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Abstract-It is shown how an asymptotic, boundary-layer method, developed specifically for 
application to facilitated mass transport, can also be applied to the corresponding problem of 
facilitated enthalpy transport. The method, which merely entails an implicit algebraic computation, is 
applied to the (hydrodynamic) film-theory model for heat transfer between a hot or cold wall and a 
reversibly dissociating gas mixture, 2N0 &2NO + 02, which has previously been treated by Brian and 
Bodman[l]. Good agreement is found with their approximate analytical formula over the parameter 
range of their computations. However, for more extreme states of dissociation and larger overall 
temperature differences, the present results differ from those given by their approximate formula, 
especially for the cooling (cold wall) problem. 

INTRODUCTION 

The conduction of heat in chemically reactive sys- 
tems is by no means a novel topic in the general 
area of diffusional transport phenomena. It has 
been the subject of several previous works, which 
are exemplified most notably by those of 
Hirshfelder[2], Brian and Reid[3], Brian and 
Bodman[l], Bodman et al. [4], Fan and Mason[5], 
and co-workers. One of the principal objectives of 
such studies has been to predict theoretically the 
reactive enhancement of steady-state heat trans- 
fer through a chemical mixture due to reversible 
thermal dissociation and recombination accom- 
panied by molecular diffusion of various chemical 
species. If, in such systems, say reacting gas mix- 
tures, the intrinsic rates of the chemical reactions 
are, in some appropriate sense, small compared to 
diffusional transport rates then one obtains the 
so-called ‘frozen’ (conductivity) regime, where 
reaction exerts a negligible influence on energy 
transport. At the opposite extreme, where reaction 
rates are in effect infinitely rapid, one obtains the 
(reaction) ‘equilibrium’ regime and, usually, max- 
imum enhancement of heat flux. 

In either of these asymptotic regimes one is 
generally able to perform fairly direct computations 
of the heat flux through a mixture from given trans- 
port and equilibrium properties; whereas, other- 
wise, one has to solve a set of non-linear differential 
equations, involving diffusion and reaction rates 
and governing spatial temperature and composition 
fields. While such boundary-value problems are in 
principle straightforward, albeit not analytically 

tractable, and actual numerical computation can be 
difficult and time-consuming, even with advanced 
computer-executed numerical schemes. These 
practical difficulties are traceable directly to a 
boundary layer structure that develops whenever 
reaction rates are moderately to highly rapid. 

This boundary-layer nature of the near- 
equilibrium regime was anticipated in the early 
works of Hirshfelder[2], but, up to the present, no 
general mathematical techniques have apparently 
been proposed to cope with the problem in this 
particular physical context. However, in very re- 
cent times there has been a good deal of effort 
devoted to the treatment of problems closely akin 
to the above in the related area of facilitated mass 
transport. 

Although there had been a previous long- 
standing interest in the reactive enhancement of 
mass transport, such problems have received re- 
newed attention because of their possible relevance 
to carrier-mediated biological transport in mem- 
branes and liquid films. Thus, Goddard et al.[5] 
have given boundary-layer analyses of the near- 
equilibrium regime in this context, while Kreuzer 
and Hoofd [6] and Smith et al. [7] have proposed an 
approximate boundary-layer method which appears 
to give very accurate results, even far from the 
equilibrium regime and well into the near-diffusion 
or frozen regime [8]. 

The purpose of the present work is to consider an 
illustrative application of the above boundary-layer 
method, involving heat conduction through a two- 
component reactive gas layer to an equilibrium 
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mixture of the gases, a problem which has been 
previously considered by Brian and Bodman[llt as 
a film-theory model for convective heat transfer 
from a wall to a flowing dissociating gas such as 
NO*. In their work, Brian and Bodman employed 
numerical solutions of the governing equations to 
investigate the effects of finite temperature driving 
force between wall and the equilibrium free-stream 
or bulk. They were thereby able to explore some of 
the limitations on a much used linearized theory, 
strictly applicable only to a weakly perturbed film 
with vanishing thermal driving force [cf. refs. 8-101 
as well as a modification thereof which they propose 
as an approximate analytical solution. 

Our main objective here is to compare numeri- 
cally the results of the boundary-layer method with 
the approximate analytical method of B & B, for a 
physical system which is amenable to experimental 
study [4]. The boundary-layer method itself can be 
applied in a relatively straight-forward way to much 
more complex systems [ 1,8]. 

