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Abstract: Knowledge of the Racah algebra for the higher unitary groups is exploited to give a
general formula for the partial widths for the direct product subgroup U(N/k)XU(k) of the
full unitary group U(N) of a given shell model vector space. This formula makes it possible to
separate the second moments of dynamical operators into the internal and external parts
which are needed for detailed applications of the spectral distribution technique. Specific
applications are made for k = 2 (isospin) and %k = 4 (Wigner supermultiplet symmetry).
Explicit expressions are given for the isospin breaking contributions to the spectral widths which
make it possible to estimate the intensities of isospin impurities in an average state of a given
isospin. The goodness of Wigner supermultiplet symmetry is examined for the 2s-1d shell with
a detailed example, the 4 = 25 nuclei, for which partial widths have been calculated for
various modifications of the Kuo-Brown interaction to give a simple measure of the amount
of mixing to be expected between states of different space symmetry.

1. Introduction

Recently French and collaborators ' 7*) have shown that spectral distribution
methods may prove to be a powerful alternative to the conventional techniques of
“microscopic’ nuclear spectroscopy with its limitations to shell model vector spaces
of manageable dimensions. The usefulness of the spectral distribution method stems
from the fact that the low-order moments of dynamical operators are usually the
most significant quantities. In estimating, for example, the distribution in energy
of the states of some fixed symmetry, it is sufficient to calculate the low-order moments
of the Hamiltonian, averaged over the subset of many-particle states belonging to a
specific irreducible representation of the relevant symmetry group. The first moments
of H give the centroids of the various irreducible representations, while the spectral
widths of the irreducible representations are governed by the second moments of H.
So far the most detailed applications of spectral distribution techniques to the higher
symmetry groups have involved the unitary groups such as U(4) and SU(3), partic-
ularly for nuclei of the 2s/1d shell 7 7). Since the average of H, H?, ... over an
irreducible representation [f] involves a sum of diagonal matrix elements with equal
weight for all states of [f], only the scalar (invariant) pieces of H, H?, . . . can make
contributions to such averages. The calculation of such averages is then particularly
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simple when the Casimir invariants of the symmetry group in question furnish a
sufficient number of invariant operators to reproduce the averages of H and H?2.
This is the case for the direct product subgroup U(N/k)x U(k) for the full unitary
group U(N), where N is the total number of available single-particle states for the
shell model space in question, (e.g. N = 24 for the 2s-1d shell). The cases k = 4
(Wigner supermultiplet symmetry) and & = 2 (isospin symmetry) have the greatest
physical significance. Parikh ®) has calculated the centroids and widths for all irre-
ducible representations of U(4) and nuclei in the 2s-1d shell by exploiting the fact
that averages of H and H? over an irreducible representation [f] can be expressed
solely in terms of particle number and the Casimir invariants of SU(4). Since the
widths in general turn out to be comparable to or larger than the spacings between
the centroids of different irreducible representations, the goodness of SU(4) symmetry
for the 2s-1d shell is in question. The simple width to spacing ratios, however, can-
not give a reliable measure of symmetry breaking since two overlapping representa-
tions can coexist without strong mixing. To gain a measure of the average admixings
of different irreducible representations it is important to know what part of the width
comes from intermediate states in the irreducible representation [f] itself, and what
part from states outside of [f]. The detailed applications of the spectral distribution
method require a separation of the second moments into such internal and external
parts ?). These partial widths can no longer be determined from the group invariants
alone but require a knowledge of the Racah algebra of the group. The averaging over
states of an irreducible representation, however, eliminates all Wigner coefficients,
so that a knowledge of the Racah coefficients for the relevant symmetry group is
sufficient to determine the partial widths.

Since many of the symmetries associated with the vector space of the nuclear shell
model are highly approximate, it is important to develop simple a priori tests for the
goodness of nuclear symmetries which can give a measure of symmetry breaking to
be expected before a detailed decomposition of complicated n-particle functions into
irreducible representations of a given symmetry group is carried out. In many cases
the realistic effective interactions used in shell model calculations have now been fully
classified as to their irreducible tensor character under some of the higher symmetry
groups ®71%), making it possible to compare the relative strengths of the symmetry
breaking and symmetry preserving terms of the Hamiltonian. However, it is not
clear how these strengths are best weighted. The most straightforward weighting
may give a reliable measure of symmetry breaking only for the two particle system,
while it may overestimate the extent of symmetry breaking in systems of larger
numbers of particles **). Since the spectral distribution technique serves to propagate
information from systems of small particle number to systems of arbitrary particle
number, it is particularly suited to test the goodness of nuclear symmetries in compli-
cated many-particle systems. The symmetry breaking contribution to the width,
connecting representation [f] to representation [f'], gives a simple quantitative
measure of the amount of symmetry breaking for an average state of [f]. T he use-
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fulness of such partial widths in estimating mixing intensities has been investigated by
Parikh and Wong *?). However, the actual calculation of partial widths to data has
been limited to very simple systems for which the shell model matrix diagonalization
has been carried out and the detailed shell model wave functions are therefore known.
Since it is the aim of the spectral distribution technique to avoid complicated matrix
diagonalizations and indeed give spzctral information where such diagonalizations
are impossible, it is important to be able to calculate partial widths for the higher
symmetry groups by simple techniques which do not require knowledge of wave
functions.

