U, , U-,) g S%(q). We will use the structural properties obtained in 
Section 10 of [7]. We have the following: 

LEMMA 4.3. If G # F,(q), q even or G,(q), q = Y, then is of extra- 
special-type, ! Z(Q)\ = q, and 1 Q j is us follows: 

PSU@n, q) 

J’SPP, qh q odd 
PSU(2n f 1, q) 

E&d 
J%?) 
-G(q) 
F&d 
2%k~ 
G(q) 
“Un) 

4 4(9%1)-il 

4 
2(n-l&l 

4 
2(2n--l)+l 

4 
21 

4 
33 

4! 57 

i5 4 

4 
21 

q5 

9" 
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LEMMA 4.4. Let G # 2F,(q) have rank at least 2, m,(G) = 1, and Q as in 
(4.3). 

(a) If G = PSp(2n, q) fey q odd, OY if G = PSlJ(n, q), then l(G, p) >, 
minQ/s(q - 1) I Q: z(Q)l”“, (l/Sk - 1) I Q: z(Q>l’/” + PI-W), q)), where 
s = 2 if G = PSp(2n, q) and s = 1 $ G = PSU(n, q). 

(b) If G is an exceptional group and G # F,(q) then 

KG, P> b +(cf - 1) I Q: z(Q)I”“. 

Proof. Let G be a perfect central extension of G acting nontrivially on a 
finite dimensional vector space M over a field of characteristic other than p. 
Then Q = Q0 x Z(G) w ere h Q,, is P-isomorphic to Q. Also Z(Q) = 
Z(Q,) x Z(C). Th ere is a root s E A+ such that s # r and s is conjugate to 
Y by an element of IV. Checking the root systems we see that 77, < R = 
(U*+: i > 1) in case (a) and that in cases (b) s may be chosen such that 
Us <Q. 

Write M = M1 @ Mz where M1 = C,(Z(Q,J) and M, = [.Z(Q& M]. 
Then Ml , Mz are P-invariant and M, # 0. Next we write Mz 1 QO = 
V, @ ... @ V, where the Vi are the distinct homogeneous Wedderburn 
components of Q0 on Ms. On each Vi Z(Q,) is nontrivial and induces scalar 
multiplication, and by Lemma 2.3 i #j implies that Vi / Z(Q,) and Vj 1 Z(Q,) 
are inequivalent. Now Lemma 4.2 shows that k = q - 1 if G # PSp(2n, q) 
and k = q - 1 or &(q - 1) if G = PSp(2n, q). Also Lemma 2.3 implies that 
/ Q : Z(Q)11/2 = 1 Q,, : 2(Q0)11j2 divides dim( Vi). 

First suppose we are in case (b). Then U, < Q, U, = Z(U,), and 
us = L x Z(G) where L < Q0 and L n Z(Q,) = 1. If 0 is the character of 
Q,, afforded by M2, then Lemma 2.3 shows that 0 vanishes on L# and hence 
0 j L = cpL , where pL is the regular character of L. Then c = (l/q) dim(M2) 2 
Wd(q-l)IQ:z(Q)l II2 and L fixes each vector in a subspace of M2 of dimension 
(l/q)(q - 1) 1 Q : Z(Q)11j2. As L and Z(Q,) are conjugate, and as Z(Q,) fixes no 
nonzero vector in M2 , it follows that dim(M,) > l/q(q - 1) I Q : Z(Q)/l/“. 
Then dim(M) = dim ML + dim M, 2 q-1(42 - 1) I Q: Z(Q)l’/s and the 
result follows. 

Next suppose we are in case (a). Here U, < R. Write R = R, x Z where 
R, is a central extension of R and 2 < Z(G). Unless R = PSL(2, 3), we may 
assume that RX is a perfect central extension. If R = PSL(2, 3) we may 
assume R, = SL(2,3) or PSL(2,3). In either case L < R, and LR1 = R1 , 
where L x Z(c) = gz . 

So if L acts nontrivially on Ml , then dim(M1) > Z(R/Z(R), q) (note that 
Z(R/Z(R), q) = 1) if R = PSL(53)) and 

dim(M) 3 Uls)(p - 1) I Q : z(Q>P” + W-W), 4). 
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Suppose then that L acts trivially on MI . 
can fix no nonzero vector in Ma . 

