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CLUSTERS, CORRELATIONS AND TRANSVERSE MOMENTA 
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Abstract: We discuss the short range part of two-particle correlations as it results from the phase 
space available in cluster decay. In such an approach, certain variables emerge which should 
be useful to organize the data and extract interesting information. We are in particular con- 
cerned with tests of large transverse motion of clusters. 

1. Introduction 

The observed shor,t range rapidity correlations between two particles have been 
often interpreted in terms of clustering [1-5] .  Aside from a rough comparison with 
the shape of the correlation, this interpretation has been without a test. The magni- 
tude of the correlation is fit by adjusting the cluster size. 

Recently the idea of clustering has also been used to describe the single particle 
inclusive transverse momentum distribution. Again the distribution of cluster masses 
is adjusted to fit the transverse momentum dependence of the inclusive cross section 
[6]. In fact there is so much freedom that the additional assumption of no transver- 

se cluster motion can be made. 

Thus one has to study more detailed data if one wishes to test the clustering hypo- 
thesis. The ultimate goal of course is to be able to tell whether clustering is merely 

a convenient language, or whether clusters are actually produced. It therefore be- 

comes of interest to determine the cluster parameters further and use for this pur- 
pose the full dependence of the two-particle correlation on the four kinematical 
variables, and not only its dependence on rapidity differences. 

One of the most important points we wish to address ourselves to in this paper 
is the question of whether clusters can have a large transverse momentum. In fact 
the idea of clustering has been used to circumvent the difficulties of two standard 

models of multiparticle production with respect to elastic scattering [7 -9 ] .  It is 
known that the independent emission model (IEM) and the multiperipheral model 

* Permanent address: Service de Physique Th~orique, C.E.N. Saclay. 
** Permanent address: l:acult~ des Sciences, Universit~ de Nice. 

*** Work supported by the US Atomic Energy Commission. 



78 b: Hayot et al., Clusters 

(MPM) give wrong predictions for the overlap function, if these models are used to 
describe the production of  particles. This point will be discussed in more detail in 
sect. 2. 

In sect. 3 we study two-particle correlations as they result from cluster phase- 
space. We point out some characteristic features, related both to a reasonable choice 
of variables with which to organize the data, and ways to study cluster transverse 
motion. 

The general framework which we adopt is the following: we assume that in a 
typical high energy collision several clusters of  particles are produced via an unspeci- 
fied dynamical mechanism. We assume the existence of  a central region in rapidity, 
where only rapidity differences between final particles matter (short range order). 
In this region, clusters are produced uniformly in rapidity and their production can 
be specified as a function of  the cluster massM and transverse momentum K±. The 
clusters decay independently of  production, except that, of course, the decay de- 
pends on the cluster mass. In particular, we assume that clusters decay isotropically 
in their rest frame. 

As sect. 3 is unfortunately rather technical, we finally summarize in sect. 4 those 
aspects and results of  our work which can be of  interest to experimentalists. 

2. Elastic scattering and cluster transverse m o m e n t u m  

In a cluster model, tire transverse momentum Pi  of an observed particle is the com- 
bination of  the cluster transverse momentum K l and of the particle transverse momen- 
tum qi  in the cluster rest frame. In order to get a feeling about the order of  magni- 
tude involved, we first derive a general formula which relates (p2) to (K 2) and (q2). 
This formula will allow us to define what is a typically small value of (K 2) and what 
is Oll tire contrary a typically large value of (K2). Interestingly eneugh, these two 
cases will be associated with the independent emission model and the multiperiphe- 
ral model respectively. 

Consider a cluster that is boosted from rest to a momentum K± along the x-direc- 
tiola (the z-axis being, as usual, the axis defined by the incident particles). If r/is the 
cluster transverse rapidity and Ms = v / M 2 ~  2 the cluster transverse mass: 

M j  =M cosh r~, K~ ---34 sinh r/, (1) 

the particle momentum is given after the boost by: 

Px = qx cosh r~ + E sinh r?, 

/.~y = q),. 

