
Int. J. mech. Scl. Pergamon Press. 1974. Vol. 16, pp. 541-548. Printed in Great Britain 

THE LAWS OF SIMILITUDE AND CRACK PROPAGATION 

ANTHONY G. ATKINS a n d  ROBERT • .  CADDELL 

Department  of Mechanical Engineering, Universi ty of Michigan, Ann Arbor, 
Michigan 48104, U.S.A. 

(Received 21 September 1973) 

Summary- -The  mechanics of cracking follow the laws of similitude in an odd sense. As a 
result, crack load-external  displacement-crack extension data are not  usually non- 
dimensionalized. I t  follows tha t  a new "group"  should be used (analogous to the 
Reynolds, Froude or Cauchy numbers) when scaling ship ice-breaking resistance from 
tests of models in ice-towing-tanks. 

NOTATION 

K stress intensity factor 
a applied stress 
a half of crack length 

R fracture toughness 
E elastic modulus 
A linear scaling factor 

p, m subscripts denoting prototype and model 
2' applied force 

t, w, h symbols denoting thickness, width and height of a specimen 
e strain 
u displacement 

A crack area 
# dimensionless velocity parameter  
d crack velocity 
4 crosshead velocity 
L characteristic length 

EI inertia force 
M mass 

acceleration 
F v viscous force 
/~ viscosity 

~O/~y velocity gradient 
F G gravi ty  force 

g gravitational acceleration 
p density 

t ime scaling factor 
v kinematic viscosity 
v velocity 

R n Reynolds number 
F n Froude number 
F e elastic force 
Cn Cauchy number 
c o sonic velocity 

M n Mach number 
I n ice number 
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I N T R O D U C T I O N  

THE ENERGY approach of Gurney in refs. (1)-(3) to the mechanics of cracking 
and the stability of crack propagation is followed below in developing the 
concepts presented in this paper. Gurney's method of at tack is related to 
"fracture mechanics" in the same way  that  Castigliano strain energy theorems 
for elastic displacements relate to elasticity calculations based upon integration 
of strain expressions. 4 

The question of the applicability of laboratory toughness data to the design 
of large scale structures is discussed. I t  is common practice to employ 
laboratory fracture toughness data  in formulae such as K = a ~/a or R = ~ra ~ a / E ,  

to determine the design stress, a, in the structure being considered. I t  seems 
to be less well known however that  the stress so calculated is lower than the 
stress to cause cracking in a geometrically similar, but  smaller, structure. In 
fact, % = %~ h-J, see ref. (1), where the subscripts p and m refer to prototype 
(large structure) and model respectively, and h is the linear scaling factor 
which relates a characteristic prototype dimension to the analogous model 
dimension, (h > 1). 

Additionally, it has been implied 5 that  cracking velocities in the prototype 
are faster than those in the model by  the factor hi. This is important with 
regard to strain rate effects and crack stabilities in small and large structures 
(cf. the use of small testpieces inside large pressure vessels to keep track of 
stress corrosion). 

An important consequence of this lack of similitude is that  typical crack 
load-external displacement-crack extension data  are not usually normalized 
in the same sense that  load-extension curves are converted to stress-strain 
curves, for example, irrespective of testpiece size. Although the 'equivalent 
energy' normalization (e.g. ref. 6) may be shown to follow correct scaling laws, 
its common application to irreversible cases of post-yield fracture of materials 
with high K / a  S should be questioned. 

We concentrate rather on a significant finding concerning the interpretation 
of data obtained with models breaking ice, and its application to large scale 
situations. The behavior of model ships in ice towing tanks and model piers etc. 
as affected by ice forces come to mind. In particular it is shown that  a new 
non-dimensional group emerges, akin to the Reynolds, Froude and Cauchy 
numbers, which must be satisfied if scaling from model to prototype is to be 
done correctly. 