J are canjugate, L 

From Lemma 4.2 it fohows that M acts irreducibly on Z(U+.). Since 
)H normalizes Z( U,.) = Z(Q) and since U !“7 R centralizes a non- 

identity element of Z(Q), it follows that U f7 R < &x( and con- 
sequently R centralizes Z(Q). Therefore I? centralizec stabilizes 
v 1 ,“**Y V, ~ In particular (U, I U-J fixes each Vi 1 Set HI = pi i7 (US ) U-J. 

hen considering the possibilities for the rank I group (U, , LrM,> we see 

that HI is either transitive on Z( U,)# or HI has two orbits of length $(q - 1) -- 
on Z(U,J+. Consider Z(U,)Hr = LB1 acting on V5 . 

where the Wij are the distinct homogeneous Wedderburn components of& 
on Vi . Now gI permutes the Wij and L is trivia! on no W.j _ Th.us each 
orbit of RI on the VVij’s has length Q - 1 or &(q - I). So dim(Vi) is divisible 
by q - 1 or &((r - 1) and hence (q - I) / Q: Z(Q)il’” or 
divides dim(V$. If 4 > 3, then dim(Vi) >, 2 ; Q : 
(I/s)@ - 1) dim(Z/i) and the result follows. Su 
/ L ; = 2 and L induces scalar action on Ma . 
[Z( U,), Q] f 1. Suppose 4 = 3. Here / Z( 
cannot be scalar on iI!& . Therefore Z(Q,,) is not scalar on Mz (i.e., k > I). 
6: LO n/l,=V,@V, and dim(M) 2 2 dim(Vr) > 2 1 Q : Z(Q)]ri”. Hf 
G = PS’(2n, 3), then 2 / Q : Z(Q)i’/” = 2/s(y - 1) i Q : Z(@)lr/a, and we are 
done. The only remaining case is G = PSU(n, 3). If M Cl 
cm .Z( lIJ3i,)#> then by Lemma 4.2 R = P5X(2,3) and E = 4. But here 
m,(G) # 1 ([S:). So .H n R is transitive an Z(U,)” and as before 2 = 4 - ! 
divides dim(VJ and dim(M) > dim(A&) > 2 dim(&) >, 4 1 Q : Z($I)]r/2 and 
the result holds. This completes the proof of Lemma 4.3. 

LEMMA 4.5. If G = E&q), ET(q), E&q), G,(q) with q f 4, ?P, OY Da3(q), 
en the Theorem holds. 

Pmof. This follows directly from Lemma 4.4(b) and the facts in (4.3). 

LEMMA 4.6. 

(a) dfG = PSp(2n, q) for q odd, then E(G, $) >, $(p” - 1). 

(b) Sf G = PSU(2n, q) with n>2 and q34 ifn=2, i(G,p)> 

k2” - l)llP + 1). 

(c) If G = PSU(2n + 1, q) with n 3 2, the?z E(G, p) 3 (q2” - 1) 

q/(4 f I>* 

h/32/2-13 
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Proof. We use Lemma 4.4 and induction. Suppose G = PSp(2n, q) for 
q odd. If n = 1, the result follows from Lemma 4.1(a). If n > 1, then 
Lemma 4.3(a) implies 

Z(G,p) 3 min{(q - 1) pm-l, +(q - 1) qlzP1 + g(q+’ - 1)) = &(q” - 1). 

This proves (a). 
Next we consider (b). Let G = PSU(4, q) with q 3 4. Lemma 4.4(a) 

shows that Z(G,p) 3 min{2(q - 1) q2, (q - 1) q2 + Z(PSL(2, q), q)}. In the 
proof of Lemma 4.4(a) we actually showed that 

Z(G, p) 3 mint% - 1) q2, (q - 1) q2 + VWW~), 4)). 
Now RH/Z(RH) e PGL(2, q) an d as in Lemma 4.1 we have Z(PGL(2, q), p) > 
q - 1 provided q # 9 (i.e., m,(PGL(2, q)) = 1). Since mJPSU(4, 9)) = 1 
([S]) no 3-fold covering group of RH/Z(RH) will appear in a perfect central 
extension of PSlJ(4, 9). It follows that Z(RH/Z(RH), p) 3 q - 1 in all cases 
and Z(G,p) > (q - l)(qz + 1). Inductively let G = PSlJ(272, q). Then 
Z(G,p) > min(2(q - 1) q2n-2, (q - 1) q2n--2 + Z(PSU(2n - 2, q), q) 3 
min{2(q - 1) q2n--2, (q - 1) q2n-2 + (q’n-2 - l)/(q + 1) = (q - 1) q2n--2 + 
(q2”-2 - l)/(q + l)} = (q2” - l)/(q + 1). This proves (b). 

The proof of (c) is similar (use Lemma 4.1(b)). 

LEMMA 4.7. If G = G,(q) with q = 3a > 3, then Z(G,p) 3 q(q2 - 1). 

Proof. Consider Q as in (4.3). Let 011 be a short root and 0~~ a long root. 
Then Q = U n Us1 = Us Us2 lJ$‘z Ups1 Uil. However Q is not of extraspecial- 
type because the commutator relations imply that [Uiz, Uiz’l] = 1. In fact 
Q = Up lJpsl x U, Us Uij~s~ and U, Up U$‘z is of extraspecial-type of order q3. 
Also (Vi , Up> = R g SL(2, q) acts in a natural way on Up U~~sl and on 
u2u2 lJ~Q/ up. 