Isotropy of  the cluster decay gives 

2 ~ 1 2 1 -2 (qx) = O, ( q )  = ( q )  = ~(q±) = 5 ~  ~2). 
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Averaging first over the decay distribution, and then over cluster production (which 
is possible since both processes are independent) we get: 

Q+ = C,;, (I t 2 (K$&) t p2(Kf/M2), (2) 

where y is the pion mass. The last term in (3) can be usually neglected; it would be- 
come of importance only if the particles were almost at rest in the cluster rest frame, 

which would have been easily discovered experimentally. 
As a rough estimate of (I), we can choose * 

where (II) is the average number of particles within a cluster. Experimentally 
(pf) - 0.2 (GeV)’ while various estimates indicate that (1~) - 4 is a fair guess [I, 3, 

51. We then obtain in the two cases, (K:) = 0 and (K!) = I GeV2: 

(i) (K:) = 0, ((I:) = 0.2 GeV*, izf = I .8 GeV, 

(ii) (Kf) = 1 GeV’, !q;) = 0.075 GeV2, fII= I .I GeV. 

It is clear from (2) that a cluster transverse momentum is large whenever it is of the 
same order as the cluster mass. We wish now to show that cases (i) and (ii) can be 

associated with IEM and MPM respectively. 
In IEM, assuming that the leading cluster-s (or particles) carry off most of the avail. 

able angular momentum. it is easy to show, either by a direct calculation, or from 
the impact parameter analysis of ref. [7], that the overlap function is proportional 
to 

From data on elastic scattering, we know that the argument in the exponential is 
-6t, so that 

(Kf) - & - 0.08 GeV2. 

which must be considered as a small number 
with such a value of (K;), and with M2 - 

**: indeed we can see from (2) that 
3 most of the particle transverse motion 

is accounted for by the motion within the cluster. 

On the other hand, MPM correspond to a random walk in impact parameter 
space. In simple versions this leads to a proportionality, as a function of the incident 
energy, between the elastic slope and the number of clusters minus one, which is in 

* A more accurate calculation will be presented in sect. 3, where we use a specific model of 

cluster decay. 

** As is well-known, inclusion of phaseswould lead to a larger value of (Kf), and our estimate 

is a lower bound. 
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contradiction with the data. In order to remedy this, Caneschi [10] has suggested 
that the first and last step in the random walk are several times as large as the central 
steps. This adds a constant A l to the elastic slope B which is given by: 

B ~-A 1 + (N)/((n)(K2)), (4) 

where (N) is the average number of  particles produced in the collision. Since the 
multiplicity and the slope are logarithmic in MPM, we can identify the coefficients 
of  log s in (4) with that in the usual expression 

t ¢ 

B =AI  + 2 a p l ° g s ,  (5) 

where @ -~ 0.25 (GeV) -2. The coefficient of  log s in (N) is of the order of  2.5, so 
that we get by comparison of (4) and (5): 

5 ( K 2 ) -  <~ ~ 1.2 GeV 2 . 

This value is again a lower estimate, but we see that in any case MPM is to be asso- 
ciated with typically large values of  (K~). 

To summarize: We can say that the cluster transverse momentum is small (large) 
whenever 2(K2/M 2) in (2) is smaller (larger) than one. Provided our order of magni- 
tude arguments are not spoiled by subleties about phases etc .... , we can associate 
small (K~) with IEM, large (K 2) with MPM. 

3. One- and two-particle distributions in cluster models 

Let us state again what we exactly mean by cluster models. Our first assumption 
is that clusters are produced independently. The implication of azimuthal or long 
range correlations between clusters will be treated later. The short range part of  the 
correlation between two particles is then obtained when both particles originate from 
the same cluster. 

We next assume that phase-space controls the properties of cluster decay (more 
generally we could assume a smoothly varying matrix element leading to isotropic 
decay). If the description in terms of cluster production and decay is not merely a 
convenient language, but corresponds to a true physical mechanism, our assumption 
means that the dynamics of  the nmltiparticle process is buried in the cluster forma- 
tion, whereas the two-particle correlation is determined from the kinematics of  the 
decay alone. 

3. l. General discussion 

Let us concentrate on one cluster. The probability that a cluster with massM de- 
cays into n particles is proportional to 

I'n(K2)=fd3p~l".d3p'~ 644)(K S p i ) ,  (6) 
E 1 E n 1 
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where K is the cluster four-momentum (K 2 = M2). The Lorentz invariant one-part- 
icle distribution F is then given by: 

E n g  F .((K p)2) 
F((K p)2) =_~!_ n f - ~  . . . . . .  , (7) 

Yn gn Pn (/<2) 
where gn is some coupling constant. A common choice is [6] 

_ gn 

gn - ~.. ' 

but we do not want to make this choice here. We remark, for further use, that F is 
an increasing function of its argument. Similarly the two-particle distribution F is 
given by: 