It is the purpose of this note to show that recent progress in our knowledge of
unitary group Racah coefficients has made it possible to give relatively simple ex-
pressions for the partial widths for the direct product subgroup U(N/k)xU(k)
of the full unitary group U(N) of a given shell model vector space. The partial width
formula is presented in sect, 2. Some of the details of the derivation are relegated to an
appendix since they require considerable group theoretical language. The results,
however, can be expressed in terms of a few sums over products of unitary group
Racah coefficients. These sums are simple functions of the axial distances associated
with the Young tableaux for the irreducible representations [f]. They are tabulated
in appendix 2. Applications are made for both the case £ = 2 (isospin) and k = 4
(Wigner supermultiplet symmetry). Although isospin distributions in nuclei have been
treated in great detail by alternate techniques *?), the detailed application of the Racah
algebra for the unitary groups makes it possible to give very explicit but general ex-
pressions for the isospin breaking contributions to the widths, and these are presented
in sect. 3. Although the general partial width formula for U(N/k) x U(k) should prove
useful in many applications of the spectral distribution method ?), the application of
greatest interest in the present study involves its use as a simple a priori test for the
goodness of higher symmetries in nuclei. As an example it is used to test the goodness
of space symmetry (or Wigner supermultiplet) quantum numbers in the 2s-1d shell,
that is as a test of U(6)x U(4) symmetry. A detailed application is given in sect. 4
to the nine-particle system of the 2s-1d shell (4 = 25) for which partial widths have
been calculated for a few of the effective interactions which have been used in success-
ful shell model calculations in the 2s-1d shell. These partial widths give a simple
measure of the amount of mixing to be expected between states of different space
symmetry and can thus be used to decide how (or whether) a shell model matrix for
the 4 = 25 system can be truncated in terms of space symmetry quantum numbers.

2. The partial width formula

The distribution in energy of the states of some fixed symmetry (specific irreducible
representation of some symmetry group) is determined mainly by the centroid and
the dispersion of the Hamiltonian. The centroid for the irreducible representation
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{f1, the average energy expectation value for [f], is given by
E(IfD) = — ¥ U WAL 1, W
NG

where N is the total number of states in [f], and where y stands for a complete set of
subgroup labels which specify the states of [f]. The width of the spectral distribution
for [f] is related to the dispersion

(If1) = ]%Z B 1> — B D @)
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In order to separate the dispersion into an internal (symmetry preserving) and an
external (symmetry breaking) part, the matrix elements of H? are split, to separate
contributions which arise from matrix elements of H off-diagonal in [f] from those
diagonal in [f],
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The so-called partial widths 6*([f], [f']) with [f*] # [f], can then serve as a measure
of symmetry breaking. In particular, the ratio
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may provide a quantitative measure of symmetry breaking. In the limit in which
“x* < 1, (perturbation theory), the ratio x* measures the total intensity of the admix-
ture of all states of [f’] into an average state of [f]. Even if 3 is not very small, how-
ever, its magnitude can be used to give a qualitative measure of the amount of ad-
mixture of [f'] into an average state of [f].

The Racah algebra needed to calculate the partial widths is particularly simple
if the symmetry group is a unitary group or a direct product of unitary groups,
such as U(Q)x U(k), with = N/k, where N is the full dimension of the single-
particle shell model vector space. In the latter case the representations can be labeled
by the symmetry quantum numbers for U(Q), [f] = [fifz .. -fol, With Y, f; = n.
The partition number f; specifies the length of the ith row of the Young tableau which
characterizes the symmetry of the n-particle space wave function for the case k = 4
or the space-spin wave function for the case k = 2, (f; £ k). The representation [ fl
of WU(k) which characterizes the symmetry of the z-particle spin-isospin function
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(k = 4) or isospin function (k = 2) must be contragredient to [f], that is [f] is
obtained from [f] by a row < column interchange of the Young tableaux. Since [f]
is determined by [f] it can be omitted in labelling the n-particle states: [[flu) =
|[f]oB>. The subgroup labels u have been split into two parts; « stands for a complete
set of subgroup labels for U(Q), § for a complete set of subgroup labels for U(k).
In egs. (1) through (3) the sum over subgroup labels is split into separate sums over
o and B; and N, = dim [f]x dim [f], where dim [f] and dim [f] are the dimensions
of the irreducible representations of U(Q2) and U(k), respectively. [Useful tabulations
can be found in the text by Wybourne *4).]

Since only the scalar [U(22) and U(k) invariant] pieces of H, H? can make a con-
tribution to the averages of H, H? over an irreducible representation [f] ([f]), it
will be useful to decompose H into irreducible tensor components under these
unitary groups. As usual, the Hamiltonian will be expressed in terms of single-particle
creation and annihilation operators a*, a = (a™)*. The U(Q)x U(k) irreducible
tensor character of these operators is given by

oy, = 1R
Qg = (.... 1)*1(061)+n(ﬁx)t(a)£i:2§;?mk—13. (5)

The annihilation operator transforms according to the conjugate representations
[1%71][1*~1], described by Young tableaux of a single column of length Q—1 and
k-1, respectively. (Note that in general the conjugate representations [f] and [f*] of
SU(Q) are related by: [f*] = [fi—fa, fi—fa-15 - - S1—f2s 01 for [f] = [fifa
.+« fol.) The subgroup labels a*, * refer to states in the conjugate subgroup repre-
sentation. For the single-particle representation, and U(Q)xU(4) for example,
oy = Im;and of = I, —m,; while B, = dm,, im,; ¥ = 1—m,, 1~m,; in terms of
the usual orbital, spin, and isospin angular momentum quantum numbers. As always,
the phase factor #(«, §) introduced by the conjugation process is somewhat dependent
on phase conventions. Since all final results of this investigation will be independent
of such phase factors (appendix 1), no specific choice of phase convention needs to be
made. [Note that in coupling operators & it is advantageous to use the irreducible
tensor form #{(a) of eq. (5).]