Let G be a perfect central extension of G and assume that G acts faithfully 
and irreducibly on a vector space M over an algebraically closed field of 
characteristic other than 3. Write g = Q1 x Qs x Z(G) where 

QIZ( c)/Z( c?) = UF Us,‘, and Q,Z(G)/Z(G) = U2U,S,U~sz. 

Let &I1 = [n/r, Z(Qs)]. First suppose that [Ml , Qr] # 1. Then Q2 acts on 
[Mr , Qi] and (2.3) implies that q divides the dimension of [Mr , QJ. Also 
RQ, acts on [Mr , QJ and Q1 acts without fixed points. As i? is transitive on 
the nontrivial linear representations of Q1 , it follows that q2 - 1 divides 
dim[M1 , Qi]. Hence dim(M) > q(q2 - 1). So we may assume that Q1 is 
trivial on Mi . Next write M = Ml @ C,(Z(Q,)) and C,(Z(Qs)) = Ma @ M3, 

where n/r, = [C,@(Q2>),Q11 f 1 and n/r, = CdZ(QJ) n CdQd. The 
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I acts on iiJz and $I1 acts without fixed points. St follow-s that iUS 
contains each nontrivial linear representation 0 al number of times 
and dim(Ma) = x(q2 - l), Let up”1 = hia x 81, = uoi,, x %(a;‘). 
It is easy to see that U, is contained in the kernel of precisely 4 - 1 nontrivial 
linear representations of 8% and that UOOQI is of extraspecial-type with 

Z(Uo,Q1) = U. . Thus iWz = C,z(U,) x [Ma , hi,], d~m(~~*(~r~)) = ~(4 - 1) 
and on [Mz, U,], U,, induces x(q - 1) copies of the regular representation 
of u,, . We now have dim(CM,(Ub)) = ~(4 - 1) and d~rn(~~~~~~)) < 
2x(q - I). 

Next we consider U,,, acting on MI . First we note that the elements of 
(Up’z)# are all conjugate in P (actually in H) so MI = Mr,, @ ... 0 MI,,-, 
where the Mlzj j Q2 are homogeneous and conjugate under the action of P. 
So there is an integer y such that dim(Mr,j) = yq and dim(Mr) = y& - 1). 
Suppose that dim(CMI(UO,)) > gyq(q - I). If t E G and tZ(e) = s1 f then 

d~rn(~~~(~~)) > $yq(q - I) and so dim(CM1((UO,, ) U&J)) > $yq(q - I)- 
Let I< = (UOO, U,$,). Then K%(G)/Z(G) = pi and if if g E Q, - Z(Q,) then 
(K, 22) %(G)/%(G) = RU,U;dJp. But c&q n Kg) f 0, and this 
implies that CM1((K, A?)) # 0, and so CM1(Z(Qz)) which is not the 

case. Thus dim(C,-( U,,)) < $y& - 1)~ 
We now have &m(CM(UO)) = dim M, + z(q - 1) + y& - 1) and 

dim(CM(Uoo)) < dim Ma + 2x(p - I) + $yq(q - I). As U,, and UO, are 
conjugate in G it follows that 2x(q - 1) + gyq(q - I) > x(q - 1) + yq(q - I) 
and x >, (i)ya. Consequently dim([M, U,]) = dim([MS ) UO]) = x($ - 4) > 

(B)yq% - 1) and dim(W, z(Q,)l) = yq(q - I), As q > 3, dim(iJ& u,J) > 
dWK ~&A>l. 

Now the graph automorphism of G interchanges Ur and Uz , hip 
U$‘z, and the maximal parabolic subgroups P and P’ of 6, where P’ = ( 
Thus we could have started with the parabolic subgroup P’ and considered 

‘). Arguing as above we would obtain dim[M, ZQ)]) > dim([M, UJ) 
and this is a contradiction. The proof of 4.7 is complete. 

(a) If G = F4(q) and q = 2” > 2, then 6(G, 2) >, $q7(q3 - l)(q - 1). 

(b) If G = F,(q) and q odd, then l(G, p) > q4(q6 - I). 

(c) If G = 2E6(q) and q > 2, then l(G, p) > q8(q4 + I)(@ - I). 

P~ooj. To prove the lemma we use the results of [ib], Section 4 giving the 
structure of the parabolic subgroup P = P, . P contains a normal subgroup 
T = O,(B) and a subgroup R such that R g SO(7,q)’ if G = F,(q) and 
R g SCr-(8, q)’ if G = 2E,(q). Th en P = TRM. There is an elementary 
subgroup pi= < T such that K d P, / K 1 = q7 if G = F,(q) an 
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G = 2E,(q). Moreover R acts in a natural way on K preserving a non- 
degenerate quadratic form. Also P acts irreducibly on T/K. 