BASIC EQUATIONS AND SOLUTION METHOD 

Here, we consider as the model system a binary 
gas mixture of A and B undergoing a reaction 

2A*3B, 

with elementary (mass-action) kinetics 

(1) 

- rA =; rB = k&- kRp3(1 - y)‘, (2) 

where t is the mole fraction of A, hence, 1 - y the 
mole fraction of B ; kF and kR are kinetic constants 
depending only on temperature T; and p the pres- 
sure. Following B & B, one can consider this to be a 
model for the dissociation of NO, according to 

2N0@2NO + 02, (3) 

for an equilibrium bulk gas consisting of 
stoichiometrically and partially decomposed NOz, 
provided that the properties of 02, most notably its 
diffusivity in the mixture, are taken to be identical 
with those of NO. Accordingly, the degree of 
dissociation, defined by 

1-Y ,$=- 
1+ y/2’ (4) 

can serve equally well as a composition variable. 

tHereinafter referred to as “B & B”. 

For the case of one-dimensional steady-state dif- 
fusion with no thermal effects of mixing, and with 
flux conditions NA = 0, Ns = 0 on some imperme- 
able wall, located say at x = 0, the relevant species 
and energy balances reduce to 

N,+$NpO (5) 

and 

q - &Nn + &NB = q + (AH)N, = q,, (6) 

a constant for all 

x * 0, 

as given also in B & B, where qw denotes the wall 
heat flux and AH the heat of reaction. 

For ideal gas mixtures, with constant pressure 
and negligible thermo-diffusion (or other coupling 
between heat and mass diffusion), the usual laws 
for mass flux and heat conduction give, on substitu- 
tion into (5) and (9), the differential equations 

&[(&)g]=-r.4(Y.T) (7) 

_ kdJ+ AHDC dy 
dx 1+y/2;i;;=qw 

which, with the expression of (2) for rA, are those 
given by B & B, whose notation we shall adopt for 
purposes of comparison. The boundary conditions 
relevant to the film theory model used by B & B are 

atx =O, g=O, T= T, (9) 

and 

at x = L, y = yo, T = To. (10) 

where the variables yO. TO are assumed to obey the 
condition of chemical equilibrium in the bulk 
which, by (2), also involves an adjustable pressure 

P. 
The relations (7) to (10) together with (2) are then 

to be solved in order to determine q,,,, the wall heat 
flux in (6), given T,, TO and yO. 

The rate constants kF, kR in (2) are assumed to 
have an Arrhenius-type temperature dependence, 
such that the system (7) to (10) is highly non-linear 
both in mole fraction y and temperature T and 
generally requires numerical methods for its solu- 
tion. As pointed out above, this has been carried 
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out in B & B for some special parameter values, 
whereas here we wish to apply an approximate 
boundary-layer method which requires relatively 
simple integrations and algebraic operations for the 
computation. For this purpose, it is desirable to 
introduce formally a somewhat arbitrary dimen- 
sionless Damkohler number, which for later con- 
venience we take to be 

2~0(1+ y0/2)’ krapZL2 
m = (l- yo) GO, ’ (11) 

the quantity used in B & B as a measure of the rate 
of reaction relative to diffusion. 

Then, as indicated schematically in Fig. 1, one 
assumes outer equilibrium temperature and com- 
position fields f(x), g(x) in a region O(m-“*) < 
x IL s 1, which satisfy, instead of (7), the condition 
of reaction equilibrium 

r*(j,T)=O (12) 

together with the flux relation (8) and the 
(compatible) conditions (10) at x = L. The equilib- 
rium profiles g(x), ?‘(x) are to match x = 0 (asymp- 

I I I ) 

0 0(m-t/2) I 

X/L 

Fig. 1. Schematic profiles of temperature and concentra- 
tion adjacent to a hot wall in contact with a reversibly 
reacting gas mixture. T = true temperature, T = 
temperature assuming local reaction equilibrium, y = 
mole fraction of A, 9 = mole fraction of A assuming local 
equilibrium, x/L = distance coordinate from the wall into 

the gas film. 

totically for large m) with boundary-layer solutions 
which are valid in a reactive layer 0 d x/L < 
O(m-“2) and which are to satisfy the exact boundary 
conditions (9) at x = 0. 

Within the approximate boundary-layer analysis, 
employed by Kreuzer and Hoofd [6] one obtains the 
relevant boundary-layer equation by linearization 
of the Eqs. (7) and (8) about the boundary values 
j(O), f(O), of the equilibrium fields j(x), f(x), at 

.x = 0, to yield a set of tractable linear differential 
equations. The linearization technique is straight- 
forward and involves essentially the same type of 
algebra used in the linear theory of Brian and 
Reid[3]. Without dwelling on the algebraic detail 
here, we simply state the main result of this pro- 
cess, which in effect provides a necessary boundary 
value f(O) on the equilibrium temperature field at 
x = 0 in terms of the wall heat flux, as: 

m = 7-w - 4w lri, (13) 

where h^ is an effective heat transfer coefficient for 
the reactive boundary layer. 