Using Wigner coefficients for the groups U(Q) and U(k), the two-particle operators
can be coupled to components of definite irreducible tensor character

[a* xa TP, [i(a) x (@) 5250, (©)
with two possible two-particle symmetries: [f,1[f>] = [21[1%], or s, and [f,][f,] =
[12][2], or a, where s and a refer to symmetric and antisymmetric coupling in the
subspace of U(Q). The corresponding symmetries for the pair annihilation operators
are [F71[73] = [2271]{1*"2), and [1%72][2*"!]. Finally,a (1+2)-body operator can
be expressed in terms of the basic irreducible tensor operators Tf;’}of"“g ol of the type

[gtEiat1y r(a)[lﬂ"][1"‘1}1{3’0]{50}

o >

[[a* % a+][fznf21 x [#(a) x t(a)]{f’z*}[f’*zl}g?gﬁoz. )
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For shorthand purposes the symbol ¢, will be used in place of [f,][f5'] or the
analogous one-body operators.

There are then five types of these basic operators, corresponding to the one-body
operators with ¢, = [1][197!] and the four types of two-body operators corre-
sponding to the four possible couplings, ss, aa, sa, and as, where the pair-creation
and annihilation operator symmetries refer to the subspace of U(Q) with
eo = (L7 ] = 212971, [*I0°7%), [21[1°72), and [1%][2°7'], respectively.
(Note that the redundant [f,][75*] have been omitted from the labels @o.) The
coupling for the five types of basic operators is illustrated for the subspace of U(Q)

- % —~ [fo] <
[0 b2 o] [292
U ]
{ body X = : + :
[2] [29] lo] [ 219 [4297]
1 | 1
SS X - + +

] ] }
aa x = T + : + ]
- L

[2] %9 297 [383]
C1 E | ]
by o] [21 “'Z]J {32297
as B x = +

Fig. 1. The basic one- and two-body irreducible tensor components for the unitary group UE2), illus-
trated for 2 = 6.



SYMMETRY BREAKING 291

in fig. 1 which shows that there are in all six possible symmetries [fo]. The full irre-
ducible tensor character of the basic operators is obtained by combining these with the
corresponding symmetries [F,]for the subspace of U(k). With k = 4, for example,
ss tensors (that is, tensors with @4 = [2][2°7']) have SU(Q)x SU(k) irreducible
tensor character which -includes the possibilities [f,][Fo] = [42972][22], [42972]
[21%], [42772][0]; [21°72]12%], [21772][217], [21°72][0]; [01[2%], [0][21%], [O][O].
With [f,] # [f], the irreducible representations [f,][F,]are not all self-conjugate;
but the full Hamiltonian always contains conjugate partners, such as [322%73] and
[31°73], with equal strength. Note also that [F,] is nof related by [f,] by a row <
column interchange. In the above, the invariant components have been denoted by
irreducible representation labels [0] for the special unitary groups; e.g. [0] = [2%] =
[17] for SU(Q).
The Hamiltonian is expanded in terms of the basic irreducible tensor operators

H= % _ Yool follFoloo Bo) T, ®)
@olfollFol xofo

where the strength coefficients, ¢, can be determined for any effective (1+2)-body
interaction. The centroids, E ([f]), are determined entirely by the components with
[fol[Fo] = [0][0]. The averages of H? are determined by the U(Q) and U(k)
invariant parts of H?, which are related only to the intensities of the various compo-
nents [fo][Fo] of H, (involving sums over the subgroup labels a, f,). They are deter-
mined by the intensity coefficients

C(po pol fol [Fo]) = Zﬁ: (ol follFolo Bo)e(@ol fo] [Fo]% Bo)- ®
doPa

Since the notation for the group U(Q)x U(k) is somewhat cumbersome, the
details of the derivation of the partial width formula will be relegated to appendix 1.
The spirit of the derivation, however, will be illustrated by decomposing the average
of a much simpler operator, ¢, into partial widths. It will be assumed that ¢ can be
expressed solely in terms of spherical tensor operators; that is, the full symmetry
U(Q)x U(k) is replaced by a much simpler symmetry corresponding to some group

SU(2) or R(3). The operator 0 is assumed to be hermitian with spherical tensor de-
composition

O= 3 c@oJoM)T5% = 0" = Y c(podo Mo)(—1)"°T?% . (8b)

@oJoMo poJoMo

The average of 0> over the states of some irreducible representation J is determined
solely by the scalar parts of ©>