Let G be a perfect central extension of G acting faithfully and irreducibly 
on a vector space M over an algebraically closed field of characteristic other 
than p. Write T= To x Z(G), K = K. x Z(G), and us = Us x Z(G), 
where s is the root ol, + 2a, + 3a, + 201, . If G = 2E,(q) then j Us / = q2 
and U, is a 2-space in K,, G K. If G = F,(q) for q odd, then U,, is a l-space in 
K. , and is G = F4(q) for q even, then U,, = rad(K,). 

If G f F,(q) with q even, that R acts irreducibly on To/K,, and on K,, and 
hence K,, < Z(T,,). Supp ose G = F,(q) with q even. The graph automor- 
phism of G interchanges the parabolic subgroups PI and P4 . The structure 
of Q = O,(P,) is given in [4], Lemma 4.5, and it follows from this that 
K, = Z(T,,). So in all cases Ks < Z(T,,). 

Let MI be an irreducible P-submodule of M such that U,, .z& kerp(Mr). 
Write MI / K, = 2, @ ... @ 2, , where the &‘s are the distinct homogeneous 
Wedderburn components of K, on MI. Let KI be the unique hyperplane of 
K,, such that KI < ker,JZ,) (Lemma 2.3). We may assume that U,, $ KI 
and hence Ku = KI + U, . 

Since K,, < Z(T,,), To fixes each Zi . In particular T,, fixes 2, and To/K1 
acts on 2, . We claim that T,,/KI is of extraspecial-type. To see this we first 
note that T/K e n U, where the product is direct and taken over all short 
roots t in A+ such that t has a nonzero coefficient of 01~. For each such t, s - t 

is another such root and so lJ,U,-,U, is of extraspacial type of order / U, f3. 
If G = F,(q), 1 Us j = q and if G = 2E,(q), then [ Us I = q2. Thus T,,/K, is 
of extraspecial type of order qQ or q18, respectively. We now have that 
dim(&) > q* if G = F4(q) and dim(&) 3 q8 if G = 2E,(q). 

Let E be the stabilizer in P of 2, and & = J? n R. Suppose G = F*(q). 
Then there is a subgroup H, of H such that RH,, = R x H,, , Ho is cyclic 
or order q - 1. Indeed choose h = h(x) such that ~(a~) = x(a2) = ~(01~) = 1 
and x(olg) = 5 where (f) = [F,#; then H,, = (A). If t E d+ and U, < K, then 
the coefficient of ag in t is 2 (see [4, Section 41). So Ho is scalar on K, of order 
(q - 1)/(2, q - 1). If q is even we proceed as in the proof of Lemma 3.2 and 
obtain 1 P :e I > (&)q3(q3 - l)(q - 1). Suppose q is odd, In this case we 
proceed as in the proof of Lemma 3.3 and obtain j P : L / > q6 - 1 (note that 
here I Ho j = q - 1 rather than Q(q - 1) as in (3.3)). 

Suppose G = 2E,(q). If rad(K,) f 0, then proceeding as in the first part 
of the proof of 3.3 we have j i? :& j 3 (q4 + l)(q3 - 1). Now suppose 
rad(K,) = 0. If q is even, & < R < 0*(7, q) z Sp(6, q) and / i? :& I > 
q3(q4 + 1) > (4” + l)(q3 - 1). If q is odd, then since & is trivial on I&&, E1 
induces a subgroup of SO*(7, q)’ on KI . Checking orders we again have 
I fz :r;, I > q3k4 + 1) > (q4 + l)(q3 - 1). 
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01 (4” + l)(q3 - 1) according as G = F,(q) q odd, F&) q even, or “E,(q). 
ut / p : E / is the number of conjugates of Z, and hence dim(M) 3 

dim(Mr) 3 q4(q6 - l), ($)q7(q3 - l)(q - I), q*(p* + I)(q3 - I) according as 
G = F4(q) q odd, F4(q) q even, or 2E,(q). This completes the proof of 
Lemma 4.8. 

~EMMk?. 4.9. 1j G = 2F,(q), then l(G, 2) 3 (q/2)1/2q4(p - 1). 

Proofs Let Let G be a central extension of G such that Z(G) < G’ and 
suppose that G acts faithfully and irreducibly on a module M over an 
algebraically closed field of odd characteristic or characteristic 0. Then 
m,(G) -= 1 (see Greiss [S]). 

