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THE LAWS OF SIMILITUDE AND CRACK PROPAGATION

ANTHONY (. ATRINS and RosBErT M. CADDELL

Department of Mechanical Engineering, University of Michigan, Ann Arbor,
Michigan 48104, U.S.A.

(Received 21 September 1973)

Summary—The mechanics of cracking follow the laws of similitude in an odd sense. As a
result, crack load—external displacement—crack extension data are not usually non-
dimensionalized. It follows that a new ‘‘group” should be used (analogous to the
Reynolds, Froude or Cauchy numbers) when scaling ship ice-breaking resistance from
tests of models in ice-towing-tanks.

NOTATION

stress intensity factor
applied stress
half of crack length
fracture toughness
elastic modulus
linear scaling factor
subscripts denoting prototype and model
applied force
symbols denoting thickness, width and height of a specimen
strain
displacement
crack area
dimensionless velocity parameter
crack velocity
crosshead velocity
characteristic length
inertia, force
mass
acceleration
F, viscous force
viscosity
défcy velocity gradient
o gravity force
g gravitational acceleration
p density
7 time scaling factor
v
v
R
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kinematic viscosity
velocity
n Reynolds number
F, Froude number
F, elastic force
C, Cauchy number
¢, sonic velocity
M, Mach number
I, ice number
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INTRODUCTION

THE ENERGY approach of Gurney in refs. (1)-(3) to the mechanics of cracking
and the stability of crack propagation is followed below in developing the
concepts presented in this paper. Gurney’s method of attack is related to
“fracture mechanics” in the same way that Castigliano strain energy theorems
for elastic displacements relate to elasticity calculations based upon integration
of strain expressions.

The question of the applicability of laboratory toughness data to the design
of large scale structures is discussed. It is common practice to employ
laboratory fracture toughness data in formulae such as K = o Ja or R = no?a/E,
to determine the design stress, o, in the structure being considered. It seems
to be less well known however that the stress so calculated is lower than the
stress to cause cracking in a geometrically similar, but smaller, structure. In
fact, o, = o,, A4, see ref. (1), where the subscripts p and m refer to prototype
(large structure) and model respectively, and A is the linear scaling factor
which relates a characteristic prototype dimension to the analogous model
dimension, (A>1).

Additionally, it has been implied® that cracking velocities in the prototype
are faster than those in the model by the factor A¥. This is important with
regard to strain rate effects and crack stabilities in small and large structures
(cf. the use of small testpieces inside large pressure vessels to keep track of
stress corrosion).

An important consequence of this lack of similitude is that typical crack
load-external displacement—crack extension data are not usually normalized
in the same sense that load-extension curves are converted to stress—strain
curves, for example, irrespective of testpiece size. Although the ‘equivalent
energy’ normalization (e.g. ref. 6) may be shown to follow correct scaling laws,
its common application to irreversible cases of post-yield fracture of materials
with high K/o? should be questioned.

We concentrate rather on a significant finding concerning the interpretation
of data obtained with models breaking ice, and its application to large scale
situations. The behavior of model ships in ice towing tanks and model piers etc.
as affected by ice forces come to mind. In particular it is shown that a new
non-dimensional group emerges, akin to the Reynolds, Froude and Cauchy
numbers, which must be satisfied if scaling from model to prototype is to be
done correctly.

SIMILITUDE AND CRACKING

Consider & model cracked structure and a prototype cracked structure, see Fig. 1.
Typical stresses and strains in the model are given by

U, Fuh
7o = Tl m =g B S
o (1)
= =% _ ol
Op = Fp/tpwp, £p = h—p, Ep = tpwpup’

where the Young’s moduli of model and prototype are allowed to be different.
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F16. 1. Nomenclature for geometrically similar cracked pieces.