0%, = T Cloogso) [2( 1)] GIIT™x TPy, (10)
Po’alo o

T In taking the average of the product of two different operators, 00", it is necessary only to
substitute coefficients ¢, ¢’ for the tensor decomposition of the two different operators. -
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where
Clpo@oJo) = 1‘; 0o Jo Mo)C(qoS Jo Mo). (9b)

It the tensors 7°°°, (T?°7) are themselves built from simpler operators of spherical
tensor rank J, and J;, (or J; and Jy), in the sense of the operators (7), the reduced
matrix element of eq. (10) can be evaluated by recoupling techniques

<t x TR > - (
v, v,

(@]

(1)

in the pictorial notation of ref. 1*); where the U-coefficients are ordinary angular
momentum recoupling coefficients (Racah coefficients in unitary form). The first
recoupling transformation, involving the sum over J’, gives the decomposition of
{0*); into partial widths ¢2(J,J’). The subsequent recoupling transformations,
involving sums over Jy and J}, reduce the evaluation of the matrix elements of
797 and T¢*° to the simpler matrix elements of one- or two-particle operators.
Specifically, if @ is made up only of one-body operators

C((Poq)o-]o)
0>, =
O szpoq;ﬂo (2]0—{—1) JZZ_:II
. Tlla eIy Tyl Y
[(275+1)2J; +1)]*

o DU 0T557500) UUT TT15 01 T) (12)
U(JJZ ,JZ:J 0) U(JIJI r r J//O)

where the U-coefficients in the denominators, with J = 0, are merely convenient ways
of expressing simple dimensional and phase factors. In all applications to physical
problems, simple groups SU(2) are always imbedded in higher symmetry groups.
Labels J, J' . .. will be insufficient to specify n-particle states, and the reduced matrix
elements of a™* will be complicated functions of additional quantum numbers,
expressed in terms of the usual fractional parentage coefficients, so that nothing much
is gained by expression (12). However, if the SU(2) symmetry of this simple example
is replaced by the full unitary symmetry of the shell model vector space, or by the
group U(Q) x U(k); — that is J — [f]; — then the reduced matrix elements of a*,
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(or [a* x @™ ]) are simple constants, independent of [f]. In particular, < |la*|| ) = n?,
where n is the number of particles in the state [f] or [f']. The recoupling coefficients
above are replaced by Racah coefficients for the higher unitary groups, and the
partial widths are reduced to a few simple sums if the Racah algebra for the higher
unitary groups has been worked out.

For the direct product subgroup U(Q) x U(k) of the full unitary group, the partial
width formula, which is the direct generalization ot eq. (12), has the form (appendix

1):
a([fLIF]) =

Z } C(Q”o‘l’é[fo][ﬁo])

voeolFollFol dim [fo]dim [F,]

% F(n)F'(n) A A TS
[dim [f;] dim [f;] dim [f;] dim [f{TT¥ vreasiraa A gl g

x 2N LA ILAILA T A ILAILAD)

x 27 ILFLILFY: LA 0000 3: L ILF 07 D

where

5. ) = 3 QUALBIALLY: U5 0e) VU IILAL: U dLADe).
VA IFALAL 0D O I AL LoD

5(..)=Y UL LA AL U I0Fe18) ULF ILF 1T I0A s [F1I0F015)

5 UPIAAPIAL: LFI0D) U ILF I/ I07:1: [F: 100D (;Sb)

Here & (n) = nif ¢, denotes a one-body operator, #(n) = —n(n—1) if ¢, denotes
a two-body operator [as defined in egs. (7) and (A.1)]; similarly for &'(n) and ¢;.
The intensity coefficients, C, follow from the tensor decomposition of any given effec-
tive Hamiltonian and are given by egs. (8) and (9). Besides its dependence on the
dimension factors, dim[f] = dimension of the representation [f] of U(Q), dim[f] =
dimension of the representation [f] of U(k), the partial width formula is now also a
function of the dimension factors.A" s, where 4" is the dimension of the rep-
resentation [f] of the symmetric group of degree n (permutation group of » par-
ticles). These permutation group dimension factors arise from the separation of the
Wigner and Racah algebras of U(V) into separate Wigner and Racah algebras for
U(Q) and U(k). The final product of Racah coefficients also splits into two factors,
the sums ¥ and %, involving products of Racah coefficients for the groups U(2) and
U(k), respectively. Now, the U-coefficients are Racah coefficients for the higher
unitary groups '°~'8), written in a notation *°"'®) which is a straightforward
generalization of that for the ordinary angular momentum recoupling coefficient in
unitary form. The U-coefficients in the denominators, containing the scalar repre-
sentation [f] = [0], again are convenient ways of writing simple dimensional and
phase factors. However, it is now particularly advantageous to express results in
terms of such ratios of U-coefficients, since final results then become independent of
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specific phase conventions chosen for the unitary group Wigner coefficients (appendix
1). The techniques used to evaluate the higher unitary group Racah coefficients *>*1°)
also lead to results which are expressed most naturally in terms of such ratios. For the
higher unitary groups the coupling and recoupling coefficients are in general func-
tions of multiplicity labels p. Sincz the direct product [f*]x [f,] is in general not
simply reducible, the coupling of representations [f’] and [f,] can yield a specific
representation [f] with a d-fold multiplicity, leading to independent coupled states
LIl Ty, with p =1, 2, ... d. Although the generalization of the angular
momentum calculus to the higher unitary groups is plagued by this multiplicity
problem, Biedenharn, Louck and collaborators **) have shown that there is a
canonical resolution to the multiplicity problem. In their view the unitary group
Wigner and Racah coefficients are uniquely defined (with no arbitrariness in the
choice of p). The averaging over states of an irreducible representation, however, not
only eliminates all Wigner coefficients but also all details of the multiplicity structure.
In the partial width formula the dependence on the multiplicity labels p survives only
in a sum over p of a product of unitary group U-coefficients (appendix 2). This sum is
completely independent of any specific choices made for the multiplicity label (they
can be chosen “‘canonically” or in any arbitrary manner). The resultant sum is a
function only of the irreducible reépresentation labels f;. [Note that in the present
application there is such a multiplicity labeling in only one of the four couplings
which make up the recoupling transformation implied by the U-coefficients above,
since the direct products [f]x [f,] are simply reducible in the special case when
[f>] is any two- (or one-) particle or two- (or one-) hole representation. ]