Write Q = QO x Z(G). Then QO z Q and the structure of QO is determine 
in Section 10 of [7]. Let M = MI @ ... @ Mh be the decomposition of Minto 
the distinct homogeneous Wedderburn components of QO’. We consider the 
action of P on Q to be the same as that of H on Q. ~ P = Q(W x HO) where 
R g Sx(q), Ho is cyclic of order q - 1, and Ha acts fixed-point-free on Q. 
Write U~‘zsl = U, X Z(G), Q’ = Q1 X Z(G). 

We may assume that &I,( U,) 6 ker MI . Then Q2, = kero,(MJ .CJr(si,). 
Since I Q1 j = q5 and Qr is elementary abelian, there are q*(q -- I) subgroups 
of QI having index 2 and not containing 52,(&). We claim that these are 
conjugate in m,, . To see this we go to the group QH, (see 6M of [7]). Then 

Let T = Q,(U~) X Ufz’l X lJ~‘lsz X Sa,(U$“~) X To where To is a subgroup 
of index 2 in .C&( U$‘z’l). Let L = NQHO(T). Since Q’/‘I’ has order 2, E < Q 
(S-E, is fixed-point-free on Q). At this point we apply the results in [?I, Section 
10. We immediately see that N(T) > JJ,( U$) ~~s~~~s~s~~~~“:“~~~(~~3~). 
Suppose that abed E N(T) with a E U, , b E U& c E UpQ, and HE !I.@ If 
b $ Q1(U$), then using (10.11) (i) of [7] we have [6, CJ~‘l’~] = .C?,(U.$s~sl). As 
a, c, d EN(U$~~~~) < N(Q,( U~s2sl)), a, c E C’(U~s~s~)p and [c& Up’l”*] < Uil”2, 
we have 52,( U$‘z’:) < [&cd, U~@l’~] < [abed, T] < T, a contradiction. Thus 
b E 52,(Ug) < T and similarly c E 52,(U,sl”z) < T. So ad E N(T). If a # 1) 
then (10.13) (i) and (10.15) of [7] show that [a, UilS2]T 3 Qn,(U$‘~‘l). Mso 
[ds U$‘z] = I. As above this leads to a contradiction. Thus a = 1 and 
similarly d = 1. This proves that 

NQoH( T) zzz Q,( Uz) Us,‘, ,zs+, U;““%2,(U~s~) 

and so T has q4(p - 1) conjugates in Q,H, proving the claim. 
It fo!lows from the claim that k > q4(q - 1). Also if T = TO X Z( 

then a, = kerzq(Mi) for some i. Then U, -slszs~ stabilizes .!%& and as in 
(4.1) (c) we have dim(MJ > (~~/2)r/~. Thus dim(M) 3 (~/2)~~z~4(~ -. 1) and 
the lemma is proved. 
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5. THE CASE m,(G) # 1 

At this point we have handled all Chevalley groups G = G(q) such that 
m,(G) = 1. It remains to prove the theorem for the finite number of Chevalley 
groups G = G(q) satisfying m,(G) # 1. The basic reference for information 
concerning these groups will be Griess [8]. We keep the notation of Section 4. 

Throughout G will denote a perfect central extension of G = G(q) acting 
faithfully and irreducibly on a module M over an algebraically closed field 
of characteristic other than p. 

LEMMA 5.1. Suppose G = G(q) and m,(G) f 1. Then G is one of the 
following: 

G> PSL(2,4), PSL(5 9), PSL(3,2), PSL(3,4), PSL(4,2). 

(ii) PSp(4,2), PSp(6,2). 
(iii) SO(7, 3)‘. 

(iv) PSO+(8,2)‘. 

(VI G,(3), G,(4)- 

(4 PSU(4,2), PSU(4, 3), PSU(6,2). 

(vii) Sz(8). 

(viii) 2-%(2). 

(ix) F,(2). 

Proof. See Griess [8]. 

LEMMA 5.2. 

(a) If G = PSL(2,4), then Z(G, 2) = 2. 

(b) If G = PSL(2,9), then Z(G, 3) = 3. 

(c) If G = PSL(3,2), then Z(G, 2) = 2. 

(d) If G = PSL(3,4), then Z(G, 2) = 4. 

(e) If G = PSL(4, 2), then Z(G, 2) = 7. 

Proof. We first note that PSL(2,4) g PSL(2,5), PSL(2,9) E A, < 
PSL(3,4), PSL(3,2) s PSL(2,7), PSL(3,4) < PSlJ(4,3) and PSL(4,2)= A,. 
Thus Z(G, p) is at most the numbers given in the lemma. Clearly (a) and (c) 
hold, as PSL(2,4) and PSL(3,2) are simple. Ifp /r 12(G)], then the proof of 
Lemma 3.1 shows that dim(M) 3 pn-l - 1, where G = PSL(n, q). In each 
of the cases Z(G, p) < q--l - 1. So to prove the lemma we may assume that 

P lw3l. 
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Suppose G = PSL(2,9). Since 3 j Z(G) the Sylow 3-subgroups of G are 
nonabelian and hence dim(M) > 3. Suppose G = PSL(3,4). Then 
2 [ 1 Z(G)\ and G perfect implies that dim(M) is even. If dim(M) = 2, then 
G < SL(2, Y) for some odd prime power Y and this would contradict the 
structure of the Sylow 2-subgroups of G. Thus dim(M) >, 4 as needed. 