~ g n  n ( n - 1 )  F n 2 ( (K-p  1 --p2 )2) 

~W((K_Pl p 2 ) 2 ) =  n __~-'~gnPn(K2 ) , (8) 

/7 

Integration o f F  with the measure d3p/E and o f ,  ~ with the measure d3pl d3p2/EiK2 
give (it) and (n(n-1)> respectively. The main point about (7) and (8) is that the one 
and two particle distributions depend only on the missing mass m 2 = ( K - p )  2 or 

( K - p  1 - p 2  )2 . 
The cross section p{p) for observing one particle of momentum p for the c.m. 

frame of the reaction is obtained by integrating (7) over the cluster mass, rapidity 
and transverse momentum distribution. Let f(Kl,  M) be the cross section for pro- 
ducing a cluster of  mass M and transverse momentum Kj normalized as follows: 

f d Y  d2Kl dMf(K±, M) = (ncl), (9) 

where (ncl) is the average number of  clusters. Since we are interested in the central 
reg ion , f  is independent of  the cluster rapidity Y. The missing mass m 2 = ( K - p )  2 
can be written as: 

/~tz2 : :]//2 +/.t2 __ 2Ml/ai cosh Y+ 2Ksp  I cos 4 ' ,  (10) 

where/a I is the pion transverse mass, q) is the azimuthal angle between K s and p±, 
and Y is the difference between the pion and cluster rapidities. The one-particle 
cross section p(p) is then given by: 

p(p) = f dM d Y dK ~ d(I) K±/(K±, M)F  (342 +/l  2 - 2M±/l± cosh Y + 2Kip ± cos '-~). 

(11) 
In order to write the two-particle distribution CO91, P2) we introduce the inva- 

riant mass ~ and the transverse mass/.t I of the system formed by the two particles: 

~'2 =(/21 +P2 )2'  (12a) 

~-2 =~2  + (Pl]_ +P2± )2 =~'2 +~'2, (12b) 
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the missing mass m 2 = (K P l - P 2  )2 is then expressed as: 

m 2 =M 2 +~.2 _ 2ML~ cosh Y + 2Kl~" ± cos 4< (13) 

It is then clear that the expression for C(Pl, P.g) is identical to (11) with the substi- 
tutions ~ -+ ~',/~l --* ~±, F-+ F .  We recall that C(p 1, P2) is that part of  the two-part- 
icle inclusive cross section where both particles originate from the same cluster. If 
the clusters are produced independently, C{Pl , P2) is the usual correlation. We now 
notice that C(Pl, P2) depends only on the two variables ~" and ~t.  Thus we can make 
the following important point: although the correlation in the central region depends 
a priori on four variables (for exanrple 0'1 -Y2)' P Ie  P21, and the azimuthal angle ~0), 
in a model of  independent clusters decaying via phase space this correlation depends 
only on the two combinations ~ and ~'± tbrmed with these variables: 

~2 : 2~2 + 2/al ±/~2~ cosh {3,1 -3,2) - 2Pl±P2± cos ~, (14a) 

~2 2 +/j~± + cosh (14b) ;a± =1~I± 2/21 ±/J2± {3'1--3'2 ). 
Since only/12 depends on the azimuthal angle ¢, it is very easy to understand qual- 

itatively the s0 dependence of  the correlation. Let us calculate the derivative with re- 
spect to ~2 of  the correlation written as a function o f~  "2 and/Q:  

3..%, ~(~2,  ~2) : / d  Y dM d-Pi d{I} K 2 f ( K p  M) (15) 

× 1 - - -  cos qb (M2 + ~2 _ 2M]~± cosh Y + 2K±p I cos ~I 0.  

First it is obvious from (15) that if the clusters have negligible transverse motion, 
~ is an increasing function o f ~  2 since F '  ~> 0: the two-particle correlation will then 
be larger at ~ = 180 ° than at ~ = 0 °. On the contrary, when the cluster transverse mo- 
tion becomes large, C will finally become a decreasing function o f~  "2 (since F '  is an 
increasing function the average value of cos '-I) is positive). The correlation will then 
be larger at 0 ° than at 180 ° * 

The physical interpretation is very clear: when the clusters are longitudinal, 
energy-momentum conservation in the cluster decay tends to favor particles going 
into opposite directions, ttowever when the cluster transverse motion is large, both 
particles tend to follow its motion, and this effect finally wins over the first one. 