The sum over multiplicity labels p reduces the quantities X and ¥ to simple func-
tions *?) of the symmetry quantum numbers f;, . . ., fo, (or fi, ..., f,) which are
determined solely by the axial distances for the Young tableaux describing [f], (or
[f]). In many cases, with [f’'] # [f], the p-sums in the numerator of X collapse to the
trivial value unity, and Z is then given simply by the squares of the Racah coefficients
in the denominator and hence by trivial dimension factors [see eq. (A.14)]. As a
specific example, let [f'] be related to [f] in the following manner: After adding two
squares to every one of the Q-rows of the Young tableau [f] for U(R), the tableau
for [f'] is obtained by then removing four squares from the row labeled a, one square
from row b, one square from row ¢, two squares from d, e, ... until two squares
have been removed from Q-3 different rows, where a, b, ¢, d, . . . stand for any of the
numbers 1, 2, 3, ... Q, provided @ 5 b # c # . ... In this example [f’] will be de-
scribed by the notation

[f'1= [f(a*bed?e?. . )].

For SU(Q) this [f"] is equivalent to the one obtained by first adding one square to
every row of [f] and subsequently removing three squares from the row labeled a,
none from rows b and ¢, and one each fromrows d, ¢, . . .; L.e.

[f'] = [f(a*becd®e. . )] = [f(a’de.. )],
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corresponding to the cases where [f’] is obtained from [f] by the removal of 2Q or
Q squares, respectively. The representations [f] and [f’] are connected by operators
of symmetry [fo], where [folismade up of 2Q and Q squares in the two cases. In the
specific example above, the representations [f] and [f’] can be connected only by
operators of irreducible tensor character [f,] = [42972], with ¢, = [2][2°']; or
[fo] = [31%73], with ¢, = [2][1%2]. Both for [42%~2] and for [31%73] the repre-
sentation [f”']is restricted to the single possibility: [f"'] = [f(aa)];that is, two squares
must be removed from row a in the first step of the recoupling process which connects
[F1to [f'] = [f(a*bed®e?. . .)]. In either case the Racah coefficient describes a one-
dimensional unitary matrix, and its square thus has the trivial value unity. In terms
of the above notation the only nontrivial connections, with {f'] # [f], involve the
representations of the type

[f'] = [f(a®bc*d?e?. . )] = [f(a*cde. . )]

In this case the representations [f’] and [f] can be connected by operators of irre-
ducible tensor character [fp] = [42%72], [221%74), [3%2973], [31773], and [21°72).
The functions Z (or £) for this case are tabulated in appendix 2.

The partial width formula involves a sum over all possible symmetry components
©o 94[follFo]. In general, however, the irreducible tensor character [fo][Fo]
determines the operator type ¢,. Thus ¢, and ¢4 are both restricted to the single
possibility [2][277 1] if [f,] = [42972], for example. There is only one combination
of symmetries [f,] and [F,], which can connect states [f] to [f’] # [f], for which
the quantities £ and £ will contain cross terms ¢ # @, namely the combination
[£ol[Fo] = [21%72][21¥2]. For such irreducible tensors the quantities £ and % will
contain cross terms between the four possible types of two-body operators (see
fig. 1) and between the four types of two-body operators and one-body operators.
For the special case [f'] = [f(a*bc?d®e®. . .)], however, the X for such cross terms
are simply related to the X for which [f,] = [fi), [f5] = [fi{]; [see egs. (A.18)
and (A.19) of appendix 2].

3. Isospin admixing

Isospin distributions have been discussed in detail '?) without the use of unitary
group Racah algebra. Centroids and spectral widths have been calculated for both
overall isospin and isospin configuration distributions by the use of the linear trace
equivalents of H and H?, where these carry the information contained in the invariant
parts of these operators. The detailed application of the Racah algebra for U(Q) x
U(2), however, now makes it possible to give very explicit expressions for the partial
widths, particularly the isospin breaking contributions to the widths connecting states
Tto T’ # T.If these are compared to the centroid separations they give a measure of
the amount of admixing of states 7" into an average state of 7. Since the formalismis
that of discrete spectroscopy, however, and is therefore restricted to finite-dimensional



296 K. T. HECHT AND J. P. DRAAYER

shell model vector spaces involving only bound state single-particle orbits, such ad-
mixture coefficients give a measure only of the ““internal’” admixings (in the language
commonly used to discuss isospin impurities). This restriction must be kept in mind
since the ‘“‘external’” admixings involving scattering or continuum states are often of
greater interest.