Finally suppose G = PSL(4,2). Let .I’ < G be the stabilizer of a i-space 
in the natural 4-dimensional module for G = PSL(4,2) = GL(4,2). Then 
P = QR where Q = O,(P) 1s e ementary I of order 8 and R E GL(3,2) acts 
in the natural way on Q. Consider Q and let (v) be a Sylow 7-group 
Then (u) is transitive on Q+ and since j Q j = 2” it easily follows th 
abelian and = Q. x Z(G) where Q,, z Q under the action of (v). At this 
point we follow the proof of (3.1) to obtain dim(M) > 7. 

LEMMA 5.3. 

(a) Hf G = PSp(4, 2)‘, then E(G, 2) = 2. 

(b) If G = PSp(6, 2), then l(G, 2) = 7. 

PRX$ If G = PSp(4,2)’ then G z A, G PSe(2,9) and (a) holds 
Suppose G = PSp(6,2). Then G > S0+(6,2) g GI,(4,2) and it follows 
from (5.2) (e) that E(G, 2) >, 7. Since G is the derived group of the Weyi 
group of type E, , E(G, 2) = 7. 

LEMMA 5.4. Jf G = SQ(7, 3)‘, then E(G, 3) >, 27. 

Pmofo G = SU(7, 3)’ >, SO+(6, 3)’ s PSL(4, 3). As q(PSL(4, 3)) = I, 
we apply Lemma 3.1 and obtain Z(G, 3) 2 33 - 1 = 26. If 3 \ / Z(G)], ,then 
3 / dim(M) and dim(M) > 27. If 3 Y j Z(G)!, then we proceed as in Lemma 3.3 
and obtain dim(M) > 32(32 - 1) 3 27. 

LEMMA 5.5. If G = PSQf(8, 2)‘, then Z(G, 2) = 8. 

Proof. If 2 f j Z(G)\, th e as in (3.3) dim(M) 2 Y.Z~(F - l)> 8. Suppose n 
2 [ [ Z(G)l. Let P < G be the stabilizer of an isotropic l-space, so that 
P = QR, where Q is elementary of order 26 and R E SP(6, 2) g GL(4, 2). 
Then (5.2) ( e s ) h QWS that dim(M) > 7. However as ) Z(G)1 is even, dim(M) 
is even so E(G, 2) 3 8. On the other hand, PSO+($, 2)’ G D,(2) is isomorphic 
to the group (L/Z(L))’ where L is the Weyl Ckoup of type Es . Tlnus %a&) 
does have a projective representation of degree 8 and 1(G, 2) = 8. 

LEMIIM.4 5.6. 

(a) If G = G,(3), then Z(G, 3) > 14. 

(b) If G = G,(4), then E(G, 4) > 60 = 4(42 - I)* 
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Proof. First consider G = G,(3). Suppose that 3 { 1 Z(G)/. In this case 
we follow the proof of Lemma 4.7 although a change must be made at the 
end of that argument. Namely, in the notation of 4.7 let M = Ml @ MS @ MS, 
where Ml = [M, Z(Qa)] and Mz = [C,(Z(Qs)), QJ. It was shown that 
dim(MJ > &- 1) = 6 and dim(MJ > @- 1 = 8. Thus dim(M) 3 14. 
Now suppose that 3 1 j Z(G)>i. Then by [8] G is a covering group of G and 
generators and relations of G are known. Let U,S,‘z = L x Z(e), L = (x), 
Z(G) = (y). Then L x Z(G) = Z(Q) and Q/(xy) g &/(z”y) is extraspecial 
of order 35. If Ml is a Q-composition of M then one of the subgroups of order 
3 in Z(Q) is trivial on Ml . However Z(G) induces scalar action on M and x 
cannot be trivial on all such Ml . So we may assume that (xy) or (x”y) is 
trivial on Ml and hence dim(M,) > 32 = 9. It is easy to see that xy and x”y 
are conjugate by an element h of R, so that Ml @ Mlh < M has dimension 
at least 18. This proves (5.6) (a). 