Considering the compliances (u/F) of model and prototype, it follows that

Up _ 1um En (2)
B, MR, E,
and that the rates of change of compliance with respect to crack area are
d 1 d 1E, d
i, (up/Fp) = N dd. (up/Fp) = X E, a4, (tn/Fp). (3)

One version of the fundamental equation relating cracking force, external displacement
and crack extension is, ref. 1,

d [u
2 — (=
F?=2R / (F) (4)
Consequently, when inserted into the cracking force equation we have
d (u 1B, d [u
F2=2R /— (&) =2 /——"‘— () 5
P P[dA, \F, PN E, ddy, \Fy, (5)
and also
dAy, (um E,Rp\t K
2 . —Lom fm = M\ =P-P =\Fp =P
Pt 2Rm/ = (Fm) and F, =2\ (Em Rm) Fu=NFy 22, (6)

where K = J(ER) is the stress intensity factor for the material.
Thus, if K, = Ky, the cracking load in the large piece is bigger than that in the small
piece by Al. Since the areas, over which these forces act, differ by A? it follows that

1
op = TAUm' (7)

Hence the stresses to propagate cracks are smaller in larger pieces and, as pointed out
by Gurney,! cracking can occur before yielding in large structures whereas the same
material can display general yielding before cracking in small structures.

Also, since

1F, Ep
Yp = 3T E

(8)

|4
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we have
Ky E
Up = /\%( P m) U 19)
P KnE,) ™
1.e. for equal K, E between model and prototype
Up = Ab up,. (10)

Hence the displacements in the prototype are bigger than those in the model only by Al

When constant R loci are plotted in the (F,«) plane according to equation (4), we
obtain diagrams such as in Fig. 2, the precise shape of the loci depending on the geometry
of the cracked structure. For linearly elastic systems, different crack lengths (areas) are
represented by & series of radial lines emanating from the origin each reflecting the
compliance of the cracked structure as it is influenced by the different crack areas. An
important interpretation of equation (4), is that sector areas such as 04, 4, represent the
work done in extending the crack from area 4, to area 4,, i.e. R(4,—A4,). When cracks
are stable and well behaved, this allows a ready means of evaluating R, see refs. (1)—(3)
and (5).
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Fic. 2. Various constant fracture toughness loci for different shape
cracked structures (a) and (b).

Load-extension data from uncracked pieces are usually interpreted to give stresses
and strains that allow determination of Young’s moduli and yield strengths, etc. In
geometrically similar pieces, the load increases as A% and the extension by A, which when
reduced to o and ¢, lead to a single curve. The area under this curve is the work done/unit
volume; in a large piece the work done is

A2 (small load) x A (small extension) = A3 (work on small piece).

However, since the volume of the larger piece is bigger than the smaller by a factor of A3
the work done/unit volume is constant.
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Consider the analogous treatment of cracking data. Are there ‘“master curves’,

{constant R loci) for a given shape testpiece, for which sector areas represent the work
done in cracking ? Evidently for pieces of the same material if the loads are divided by A}
and the extensions by A (see equations (6) and (10)) we get ‘“universal” R loci. The radial
lines from the origin representing constant crack areas are normalized at the same time,
since
up/At _ = )\“P
Fp/At

and since also for the same material,

Up _ Lum o up/Aup
7, AT T By

Regarding work done,

Fu 1
TP‘TI: = A—szup = qum,

Fpu, “feeds” an area A? bigger than does Fy, up, so the fracture toughness work is
equivalent for both cases. These effects are shown schematically in Fig. 3.

P

Pz

=
£ 21
>
g
3 slope OAm: )\(slopo 0Am.)
& RN
w o™ X,
i :
Up = N,

areaOA PIA pe= )\'(arca OAmlAm

u' (urbi'rary unih)

Fi1c. 3. Method of normalizing crack load—crack extension-external
displacement data; A equals 5 in this scaled drawing.

However, the present authors have shown® that crack velocities are faster in larger
structures. The ratio of crack velocity to driving (crosshead) velocity depends upon a
parameter, &, as follows:

¢ E JL

2. K
Since £ is constant for geometrically similar testpieces, it follows that prototype velocity
ratios are bigger than model velocity ratios by the factor At. Consequently, if K is rate
dependent, the same K loci may not be picked up by normalizing load—extension data in
the manner just described from different size specimens.
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APPLICATION TO ICE-TANK TOWING STUDIES

It is well known that in conventional towing tank experiments, with models of
prototype ships or structures, it is generally impossible to arrange complete dynamic
similarity, i.e. the independent force ratios concerning inertia forces, viscous forces and
gravity forces in model and prototype do not have the same scaling factors.?

The reasons are as follows. Inertia forces are given by F; = M4, viscous forces by
F, = uA(0s/oy), gravity forces by Fg = Mg and, for completeness, elasticity forces by
F, =04 = E¢ A. Thus it may be shown that?