For the group U(Q) x U(2) the partial width formula eq. (13), takes a particularly
simple form. The irreducible representations, [f] and [ £1 are specified by # and T
7] = [22"T12T}; [f] = [fif.] = [4n+T, 4n~T]. The quantities ¥ are given in
terms of ordinary angular momentum (isospin) recoupling coefficients. The quantities
Z, which are expressed in terms of simple functions of the axial distances for the
Young tableaux for [f]in appendix 2, can now be written in terms of simple functions
of n, T, and Q. As a specific example, the sum X for [f] = [2¥"T1%T], [F'] =
RETTTRT?] (e T = T+1), [fol = [221°74]; [L] = Al = [1°), [f5] =
[fi1 = [1%72], and [f5] = [f{1=[2¥T7'1*"] (ie. Ty =T = T) has the
simple value

Q-1)

TQRT+3)(Q—4n—~T) {(T+1)(Q—%n——T+1)_ 1 }
(T+DRT+1)En+T+2)\  2T(En+T+1) @-2)"

The sums over [f1'1[f5], (T{, T?%), involving a few simple functions of this kind can
easily be carried out, so that the isospin partial widths can be given as functions of
n, T, and Q, in terms of the intensity coefficients C(@o¢4[fo1[F 1) for the symmetry
breaking part of the interaction, H. (For the isospin case it is more natural to use the
spherical tensor label T in place of [F,], with Ty = 2 or 1 for [F,] = [4] or [2].) If
the isospin breaking part of H arises solely from the Coulomb interaction, the only
operator types which can make contributions to the partial widths are those with (i)
@¢ = [1][1%71], effective one-body operators which give the contribution due to
interactions of the valence particles with the core, and (ii) ¢o = [121[1272] or
@, = aa (see fig. 1), whose strengths are determined by two-particle matrix elements
in T = 1 states. Note that the most general charge-dependent interaction can make
contributions through operators of the type ¢, = sa and as; but, under the assump-
tion that two-particle matrix elements connecting 7" = 1 states to T' = O states are
negligible compared with the T = 1 Coulomb matrix elements, such terms can be
neglected; and only operators with @, = one-body, [fol = [21%72], Ty = 1; or
@0 = aa, [fo] = [21%72], Ty = 1 or 2, or [fo] = [221°7*], T, = 1 or 2, can make
contributions to the partial widths, connecting states 7'to 7". In terms of the intensity
coefficients for these components of the interaction, the partial width formulae are

2T+3 (Q—in—-T)3En—-T)
2T+1  3(@-1)(Q+1)

(T, T =T+1) =

X {C(l—body, 1-b0dy [219_2]'1"0 = 1)+ :;—22 C(aa, 33[219—2]1)
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_ [25(2"_’22])% C(1-body, aa[21°*]1)+ 1252(2———3_‘;72) C(aa, aa[21%72]2)
g%% C(aa, aa[2°1°7*]1) [(Q +2)('lz 92 )_(22? LI O 2)}
+ 5%%‘_—2) (1—570)Clan, 2a[22197*]2) [(" +2)(2f —nt2)_ @ +(2-i(21; +2)] } :
(14)
o*(T, T' = T+2) = C(aa, aa[2°1°"*]T, = 2)
o ART A= DEn—T-1@=In-T)@—4n=T-1)

52T +1)R*Q-3)(Q+1)

Partial widths ¢*(7”, T) and o*(T, T’) are related by simple dimensional factors,
[cf. eq. (3)]. Specifically

o (T+1,T) 2T+1 dim[2571%7]

¢*(T, T+1) 2T+3 dim [2¥"~ 7711271

_QT+1)*(@—in+T+2)(3n+T+2) (16)
QT+3X(Q—in—-T)(En-T)

Similarly,

c(T+2,T)  QT+1)’Gn+T+2)(3En+T+3)0(Q—in+T+3)(Q—in+T+2) a7

oX(T, T+2) QT +5(En—T)(EAn—T—-1)(Q—-in—THR—in—T—1)

The intensity coefficients, C, are determined in terms of the effective single-particle
energies, g, for protons and neutrons in the orbit j;, with degeneracy Q, = (2j,+1),
and in terms of two-particle matrix elements bstween proton states. In the notation

A&s = %[(ss)proton_ (es)neutron]’ (18)
Q=39 =3 (2+1), | (19)

I/V;'stu.l = <[jrjs]aJMJT = ]-MT = r:]-lV”:]t ju]a']MJT = 1‘Z\d’T = _1>’ (zow)

where [j,.j;],JM; denotes a normalized angular-momentum-coupled state, antisym-
metric in orbital-spin space; the intensity coefficients for a configuration (j,/, . . . j
.. Tare

C(l_body, I—body [219"2]7"0 — 1) = 2 Z (Ass)zﬂs:(l - %) "'4 Z Asr Ass Q;)QS >

1)
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Clas,sa[ 217211 = 3C(aa,aa[21” ") = 5 ELEIELE)