Now assume that G = G,(4). By Griess [8] Z(G) = 1 or 1 Z(G))i = 2. 
If Z(G) = 1, we use the argument in (4.5). Suppose / Z(G)/ = 2. We will 
show how in this case we can again use the argument in (4.5). We note that Q 
is of extraspecial-type of order 4j and having center lJ$% Consider U$‘z. 
(U2’2)g is fused under the action of H, so lJg’2 is quaternion or elementary 
abelian. We check that U,S,‘z is elementary of order 8. It follows that R 
centralizes U$‘z and this implies that w < Z(Q). Consider U,slsz as 
a module for Ho , where p/Q= P/Q = R x Ho. Write U, = [U$“y Ho] = 
[ v,sl”z, H]. Then 1 U, j = 4 and Ui ’ 12 = U,, x Z(G). We then have Us4 p 
and the elements of lJ,# are fused under the action of RO < i7. Also G = g is 
such that oag = U,sl’z. Write U,, = Ui-l so that az = U,,, x Z(G) and U, 
and U,,, are conjugate. Write M = Ml @ ... @ n/r, where the Ml’s are 
distinct and homogeneous under the action of Q. We may assume U, z& 
ker(MJ. Then ker&MJ = (x, yz), where U, = (x, y) and (z) = Z(G), 
and where Q/kera(MJ is extraspecial. Also U,, on Ml is a multiple of the 
regular representations. From these facts we can argue as in (4.5) to complete 
the proof. 

LEMMA 5.7. 

(a) If G = PSU(4, 2), then Z(G, 2) = 4. 

(b) If G = PSU(4, 3), then Z(G, 3) = 6. 

(c) IfG = PSU(6, 2), then Z(G, 2) > 21 = (26 - 1)/(2 + 1). 

Prooj. If p 7 j Z(G))l, then the proof of (4.6) (b) yields the result. We 
therefore assume that p 1 1 Z(G)/. S ince G’ acts irreducibly on M, Z(G) is 
cyclic and Z(G) < G’ implies that 1 Z(G) divides dim(M). 

If G = PSU(4,2), then G g PSp(4,3) and we are done unless dim(M) = 2. 
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However e < SL(2, F) for F a field would contradict the structure of the 
Syiow 2-subgroups of G (or of 6). Thus (a) holds. Suppose G = PSU(4) 3). 
Then G < PSU(6, 2) ([6]) and Z(G, 3) < 6. We need only show that 
dim(M) 3 4. As 3 i dim(M), the only probtem would be that dim(M) = 3. 

dim(M) = 3, then M j O,(Q) is irreducible and hence Z(O,( 
owever it is easy to prove that O,(Z@)) is not cyclic, proving ( 
Finally we suppose that G = PSU(6,2). Then Z(p) cyclic implies that 

j 0,(2(G))\ = 2 [S]. Recall that P acts irreducibly on Q/Z(Q) and j Z(Q)/ = 2. 
It follows that Z(G,(Q)) - 1s e ementary of order 4, say Z(O,(g)) = (x) x (“> 1 
where t E Z(e). Hf O,(g)’ = Z(O,@)), then O,@‘)ja is extraspecial of order 
2Q whenever IF is a subgroup of order 2 in (x) x (t). Since g act 
cm M, 1%” contains two distinct homogeneous components of 
dimension at least 2*. Consequently dim(fi2) > 32 > 21 and we are done. 

Now suppose that / O,(p)1 = 2. Since j Q’ / = 2, it follows that t $ 
and we may ~SSLZIIX (x) = O,(p). P’hen A!? = Ml @ A& where A&, = @,M(x) 
and Ma = [x, III]. The group O,(Q) acts on I!~~ and dim(MJ 3 16. &USC 
O,@)/(X) acts nontrivially on MI. Decompose &II into homogeneous 
components of O,@)/(x), say lW, = MI, @ ... %; I?@~,~, I 

hf 2 stabilizes MIT for some j, then set Q0 = ker,ZLO,(lWrj). Consequently 
W’Q, is a group. If t $ R’, then a Sylow %subgroup of G has the formal x (t), 
whereE is a Sylow 2-subgroup in pQO ~ This contradicts Gaschtitz’s Theorem. 
Therefore 1 E fT’ and R’ z Sp(4, 3) ([S]). En G = G/Z(G) the involution x is a 
transvection and conjugate to a central invohrtion in R. Consequently rhere is 
an involution D E R - (t) such that x or xt is conjugate to TI. Now S”(4., 3) 
has just 2 classes of involutions, so v and vt are fused ir: 2, and consequently x 
and xt are conjugate in G. Therefore M >, [AZ, M] @ [xb, IbF] and dim(M) 3 
32 > 21. 

Finally, suppose w stabilizes no Mlj . Since a Z& S, , 1 *??: stabR(lUJ; > 5, 
so that k > 5 and dim(M) > K -+ 16 > 21. This completes the proof of 
(5.7). 

LEMMA 5.8. If G = Sz(S), then E(G, 2) 3 8. 