3. 2. A specific model fi~r cluster decay 

It seems difficult to go further without making some specific assumptions about 
cluster production and decay. Although these assumptions may turn out not to be 

* A Monte-Carlo calculation by Bergcr and Ellis give the same result. We thank E. Berger for 
showing us the s0-dependence of the correlation in his calculation. 
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entirely correct, we believe that they provide a useful illustration of  the general for- 
malism and may give hints on ways to organize the experimental data. 

Our first assumption concerns cluster decay. We assume that the function 
F(m2;M 2) is an exponential  in m 2 

F(m2;M2)ccexp ~ ; ; ; 2  , (16) 

in order to obtain an exponential  form for the particle distribution in the cluster 
rest frame: 

/ 7 = 4 ~  ~ exp (-XE).  (17) 

Since m 2 = M  2 + t, 2 - 2ME. The normalization constant "y in (17) is calculated in 
appendix A. Tile behavior (16) or (17) can be obtained approximately by a suitable 
choice of  the coefficients gn in (7): for example in the approximation that the pions 
are massless we have [11 ] 

K ") = 27r n-1 
F n ( - )  (tt--l)! (rt--2)~ (K2)'' 2 (18) 

and cboosing.g n = (X/2rrM)n 2(n 2)!/n gives the behavior (16). For the two-particle 
distribution F we also choose an exponential  in m 2. Although this choice does not 
satisfy exactly the energy momentum sum rules, we believe that it displays the es- 
sential features that we need * 

With the choice (17) we can perform the ,-b and Y integrations in (11 ), provided 
we forget about the limits of  integration due to the positivity of  m 2. Since the de- 
cay is exponential ,  this is an excellent approximation except for large values o f p i .  
We then get 

(<% 
p(p) : 7 fcDl  dK± K± J(Kt' M) K 0 \--3"I-J 1o \ M J' (19) 

where I 0 and K 0 are modified Bessel functions. The calculation of  the two-particle 
correlation is identical and leads to the result: 

x.?l  (<x 
C(Pi'P2)=~fdMdK±K*flK±'DI)eX'U'I2MKo(-:"I-) 70 ~ M - J "  *~ (20) 

Since p j  = (~"~ - / x2 )~ ,  we see again from (20 ) tha t  C depends only on the variables 
~" and/:7±. The term exp (X/~2/2M) expresses the way in which the two particles are 
correlated in the cluster rest frame. 

We can make two remarks about (20): 
(i) In the case of  longitudinal clusters, we may expect an approximate factoriza- 

* In the case of massless pions, the choice  F ( m  2) c~ (6 + 6X'm2+X'Zm 4) exp (X'm 2) with X' = X./2M 
satisfies exactly the energy momentum constraints. 
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tion of C as a function of~" and ~',, since 10 disappearsfrom the integrand in (20). 
(ii) In the general case we can take the derivative of  C with respect to ~'2, as in 

(15). The integrand is then proportional to 

(1 
b'1:0 ] " 

Unle~ K l is very small, the ratio 11/10 will be of  the order of  unity, and we expect 
that C becomes a decreasing function o f ~  "2 as soon as <K 2> is significantly larger 
than (p~>. 

To proceed further, we choose a reasonable form of the function f(Kl, M) in or- 
der to be able to perform the integrations analytically. Despite the arbitrariness of  
our choice, we believe that some aspects of  the final results will show general validity. 
With this hope in mind we do the following. We write f(Kl, M) in the form 

h(M) / K l \  
i(<, M) 

and choose for g the following expression: 

e Ax/l +x 2 
g ( X )  = 6 1 ' ( 2 1 )  

(l+x2)a 
with x = KJM. The normalization constant 6 is given in appendix A. With the choice 
(21) for the cluster distribution the average cluster transverse momentum squared is 

(K~>=<M2 >(F(~,A) 1) ,  (22) 
\Aar( 3, A) 

where P(a, b) is the incomplete gamma function. We remark that the argument of  the 
K 0 function in (19) is always larger than one (since k ~ 6) and we can replace K 0 by 
its asymptotic approximation with an error of  a few percent. Then, if there is no un- 
fortunate misprint in eq. ( 8 . 6 . 2 2 )  of Erdelyi et al. [12] we have: 

_ 7r 76 e - A2x/A2+h2a2+2Ahul 

P(P) - V ~ - - i  ~ s "  (23) 

The two-particle correlation is given by a formula analogous to (23), multiplied by 
exp 0,~'2/2M). 