S I M I L I T U D E  A N D  C R A C K I N G  

Cons ider  a mode l  c r acked  s t r u c t u r e  a n d  a p r o t o t y p e  c racked  s t r u c t u r e ,  see Fig.  I .  
Typ i ca l  s t resses  a n d  s t r a i n s  in  t h e  mode l  are  g iven  b y  

Um Fm h~ 
(Tm = J~m/traWm' em = ~m ' E m =  tm Wm Um' 

(1) 
up Fp h,p 

ap=Fp/ tpWp,  e p =  ~ ,  E p =  
hp tp Wp Up 

where  t h e  Y o u n g ' s  m o d u l i  of  m o d e l  a n d  p r o t o t y p e  a re  a l lowed to  be  dif ferent .  
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FIG. l .  Nomenclature for geometrically similar cracked pieces. 
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Considering the compliances (ulF) of model and prototype,  i t  follows tha t  

Up = 1 um Em 
~p ~ F m E  p (2) 

and tha t  the rates of change of compliance with respect to crack area  are 

d l d 1 E m d 
dA D (Up/Fp) ---- ~ ~mm (Up/Fp) ---- ha Ep dAm (urn/Fro)" (3) 

One version of the fundamental  equation relating cracking force, external  displacement 
and crack extension is, ref. 1, 

- '  : <,> 

Consequently, when inserted into the cracking force equation we have 

/ d  (Up) 11 Em d (urn) 
_117~ = 2Rp ~pp  ~pp = 2Rp/Z3~pp d~ m ~ (5) 

and also 

Fire---- 2-#~m/~m (~m) and Fp : ~l|(~)tFm----)lttFm Kp K---~' (6) 

where K --- ~[(ER) is the stress intensi ty  factor for the material .  
Thus, ff Kp -- Kin, the  cracking load in the  large piece is bigger than  tha t  in the  small  

piece by  ~tt. Since the  areas, over which these forces act,  differ b y  ~t ~ i t  follows tha t  

1 
(Yp = ~ O m. (7) 

Hence the stresses to propagate  cracks are smaller in larger pieces and,  as pointed out  
by  Gurney, 1 cracking can occur before yielding in large structures whereas the  same 
mater ia l  can display general yielding before cracking in small structures.  

Also, since 

1 F pE  m 
up -- Um,~ ~" Ep~'m (8) 
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we have  

/Kp Em\ 
A~ - -  ( 9 )  ,Up-= tKm Ep) Um, 

i.e. for equal  K,  E be tween  mode l  and p r o t o t y p e  

Zep = A ½um. (].0) 

Hence  the  displacements  in the  p r o t o t y p e  are bigger  t h a n  those  in t he  model  only by ,\L 
%Vhen cons tan t  R loci are  p lo t t ed  in the  (F, u) p lane  according to equa t ion  (4), we 

obta in  d iagrams such as in Fig.  2, t he  precise shape of  t he  loci depending  on the  geomet ry  
of  the  cracked s t ructure .  F o r  l inear ly  elastic systems,  different  crack lengths  (areas) are  
represented  by  a series of  radia l  lines e m a n a t i n g  f rom the  origin each reflect ing the  
compliance of  t he  cracked s t ruc tu re  as it  is inf luenced b y  t h e  different  crack areas. An 
i m p o r t a n t  in te rp re ta t ion  of  equa t ion  (4), is t h a t  sector  areas such as OA~ A 2 represent  the  
work  done in ex tend ing  the  crack f rom area  A 1%o area  A 2, i.e. R(A 2 -A1). W h e n  cracks 
are s table  and  well  behaved ,  th is  allows a r eady  means  of  eva lua t ing  R,  see refs. {1)-(3) 
and (5). 

u 
O" 

A 
i 

F l A 

A 3 

R (big) 

=:=:~.,u 

'sector areas' 
- - ~  ~u 

A, 

A 2 
R(A 2 - A , )  

U 

(a )  (b )  
Fro.  2. Various cons tan t  f rac ture  toughness  loci for different  shape 

cracked s t ruc tures  (a) and (b). 

L o a d - e x t e n s i o n  da t a  f rom uncracked  pieces are  usual ly  in te rpre ted  to give stresses 
and  strains t h a t  al low de te rmina t ion  of  Young ' s  modul i  and yield s t rengths ,  etc.  I n  
geometr ica l ly  s imilar  pieces, t he  load increases as A ~ and  the  extens ion by  A, which when 
reduced to  a and  s, lead to a single curve.  The  area  under  this  curve  is the  work  done /un i t  
v o lume ;  in a large piece the  work  done is 

A2 (small load) x A (small extension)  = A 8 (work on small  piece). 