Proof. ff Z(C) = 1, we proceed as in (4.1) (c). ence suppose Z(G) f I. 
Since the multiplier of G is 2, x Z, and Z(G) is cyclic, 1 Z(G)>i = 2. As in 
(4.1) let Q be 2-Sylow in G. Then 1 N,(Q)\ = QH, where j H j = ‘7 and N 
acts transitively on (Q/Z(Q))+ and on Z(Q)“. Consideration of the action of R 
on Z(Q) shows that Z(‘) = Q0 x Z(G) where Q. is elementary of order 8 
and IZ-invariant. If Q0 a Q-, then we consider Q/Q, and show that & splits 
over Z(G), contradicting Gaschtitz’s Theorem. Thus Q,, $ & and since 

- -. -- 
Q+Z(G)N IS maximal in @?, N(QJ = Q,Z(G)H. Thus under the action of Q 
there are eight distinct conjugates of Q0 . Oin the other hand there are precisely 
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-- 
eight subgroups of Z(Q) complementing Z(G), and we have Q transitive on 
these subgroups. If Mr < M is an irreducible Z(G) submodule of M, then 
ker(Mr) complements Z(G). Considering the conjugates of Ml under Q we 
have the result. 

LEMMA 5.9. If G = 2E,(2), then Z(G, 2) > 3 . 2g. 

Proof. If 2 { 1 Z(G)/ then we proceed as in (4.8). Suppose then that 
2 f / Z(G)]. As the multiplier of 2E,(2) is 2, x 2, [8] and Z(G) is cyclic, 
2 exactly divides j Z(G)]. Let Q b e as in Lemma 4.3. Then Q is extraspecial of 
order 221 and P acts irreducibly on Q/Z(Q) ([4, Section 41). We proceed as in 
(5.8). Let(t) = Z(G). If j O,(Q)] = 4, then M 3 Ml @ Mz where Ml, M, 
are acted on faithfully by an extraspecial group of order 2a1. In this case 
dim(M) 2 21° + 21° > 3 . 2g. Now suppose that O,(Q) = (x) and 
M = [M, X] @ C,(x). Then dim([M, x]) 2 21° and it suffices to show that 
dim(C,(x)) > 2g. In Q th ere is an element B conjugate to 3. This can be seen 
by noting that (x) = lJ, (r as in Section 2) and that there is a root s # Y 
conjugate to Y such that U, < Q. Then x is conjugate to d = v or vt. 
Then on [M, x], (d) gives a multiple of the regular representation and hence 
/ C,(d) n [M, x] 1 = 2g. AS d N x this means that we also have 1 C,(x)] > 2s 
and dim(M) 2 3 . 2g. 

LEMMA 5.10. If G = F,(2), then Z(G, 2) 3 44. 

Proof. If Z(G) = 1, then we proceed as in (4.8) and obtain dim(M) >, 
4 27(23 - 1) > 44. Suppose Z(G) >’ 1. Then I Z(G)] = 2 and generators 
and relations are known for G [8]. If d is a root system of type F4 and 
G = (U,: T E 0) such that the usual commutator relations hold, then G is 
generated by subgroups Y, of order 2 where there are certain commutator 
relations holding as follows. Let U, = (u,) and Y, = (y,}. If Y, s do not 
form an angle of 135” then [yr , ys] is the same as [ur, us] with the obvious 
change in notation. If r, s form an angle of 135” then one of Y, s is long and 
the other is short. Say Y is long. Then [y,. , ys] = yT+syr+zsz where (.z> = Z(G). 

We use the notation of 4.8. The group P4 = TR, where T = O,(P,) and 
R s SO(7, 2)‘. T = L x S where L = (U,: t long, U, < T) is elementary 
of order 26 and S = (U,: t short, U, ,< T) is extraspecial of order 2s. Let s 
be the short root such that Us = Z(S). Then LU, = L x Us and R acts on 
L x U, preserving a nondegenerate quadratic form with radical U, . 

Checking the root system d and the commutator relations satisfied in G 
we have the following: E = Lo x (z>, with Lo = (yt: t long, U, < T), 
s = So x <z) with S,, = (yt: t short and U, < T), Z(S,) = (y,), 
Lo x (y,z) is R-invariant and R isomorphic to L x (us) under the isomor- 
phism sending yt -+ z+ for t long and U, - ye. 
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Since (m)x = --nz for each mEM, we hzw M = lb?', @Nd,, where 
= CM(ys) and M, = C,(y,x). Moreover M is faithful, so MI # 
# 0. NOW ys acts as -1 on Mz and SO is extraspecial with center (y, 

us S, acts on Mz and dim(M,) 3 24. Also &Lo x (ysz)) acts on Ml and 
arguing as in (3.2) we see dim(M,) >, $23(23 - 1) = 28. Thus dim(M) > 
and (5.10) is proved. 
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