In order to show that (23) gives a reasonable one-particle distribution we have 
drawn P{P) oll fig. 1 for two typical values of  the parameters: 

(i) typically small value of (K2>: we choose A = 25, X = 6(GeV) -1 so that 

<K~) = 0.085 <M 2) . 

If  we assume a sharpM distribution, the energy sum rule fixes <M) and <M2>: we find 
<M2> ~ 3 GeV 2 and 

(K2> -~ 0.25 GeV 2. 
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Fig. 1. E da/d3p as a function of p±. Dashed line: (K 2) = 1.2 GeV 2 [A = 4, X = 9 in eq. (21)]. 
Dotted, dashed line: <K~) = 0.25 GeV a [A = 25, X = 6]. The curve exp (-6p±) is given for com- 
parison (full line). 

(ii) typical ly  large value o f  (K2): we choose A = 4, X = 9 GeV -1 so that:  

(K~) = 0.70 ~ I  2) -~ 1.2 GeV 2 , 

since we have (M 2) ~ 1.7 GeV 2. In this lat ter  case it is interest ing to not ice  the de- 

viation o f f i ( p )  f rom an exponent ia l  when p± ~ 1 GeV.  This deviat ion results f rom a 

comple te ly  different  mechanism from that  o f  Pokorski and Van Hove [6] who  attri- 

bute  it to large mass clusters. Here we obtain it as a consequence  o f  the large trans- 

verse m o m e n t u m  of  the clusters. 

It is interest ing to compu te  the correlat ion a t y  1 =Y2 = 0 in bo th  cases as a func- 

t ion of  the azimuthal  angle ~p. I f  we fix Pl±  and P2± at their  average value we imme-  

diately obtain f rom (23) the asymmet ry :  

A - ~(~p = 0°)  - ~(~p = 180 °) 

s ~ ( ~ = 0  o ) + ~ ( ~ = 1 8 0  ° ) , 

we find 

A = - 0.25 
S 

in the first case (small (K2)) and 

A = + 0.29 
S 
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in the second case (large <K2, >) in agreement with the qualitative discussion given 
previously. 

3.3. Remarks on cluster correlations 

We conclude this section by some comments on the complications which arise 
when the clusters are not independent. Then the correlation defined as usual by 

, < < d o  1 (<% 
C(])I' P2) = ~ - ~  " 3 . . . . . .  (24) 

ind pl d P2 °in ' d 3 p l  J °in ' d 3 p 2  / 

is not equal to C(pl, p2), since particles coming from different clusters are now cor- 
related. There are (at least) two reasons why we expect some correlations between 
clusters: (i) existence of  long range rapidity correlations due, for example, to a two- 
component mechanism for cluster production and (ii) existence of  azimuthal corre- 
lations between clusters because of  transverse momentum conservation. 

Both effects are difficult to estimate, because they turn out to be strongly model 
dependent. Let us first examine the influence of long range rapidity correlations. A 
first step in order to minimize their influence would be to use as normalization in 
(24) the non-diffractive cross section OND instead of the total inelastic cross section 
Oin , or to use a specific model for diffraction [3, 5] in order to calcualte explicitly 
the long range part of the correlations. Either procedure probably allows to deter- 
mine the short range component within a 10- 15% error. 

The problem of azinmthal correlations between clusters is serious only if the 
clusters have a large (K2>. Assuming an IEM of cluster production we have a two- 
cluster inclusive cross section of  the form [13]: 

1 KIoK20 do 
- - f (K 1 L) f(K2L ) (1 -- oe K 1 ~K2s cos 0), (25) 

o d3K1 d3K2 

where 0 is the azimuthal an~le between the clusters and a ~ 2/(<ncl) <K2)). If the 
production mechanism is of the MPM type, a will be a decreasing function of  the 
rapidity difference between the clusters, which means that the azimuthal correla- 
tion at zero rapidity difference is larger than in (25), since the transverse momentum 
sum rule [14] must be satisfied in either case. Hence we see that azimuthal correla- 
tions between clusters are model-dependent. In order to get an order of magnitude 
of the effect, we nevertheless assume (25), since we have no other reliable formula 
in the MPM case. 

It is shown in appendix B that the correlation takes the following form: 

C(Pl, P2) = P(Pl±) P(P2z) { (X pl±P2±/5(pl± ) ¢3(P2±) cos ~# 

+ C(Pl'  P2)/P(PIJ ) 0(/)2]- )}" (26) 

The coefficient of  cos ~ in (26) is typically of the order of  20% when <K 2> is large 
and Pl±, P2± are close to their average values. We can therefore hope that two- 
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particle correlations are not significantly affected by azimuthal cluster correlations. 