1 1 Q4+, 1
x Wsss I/Vsqss ’ (‘”“ —“‘) + mrs mr ( ”“)
{;”"93 0 ES“”’ 40,0, Q

2 1 1
- V[/;rrr VVss +2 Wrrrr VVrr ‘ (W - ”'"')
g 22 es Wossr ¥ 22, 2, Wores Wosss 20, @

2

- Z Z pV;'rrr.}' Wsrst.f z Z ﬂyrsrs.} W;utul v
Q7 s<t Q r<s t<u
SFEP tEr tF#Fr, s ufr,s
1 i i 1
+ H/;fsr [;’Vr ’(“_——) +Wss'(w”‘”):”= 22
%S E sF rtred 4Qr Q tstsJ 493 Q ( )
rt#Es

C(1-body, aa[212~2]1) = ¥ 2T +1 {ZA WJ( %)

T[e-2)*
19
- Z Z AS W;rrr.l + Z Z Aa Wfsrsrl -
5 r¥s s r¥s 2 ,Q
Q,
- Z Z Ags W/;trt.l "“} » (23)
s r<t Q
r#EstEs

C(aa, 2a[ 22127 41T, = 1) = 3C(aa, 2a[2%177*]T, = 2)
RIS Wt 3 W)
r<s

Q7+1)2J +1){ ( i 2)
T er er U D
2 o-2 L Worrs Wona -1 Q,

1
+ W:-srs I'V;'sr ’ ( -
2, Wesrss Wrsr \ 5

r<s

9r+ﬂs)

W:'rrr W;SSSS
20,0, 2, Worms Wi

Q 1r<s

1 1
2 Wi'rrr H’?m ‘ (———' - "’) + VVrrrr W,
* Zg e \a—1 9/ T e-1 E%t il

, 1 1
wr (555~ 53]
) =N\e-1 20,

e Z Z W,;‘srs.?' W;m‘sd} + Z (2J+1)2 z WJ’ (24)

Q—1r=si<u r<st<y
r¥EtEu rs¥tu
sFELFEY

1
+2 W-srs [ rr ( -
o X Worss | W 27 = 5

thr tFs
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where these follow from a decomposition of the interaction into irreducible tensor
components for U(Q) x U(2) [see, e.g. ref. *)]. (For the most general charge-dependent
interaction the proton-proton matrix elements ¥, of eq. (20) must be replaced by
Vyp— Van for To = 1 tensors, and by V,,+ V,,—2V,, for T, = 2 tensors.)

For the single shell case, j*, only two-body terms of irreducible tensor character
[2212~ 4] survive. In this simple case

C(aa, aa[2%177*]1) = 3C(aa, aa[221%27*]2)

=1{ Y Q@I+ D)WP— - 1 Y (2J+1)(2J'+1)W,W,,}. (25)
8 WUeven ](2]+1) JI

For the 1f; shell, for example, the two-body Coulomb matrix elements W have been
estimated by Jinecke ?°) from the experimentally observed Coulomb displacement
energies. To within the experimental uncertainties, the matrix elements W, with
J # 0 can be replaced by W,, the average seniority-two Coulomb matrix element.
In this approximation the above intensity coefficient is given by

Claa, aa[2°17741) = (W — W,z Z=D0+D) (26)
8j(2j+1)

Janecke’s 1f; shell analysis 2°) gives (Wo— W,).p & 75 keV. Estimates for the
centroid separation for the 1f; shell have been made by French '3); E(7")— E(T) =
0.80 MeV [T'(T’'+1)~ T(T+1)]; and isospin admixture coefficients x*(T, T"), as
defined in eq. (4), can easily be calculated. For the single shell case the largest ad-
mixtures are predicted for the half-full shell and 7' = 0. Even in this case (n=28,
T =0,T" = 1), the coefficient y* is extremely small, x> ~ 9x 10~ 3, corresponding
to a T = 1 admixture of only 0.009 9, into an average T = 0 state of “3Cr, (based
on a pure 1f; model without core excitations). This result confirms conclusions drawn
from detailed shell model calculations on the isospin purity of low-lying states in
light nuclei !). Due to the long range nature of the Coulomb potential the major
contributions of the Coulomb interaction to the isospin impurities do not come from
specifically two-body effects of this two-body interaction but through the average
Coulomb potential exerted on a valence proton by the core protons. In the framework
of the present description, such effects are determined by the single-particle parameters
4e, of eq. (18). For nuclei in the 2s-1d shell, with (&3~ a5)proton = 495 keV (using
the observed ground to first excited state separation in '"F), and (&s;— €as)ncutron =
871 keV (from '70), and with the assumption that (eay—eas) are the same for
protons and neutrons (the experimental evidence is incomplete), the one-body
intensity coefficient, C, eq. (21), has the value 0.118 MeV2. With the further as-
sumption that two-body effects are completely negligible, the admixture coefficient
for 2%Si (n = 12, T =0, T" = 1) is 42 (0, 1) = 0.0074. [Here a centroid separation,
E,(1)—E,(0), of 2 MeV has been used; this is an average value for various effective
interactions used successfully in the 2s-5d shell #).] The predicted 7' = 1 admixture
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into an average T = 0 state of 2®Si (the half-full shell nucleus) is thus 0.74 %, which
is orders of magnitude larger than the impurities due to the specifically two-body
effects of the Coulomb interaction.