For the example treated by B & B, where the rate 
constant kR is independent of temperature and the 
rate constant k, has the Arrhenius form, one finds 
after some rather lengthy algebra that h is given in 
terms of a dimensionless parameter (Y by 

where 

+l=(n-l)($r[~)]. (15) 
0 0 

Here, m is the Damkohler number defined in (11) 
and n is the dimensionless constant parameter in- 
troduced by B & B. The quantities f, .z$ refer to the 
boundary values f(O), i(O) of the outer equilibrium 
field, from which it is evident that (14) and hence 
(15) depend in a non-linear way on these boundary 
conditions. 

In the case of complete reaction equilibrium, 
where m -+ 00 and fi + m, one has that Y?(O)+ T, 
from (13), which corresponds to the standard 
equilibrium theory. Otherwise, one must solve Eqs. 
(8) and (12) for y(x), T(x) subject to the boundary 
conditions (10) at x = L and (13) at x = 0. In 
principle, the value thus obtained for qw should be 
accurate to terms O(m-I’*) for m +~a; whereas, in 
practice this asymptotic technique for flux is found 
to give accurate results well into the near-diffusion 
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regime (m -0) for the corresponding problem of 
facilitated mass transport [7,8, 111. 

For purposes of illustration and comparison here, 
we shall adopt the assumption of B & B that the 
transport coefficients k and CD and the heat of 
reaction in (8) are constants independent of temper- 
ature. In this case, Eq. (8) can be integrated to give 
a flux relation for the outer equilibrium fields: 

qw = ; (f - To) _ yE In ( > 2+9 
2+yo ’ 

(16) 

in addition to the reaction equilibrium condition 

(s,‘(F,‘= exp(y(+-$)I. (17) 

Equations (13)-(17) then provide sufficient condi- 
tions for determination of the unknowns qw, ? = 
f(0) and 9 = j(O). 

To summarize, then, in terms of dimensionless 
variables of the type used in B & B, Eqs. (13), (16) 
and (17) can be rewritten respectively as 

B=l-cr4 (18) 

+=8+ h(7) - 1) ln g 

A&o - 50) ( > (19) 

and 

($,‘(3,‘(%) = exp (A), (20) 

e^= f(O)-To CM 
T, - T,, ’ ’ = k(T, - To) (21) 

A = 2AH(Tw - To), 
RTo 

cL _ RTo 
2AH’ (22) 

The variable 6 is the fractional temperature change 
across the reaction layer and the quantity 4, which 
is of primary interest here, represents the reactive 
‘enhancement’ factor for heat flux. Equations (14) 
(15) and (18) to (20) for $, 8, 4 represent a complete, 
implicit algebraic set, which can be solved numeri- 
cally, once the parameter values m, n, A, p and the 
bulk dissociation &, are specified. 

NUMERICAL RESULTS 
AND DISCUSSIONS 

The Eqs. (14), (15) (I@-(20) were programmed 
for an iterative solution on the IBM 360/67 and 

solutions were performed for parameter values in- 
cluding and beyond those considered in B & B. In 
particular, we have also considered the cooling 
problem not treated in B & B, where (with an en- 
dothermic reaction the parameter A <O, and have 
investigated larger absolute values of A than those 
of B & B. Our first objective was to test the present 
calculations against their finite-difference results. 
Also we wished to compare the present method 
with the modified linear approximation of B & B, 
namely, 

A 

fi=mexp 2-+AP ( 1, 

Here, +_ is the (exact) equilibrium enhancement 
obtained by setting cx = 0 in (14) to (20). 

Equation (23) is a modification of the exact linear 
theory for the regime of weakly-perturbed films, 
A -+ 0, in which, incidentally, & -+ 7. As an approxi- 
mation, (23) has the merit of always giving the 
correct asymptotes for m --f 0 (‘frozen’) and m + 00 
(‘equilibrium’). For the parameter values explored 
by B & B the formula (23) reportedly gave close 
agreement (usually to within % 4 per cent) with their 
finite-difference numerical solutions, leading them 
to conclude that it should be generally valid. 