4. Summary and conclusions 

We here summarize the two main points of  our paper which we believe should be 
of interest to experimentalists: 

(i) If  the proper amount of  the product of  single-particle inclusive cross section 
has been removed from tile two-particle cross section, the remaining correlation 
function should depend mostly on ~" and ~'± defined in eq. (14). This is important 
because the two particle inclusive cross sections depend generally on four variables 
in the central region (for example, ~', ~'1' Ply ,  P21) and not just oll two. Therefore, 
to test whether the short range part of  the two-particle correlation is mainly deter- 
mined by tile phase space of  cluster decay, one should organize the data in terms of  
different variables in order to find out whether the variation of  the two-particle cor- 
relation is for the most part dependent on the two variables ~" and ~'l only. 

(it) If  there is transverse motion of clusters, this would indeed be an important 
indication that cluster formation is an essential ingredient in high energy multiparticle 
reactions. If  it turns out that the variation with ~" and ~'~ accounts for the major part 
of  the short range two particle correlation then the following test for cluster trans- 
verse momentum can be performed: hold ~'z fixed and vary ~'. Then the correlation 
function is predicted to rise if (K s ) is small and to fail if (K s ) is large. Another test 
is provided by the dependence of  the correlation function on the azimuthal angle 

at3'l  =3'2 = 0: for (K~) small the correlation is larger at ¢ = 180 ° than at ¢ = 0 °, 
while for (K L) large the opposite is expected. 

Though this work is a rather crude attempt towards the understanding of  trans- 
verse momentum correlations, we hope that it will provide the impetus for looking 
at the data in more imaginative ways. 

Appendix A. Normalizations 

In this appendix we give for completeness the normalization constants Y and 5 
which appear in the one-particle distribution (17) and in the cluster distribution 
(21). 

I f  the one-particle distribution within a cluster is given by (17) we have for the 
normalization constant 

(n) ~# , ' )z--  
*) 

so that in the cluster rest frame: 

fund?q_<.> 
o d3q E" 

(A.I)  
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The average particle energy (E) in the cluster rest frame is 

(E) = 1  (2 + XgKo(XU)/K 1 (XU)) (A.2) 

and from the energy sum rule we have (M) = (n) (E). The average transverse momen- 
tum squared (q2) which is needed in (2) is given by 

(q2) : ~  (E 2 _/22) = ~ (E) .  (1.3)  

In order to compute the constant 8 in (21) we evaluate the integral 

f f(K±, 34) d2KldM dY = 2rr5 f h(M)au dY 
( l+x2)  1 

7 = 2~rgA-~V( 3, A) h(m) dMdY, (A.4) 

where V(a, b) is the incomplete gamma function. Thus: 

=AY(ncl)  [ 2 7 r P @ A )  (M) d, M d Y ]  - l  , (1.5)  

so that 

f f (K±,  M) d2Kl  dM dY = (ncl). 

The average value (M 2 ) used in (22) is to be defined with respect to h(M): 

Appendix B. Transverse correlations between clusters 

We assume that the two-cluster inclusive cross section is given by (25) and that 
the one-particle distribution within a cluster is exponential (17). A straightforward 
calculation leads to the following result: 

: q . \ - N - J  ' (B.1) 

where p is defined in eq. (26) [compare with (19)]. In order to simplify the notations, 
we have neglected the dependence upon the cluster mass. In order to estimate/5 we 
equate K± to its average value in (B.1) and (19), which should be valid i f p i  ~ (pz). 
We then find 

(K ±) I 1 (X(K I)p ffM) 
p~/5(p±) = (B.2) 

10(X(Kl) p ±/M) 
For (K l) ~ 1 GeV we find that p±~(p±) is of  the order of ~ 0.7 GeV, which means 
that the coefficient of cos ~ in (26) is ~ 20% at ISR where (ncl) ~ 4. We can make a 
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more complete calculation by using the form (21) off(K±). We find 

/5(pi) _ XM (1 + x/~A + ~ 7 ± )  2 + X2p~). (B.3) 
(.4 + Mn±) 2 + X2p~ 

With the values A = 4, X = 6 GeV - l  a n d p ±  ~ 0 . 3  GeV we find again that plF3(pi) is 

0.7, in agreement  with the previous estimate.  
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