However ,  since the  vo lume  of  the  laxger piece is bigger  t h a n  the  smal ler  by  a factor  of  A 3 
the  work  done /un i t  vo lume  is cons tant .  
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Consider the analogous t reatment  of cracking data. Are there "master curves', 
(constant R loci) for a given shape testpiece, for which sector areas represent the work 
done in cracking ? Evident ly  for pieces of the same material if the loads are divided by At 
and the extensions by At (see equations (6) and (10)) we get "universal" R loci. The radial 
lines from the origin representing constant crack areas are normalized at the same time, 
since 

up /h i  = h 

and since also for the same material,  

up 1 Um Up/,~____t U,n 
~pp = A~m and FplA' ="Fro" 

Regarding work done, 

1 

-Pp Up "feeds" an area A s bigger than does _Em Um, so the fracture toughness work is 
equivalent for both cases. These effects are shown schematically in Fig. 3. 

FIG. 3. 

i ) Ap~ 

:~ ,lop, OAp,= k(,lope OAm, ) 

i ml 
Up,= XaUm, 

area OApiApl= )~(area OAmlAma ~ 

" _ , 

' u '  ('arbitrary unit,) 
Method of normalizing crack load--crack extension-external 
displacement data;  A equals 5 in this sealed drawing. 

However, the present authors have shown 5 tha t  crack velocities are faster in larger 
structures. The ratio of crack velocity to driving (crosshead) velocity depends upon a 
parameter, ~, as follows: 

c_ = E~L s. 

K 

Since 6" is constant for geometrically similar testpieces, it follows that  prototype velocity 
ratios are bigger than model velocity ratios by the factor A t. Consequently, if K is rate 
dependent, the same K loci may not  be picked up by normalizing load-extension data in 
the manner  just  described from different size specimens. 
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A P P L I C A T I O N  T O  I C E - T A N K  T O W I N G  S T U D I E S  

I t  is well known t h a t  in convent iona l  towing  t a n k  exper iments ,  wi th  models  of  
p r o t o t y p e  ships or  s t ructures ,  i t  is general ly  impossible to  ar range  complete  dynamic  
s imilar i ty ,  i.e. the  independen t  force rat ios  concerning iner t ia  forces, viscous forces and 
g r av i t y  forces in mode l  and  p ro to type  do no t  have  the  same scaling fac tors3  

The reasons are  as follows. Ine r t i a  forces are  g iven  by  F~ = 2~/g, viscous forces by  
F v = i ~ A ( ~ $ / ~ y ) ,  g rav i t y  forces by  .F~ = . Mg  and,  for completeness,  e las t ic i ty  forces by  
F e = a A  = E e A .  Thus  i t  m a y  be shown tha t  s 

(FI) p ppA4 (Fv) p ~- Vp pp A2 (FG)p ---- p....~p h a, (Fe) p E p ~ 2  

(FI)--"~ --~ pm "r2, (Fv)m yrn Pm ./-2' (FG) m Pm (Fe)m ~-- E m  " 

Consequent ly ,  to  sat isfy t he  same scaling fac tor  for iner t ia  forces and  viscous (friction) 
forces, 

= 

pm "r~ Vm Pm ~r~ 

so t h a t  t he  t ime  scale be tween  mode l  and  p ro to type  is 

b'm 2 
Vp 

The  ve loc i ty  ra t io  be tween  mode l  and  p ro to type  is 

V p ,~ Vp 1 Vp L m 

Therefore ,  we h a v e  

Vp i p  -~ v m L m 
- -  = R n (Reynolds  number) .  

Vp Ym 

Likewise we can show t h a t  for equa l  scaling factors  be tween  iner t ia  and g rav i ty  (wave 
making)  forces 

Vp V m 
~Lp = ~ m  (speed : l ength  ratio) 

or  

Vp ~)m 
~/(gLp) = ~ = Fn (Froude number) .  