Indeed, Fig. 2 gives a comparison of their 
modified-linear approximation (ML) with the pre- 
sent boundary-layer method (BL), as a function of 
Damkijhler number, and the results are seen to 
agree well for A = 2, where the ML was shown by B 
& B to agree with their finite-difference solution. 
(Accordingly, we have not bothered to try obtaining 
the precise numbers computed by the latter method 
from the graphs of B & B, but have merely recom- 
puted values from the ML formula in (23) and the 
appropriate values of &.) However, the disagree- 
ment of the ML and the BL methods for the case of 
cooling, A = - 2, is more pronounced, and this is 
further accentuated for larger (A 1, as shown in Fig. 
3, where discrepancies as large as 30 per cent are 
apparent. 

Figures 4 and 5 show the corresponding calcula- 
tions for the dependence of 4 on the bulk dissocia- 
tion to, extended over a much broader range than 
that considered in B & B. The trend toward disag- 
reement between the ML and BL methods occurs 



Carrier-mediated heat transport 

at the larger overall concentration gradients (cor- 
responding to small & for heating and large to for 
cooling), regions not treated by B & B. 

The rather large discrepancies in the results of 
the two methods, therefore, appear to be more pro- 
nounced as gradients across the reaction-layer be- 
come more steep. In this respect, the differences 
between the cases of heating and cooling are manif- 
est by the temperature ‘jump’ 1 - 6 across the 
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Fig. 2. Enthalpy facilitation factor b, as a function of 
Damkiihler number (m). Comparison of ‘boundary-layer’ 
(BL) and ‘modified-linear’ (ML) methods of analysis. 

Moderate values of & and A. 
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Fig. 3. Enthalpy facilitation factor $ as a function of 
Damkiihler number (m). Comparison of ‘boundary-layer’ 
(BL) and ‘modified-linear’ (ML) methods of analysis, for 

moderate values of &and high values of A. 
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Fig. 4. Effect of degree of dissociation in bulk, &, on the 
facilitation of enthalpy transport at moderate values of A. 
For A > 0 (CO), &+O (1) represents large driving force 

in 5. 

0. 

5 

4 

+ 

3 

2 

; 

Ql 

I- 

,- 

I_ 

LO I 0.1 I.0 

t-E0 

v I 
7j=6 

A 

ML EL x 
0 -4 d 
(L --- -4 

Fig. 5. Effect of degree of dissociation in bulk, &, on the 
facilitation of enthalpy transport at high values of A. 
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Fig. 6. Dimensionless equilibrium temperature at the wall, 
0, as a function of Damkiihler number (m) at &, = 0.5 and 
/Al = 4. The quantity 1 - d represents the temperature 

discontinuity across the reaction boundary layer. 

reaction boundary-layer, corresponding to depar- 
ture from equilibrium, as illustrated by the BL 
calculations shown in Fig. 6 for IAl = 4. 

The discrepancies between methods would seem 
to indicate the desirability of further consideration 
of the regimes involved, which would necessitate 
rather laborious finite-difference solutions of (7) to 
(10). Short of actually attempting this here, we 
would merely observe that the BL method has been 
found to give generally accurate results in several 
related calculations of facilitated mass transport 
[7,8, 121, which tends to give us some confidence in 
the present type of application. 
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A 
B 
C 
D 

NOTATION 

component A 
component B 
total concentration, mol/cm3 
binary diffusion coefficient for components A 

AH 

k 
kF 

enthalpy of reaction per mol of A reacted, 
cal/mol A, one-half activation enthalpy of 
the forward reaction (1) herein 

heat transfer coefficient for reactive boundary 
layer, Cal/cm’ set “K 

frozen thermal conductivity cal/sec cm “K 
rate constant for forward reaction, mol/sec 

cm’ atop, Eq. (1) 
kR rate constant for reverse reaction, mol/sec cm3 

atm’, Eq. (1) 
L 

m+ 
film thickness, cm (xF in B & B) 

m 

mp2yoL2 k 
C,Dll 

m+& 
modified (average) value of m in film 
Molar flux, mol/cm* set 
pressure, atm 
heat flux at wall (positive when heat flows to 

“N 

P 
4- 

r 
R 
T 
X 

Greek symbols 

the gas), cal/sec cm’ 
reaction rate, mol/sec cm’ 
universal gas constant, cal/mol “K 
temperature, “K 
distance through film measured from wall, cm 
mole fraction of Component A 
parameter in Eq. (23) 

1 + 2AH’ COD, 

1 +~1,:,1,,, 

T-T,, 
Tw - T, 
2AH( T, - To) 

RTa 
jw_ 
2AH 
degree of dissociation of component A = 

1-Y 
1+y/2 

qL 
k(T, - ToI 
value of 4 for m --*cc 

Subscripts 
A refers to component A 
B refers to component B 
0 refers to bulk conditions 

and B, cm2/sec w refers to conditions at wall 
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