(Fl)p . Pp)\4 F)p _Vp Pp 2\_2 (FG)p _ Pp 28 (Fe)p - E]_).Ag.

(FD)m a Pm”"z, (Fodm  vm Pm T Fa)m B I-’;l ’ (Fe)m EBny

Consequently, to satisfy the same scaling factor for inertia forces and viscous (friction})
forces,

P X _ vp pp X
pm 72 " vm P T2
so that the time scale between model and prototype is
r=23),
Yp
The velocity ratio between model and prototype is

vp__é_vpl_vme

Therefore, we have

= R, (Reynolds number).

Likewise we can show that for equal scaling factors between inertia and gravity (wave
making) forces

pr = fl’—j‘— (speed : length ratio)
P m
or
Up Vm
F, (Froude number).

J9Ly) ~ J9Lw)

Again, for simultaneous satisfaction of inertia and elastic forces

p)* = ( )i = Oy (C h; b
k¥ £p = Pml5T5 = auc. numbper
p(Ep w| n( y )

or since (E/p)} = ¢, (the sonic velocity), we have

kPG 3 =M, (Mach number).
Cop  Com

Since tank fluids are incompressible for all practical purposes, C, is neglected in open
water towing studies, and My appears more in wind tunnel work. Regarding F, and R,,
complete dynamic similitude is impossible unless a tank fluid can be found for which
vpfvm = AL, It is customary to scale according to Froude’s law and correct the test results
by independent experimental ‘‘plate’” data based upon Reymolds’ law.

‘When dealing with towing basins covered in ice to model the ice-breaking capabilities
of prototype ships or ice-affected structures, for example, the situation is complicated
beyond the above considerations since the ice-breaking force ratios must satisfy some
scaling law. Some workers argue that the Cauchy number for the ice sheet is the relevant
scaling parameter, but since we have shown that cracking forces should not be identified
continuum elastic forces, C, is not appropriate. Rather a new number has to be satisfied,
based upon the force relationship F, = AWK /Ky,) Fy, (equation (68)), as follows:
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In order to satisfy the same scaling law for inertia forces and cracking forces, we have
from arguments analogous to those presented earlier,

et N(i2)

m:
ie.
r= (EP_ Al Em)
Pm p
and
v _A_ (PmKP)‘l
v T \ppKm/ M
8o that
» (PpL;‘»)* — (me.‘n)*
VK, B\ Kn /°
or

%ppld _ themlh _
R, R n

Notice that I, = CL(EL/R), so that I, appears to be the Cauchy number generalized
to include the effects of a “defective’ (cracked) continuum.

Scaling laws for ice tank work are ill understood at present and the techniques used to
translate from model to prototype are quasi-empirical. The foregoing analysis gives a new
scaling law for the ice fracture part of the resistance of a ship to passage through ice or,
conversely, to the forces on dams, ete. caused by ice jams. It is customary to weaken the
strength of tank ice relative to sea ice or lake ice. This is accomplished by copiously salting
the tank water to reduce the ice strength. Brine pockets in the frozen ice are the cause
of weakening. It is known that the mechanical properties of such ice sheets markedly
differ from “‘prototype” ice. Not only is the strength diminished, but the ice moduli are
also altered, the tank ice being almost rubber-like in flexibility. The “rules’” by which
model ice “‘strength’* is diminished, at present are arbitrary. However, it can be shown?®
that by arranging the mechanical properties of model ice in a particular way, both
Froude’s law and the cracking law can be simultaneously satisfied. This allows model
testing at the characteristically (slow) Froude speeds.

It may be argued that the brine pockets in model ice are not that much smaller than
those in real ice, so that 4,, # (1/A?) 4. The mathematics leading to I, are easily modified
to accommodate this variation, which gives a slightly different expression for I, but
trends just discussed are equally valid.

(new “‘ice’’ number).

CONCLUSIONS

Cracking loads, cracking stresses, and crack velocities in geometrically
similar pieces obey unusual scaling laws. The similarity concepts have been
applied to the particular problem of scaling test data from ice model basins
into full size situations (ships, piers, etc.). A new non-dimensional group has
been proposed for similitude in ice cracking studies, which should shed light
on the ill-understood problem of ‘total’ modelling of a ship’s resistance to
passage through ice.
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