Again,  for s imul taneous  sa t is fact ion of  iner t ia  and  elastic forces 

V [pp ~i Vm~P m ~i = = C .  ( C a u c h y  n u m b e r )  

or since ( E / p ) t  = c o (the sonic veloci ty) ,  we have  

V_Lp = V___m = Mn (Mach number) .  
COp Corn 

Since t a n k  fluids are  incompressible  for all p rac t ica l  purposes,  C a is neglec ted  in open 
wa te r  towing  studies,  and  Mn appears  more  in wind tunnel  work. Regard ing  F n and  R n, 
comple te  dynamic  s imil i tude is impossible unless a t a n k  fluid can  be found for which 
Vp/Vm = h i. I t  is cus tomary  to  scale according to F r o u d e ' s  law and  correct  t he  tes t  results  
by  independen t  exper imenta l  " p l a t e "  d a t a  based upon  Reyno lds '  law. 

W h e n  deal ing wi th  towing  basins covered  in ice to mode l  the  ice-breaking capabil i t ies  
of  p r o t o t y p e  ships or  ice-affected s t ructures ,  for example ,  the  s i tua t ion  is compl ica ted  
beyond  the  above  considerat ions  since the  ice-breaking force ra t ios  m u s t  sat isfy some 
scaling law. Some workers  argue t h a t  the  Cauchy n u m b e r  for t he  ice sheet  is the  r e l evan t  
scaling pa ramete r ,  bu t  since we have  shown t h a t  cracking forces should n o t  be  identif ied 
con t inuum elastic forces, C n is no t  appropr ia te .  R a t h e r  a new n u m b e r  has  to  be  satisfied, 
based upon  the  force re la t ionship F p  = ~ t l ( K p / K m )  F m (equat ion  (6)), as follows : 
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I n  order to satisfy the same scaling law for inertia forces and cracking forces, we have 
from arguments analogous to those presented earlier, 

i.e. 

and 

so that  

or 

pp | Km t 

v._ E ,~ (pmKp~i l__ 

Vp(PPLtP]t _ - Vm(P~m~m) i. I ~ g p /  

v~0 pp Lp ~ _ V2m Pm Lira = In (new "ice" number). 
g p  K m 

Notice tha t  In = C~n(EL/R) ~, so that  In appears to be the Cauchy number  generalized 
to include the effects of a "defective" (cracked) continuum. 

Scaling laws for ice tank  work are ill understood at  present and the techniques used to 
translate from model to prototype are quasi-empirical. The foregoing analysis gives a new 
scaling law for the ice fracture part  of the resistance of a ship to passage through ice or, 
conversely, to the forces on dams, etc. caused by ice jams. I t  is customary to weaken the 
strength of t ank  ice relative to sea ice or lake ice. This is accomplished by  copiously salting 
the t ank  water to reduce the ice strength. Brine pockets in the frozen ice are the cause 
of weakening. I t  is known that  the mechanical properties of such ice sheets markedly 
differ from "prototype" ice. Not only is the strength diminished, but  the ice moduli are 
also altered, the t ank  ice being almost rubber-like in flexibility. The "miles" by which 
model ice "strength"* is diminished, at  present are arbitrary. However, it can be shown 9 
that  by arranging the mechanical properties of model ice in a particular way, both 
Froude's law and the cracking law can be simultaneously satisfied. This allows model 
testing at  the characteristically (slow) Froude speeds. 

I t  may be argued that  the brine pockets in model ice are not  tha t  much smaller than 
those in real ice, so tha t  A n  ¢ (1/A ~) Ap. The mathematics leading to In are easily modified 
to accommodate this variation, which gives a slightly different expression for In, but  
trends just  discussed are equally valid. 

C O N C L U S I O N S  

Cracking loads, cracking stresses, and crack velocities in geometrically 
similar pieces obey unusual scaling laws. The similarity concepts have been 
applied to the particular problem of scaling test data from ice model basins 
into full size situations (ships, piers, etc.). A new non-dimensional group has 
been proposed for similitude in ice cracking studies, which should shed light 
on the ill-understood problem of 'total' modelling of a ship's resistance to 
passage through ice. 
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