Letters to the Editor

A Comment on Vine's Predator-Prey Visual Detection Model

Vine (1971) examines different geometrical spacings of prey in order to determine their risk of visual detection and pursuit by a predator. In his first model, Vine considers a situation where there are n prey ($Q s$), each of body length l and all at a distance r from some predator P. This predator can detect a prey (occupying l / r radians) if that prey is standing completely within θ_{r} radians in front of him $\left(\theta_{r} / 2\right.$ on either side of $P s$ frontal axis). The predator begins searching for the prey at some angle α (of initial fixation. This angle is assumed to be uniformly distributed over 2π radians.) P sweeps at a constant rate ϕ radians/unit time. If there were only one prey and if $\alpha=\left(\theta_{r}-l / r\right) / 2$ relative to dead center on the prey, then P will be able to just detect the prey with detection time $=0$. If α is just slightly larger, then P will have to sweep before finding the prey. The longest detection time is when P just misses the prey (at $\alpha=2 \pi-\left(\theta_{r}-l / r\right) / 2$) and then sweeps in the direction away from the prey.
Vine is attempting to show that if we consider the case where there are n prey, the time before any one of the prey is detected will be maximal if they all group together in one nose-to-tail string. In order to show this, Vine determines the mean detection time for the two most extreme spacing configurations. For the case of n nose-to-tail prey (all on the circle of radius r from P) he determines \bar{T}_{s}, the mean detection time [Vine, 1971, p. 411 equation (lb)] to be:

$$
\bar{T}_{s}=\left[\pi-\left(\theta_{r}+(n-2) l / r\right)+\left(\theta_{r}+(n-2) l / r\right)^{2} / 4 \pi\right] / \theta_{r} .
$$

He then determines the mean detection time for the case of n prey spaced symmetrically about P. Vine, however, has made an error in this determination which leads to his equation for \bar{T}_{y} (mean detection time for symmetrical spacing) which is off by a factor of n. His equation [(1c), Vine, 1971] appears as follows:

$$
\bar{T}_{y}=\frac{1}{\phi}\left(\pi / n^{2}-\left(\theta_{r}-l / r\right) / n+\left(\theta_{r}-l / r\right)^{2} / 4 \pi\right) .
$$

Since all of the n segments of Fig. 1 (upper part) are identical, only one (lower part) need be considered to determine the mean detection time \bar{T}_{y}.

Fig. 1. Time before detection of one of the n prey as a function of the initial fixation angle.
$\bar{T}_{y}=A /(2 \pi / n)$ where A is the area under the curve of Fig. 1 (lower part).

$$
\begin{aligned}
& A=\frac{1}{2}\left(2 \pi / n-\left(\theta_{r}-l / r\right)\right)\left(2 \pi / n-\left(\theta_{r}-l / r\right)\right) / \phi \\
& \bar{T}_{y}=\frac{1}{2 \phi(2 \pi / n)}\left(4 \pi^{2} / n^{2}-4\left(\theta_{r}-l / r\right) / n+\left(\theta_{r}-l / r\right)^{2}\right)
\end{aligned}
$$

The correct version of equation (1c) is thus:

$$
\bar{T}_{y}=\frac{1}{\phi}\left(\pi / n-\left(\theta_{r}-l / r\right)+n\left(\theta_{r}-l / r\right)^{2} / 4 \pi\right) .
$$

This equation differs from Vine's (1c) by a factor of n. This error is important since Vine wants to show that $\bar{T}_{s}>\bar{T}_{y}$, (i.e. it is more advantageous to be grouped than dispersed) for all reasonable values of $n, \theta_{r}, 1$ and r. A necessary and sufficient condition for $\bar{T}_{s}>\bar{T}_{y}$ is for the right side of the
following equation to be positive for all reasonable values of the parameters.

$$
\frac{\phi}{(n-1)}\left(\bar{T}_{s}-\bar{T}_{y}\right)=\pi / n+(n-4) 1^{2} / r^{2} 4 \pi+\theta_{r} 1 / r \pi-1 / r-\theta_{r}^{2} / 4 \pi .
$$

Clearly, \bar{T}_{s} does not exceed \bar{T}_{y} for all reasonable values of the parameters: in particular for $1 / r=0.036$ radians, $\theta=1.18$ radians (about 67°) and $n=24, \bar{T}_{s}<T_{y}$.

Department of Botany,
G. F. Estabriook
University of Michigan,
H. H. Robinson
Ann Arbor,
Michigan 48104, U.S.A.

(Received 14 June 1973, and in revised form 31 January 1974)

REFERENCE

Vine, I. (1971). J. theor. Biol. 30, 405.