The partial width formula can also be used to calculate the internal parts of the
widths or the full spectral widths for isospin distributions. [Needed sums over U-
coefficients are tabulated in ref. *°).] For a purely charge-independent interaction,
(T, = 0), the spectral widths for the configuration (j j,...J;...)" T are given by

(T, T) = 8C(aa, aa[2*1%7 41T, = 0)
3Q%(Q+1)(Q—-1)(Q-3)(2~-2)
+3n(n—-2)(Q—1in)(Q—1in—-1)(Q+1)(Q+2)
+ T(T +1)(5Q—3)(@+2)in(3n— Q)+ 1T(T+ D)QQ— 1)(Q + 1)(2+6)}
+ C(ss, ss[42°7%]0)
Q*Q+1)(Q-1)

C(1-body, 1-body[21%~2]0) e
20@+1)@-1) n(Q+2)((Q—4n)— 20T (T+1)}

2C(aa, aa[21%7%]0) (2n
39(R-1)(Q-2)Q+1) °

+ T(T + D[2Q* +3(n —2)QQ+2) —in(n—2)(11Q+6)]}

{ATX(T+1)*(32*~7Q+6)

{[n(n+2)—4T(T+D)][(Q—in)(Q—in+1)-T(T+1)]}

(n—=2)2(Q+2)(Q—1n)—(Q+2)TXT +1)?

C(ss, ss[21°72]0)
20(Q-1)(Q+1)

_ C(an, 1-body[21°7*10) i L
Q(Q_l)(g_‘_l)[(s(g_z)]%{z (n—2)(Q+2)(Q—1n)
+2T(T+1)[Q*—-Q(3n—4)—nl}
C(ss, 1-body[21%72]0)
Q@-1)(Q+1)[2(Q+2)F

{[n(n+2)—4T(T+1)] [(Q——%n)%z— +T(T+1):|}

{(Q+2)(Q—1n)[n(n+2)—4T(T+ 1)1}

C(ss,aa[2177270) [ @+2 7* s G T
- a@-n@+) [3(9_2)] {In(n+2)—4T(T+ DIB(1—2)(@ ) T(T+1()1}).
27

For the single j-shell only the first two terms survive. For this case the spectral width
has been given previously by French [cf. eq. (7.12) of ref. **)]. In eq. (27) the inten-
sity coefficients, C(. .. T, = 0), with ¢, = aa, or ¢, = one-body can be read from
egs. (21)—(24) if the single-particle parameters Ag, are replaced by average energies

A5, = 5, = 3(&,)proon + (& )neuteon] (28)
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and the proton-proton matrix elements of eq. (20) are replaced by:

Wy — J6(W; = average T = 1 2-particle matrix element),
or B
VPP - %\/G(V;m -+ Vnn+ Vnp}‘

Intensity coefficients with ¢4 = ss are determined by the T = 0 two-particle matrix
elements:

qufuj = <[Jqu}s]MJT = GEV}[,;: ju}sJMJT = 0>9 (29)

where [j,j,1.JM; denotes a normalized angular momentum-coupled state, symmetric
in orbital-spin space.

The coefficient C(ss, ss[21%72]T, = 0) can be read off from the coefficient
C(aa, aa[21%72]1) of eq. (22), if the W; are replaced by the ¥, and if the coefficient
of eq. (22) is multiplied by an overall factor 2(Q2—2)/(2+2).

The coefficient C(ss, ss[42% 2]T, = 0) can be read off from the coefficient
C(aa, aa[2?1%7#]1) of eq. (24), if the W, are replaced by ¥}, if the coefficient is
multiplied by an overall factor of 2, and if the middle term in eq. (24), involving the
double sum Y ;;., is multiplied by the factor (2—2)/(2+2).

The coefficient C(ss, I-body[21%72]T, = 0) follows from the coefficient C(aa,
1-body[21°72]1) of eq. (23), if the replacements 4¢, — & and W, — ¥, are made,
and if the coefficient is multiplied by an overall factor [2(2-2)/(Q+2)]*.

Finally, the coefficient C(ss, aa[21972]T, = 0) follows from C(aa, aa[21%72]1)
of €q. (22)3 with replacements such as I/Vrrrr.l Wssss]’ - %[erﬂ Ws;ss.f"l— errrr.l Vssss.l’]:
if the coefficient of eq. (22) is in addition multiplied by the overall factor [6(2—2)/
(Q+2)1%

4. [U(£2) x U(4)] symmetry: An application to the 4 = 25 system

Although results for isospin distributions can be obtained by alternate techniques,
a detailed knowledge of the Racah algebra becomes vital if partial widths are to be
calculated by simple techniques for the higher unitary groups, U(Q)x U(k). The
Wigner supermultiplet symmetry (k = 4) is of particular interest. The most interesting
application will involve the U(6) x U(4) symmetry of the 2s-1d shell since this is an
example of a useful symmetry for which considerable symmetry breaking must be
expected. To gain a measure of the goodness of space symmetry (or Wigner super-
multiplet) quantum numbers in the 2s-1d shell, it will be advantageous to calculate
the admixture coefficients x*([f1[f']) of eq. (4) for representations [f] corresponding
to the higher spatial symmetries. The partial width formula, eq. (13), can be used to
calculate admixture coefficients y?([f][f’]) for any pair of irreducible representa-
tions of U(6) x U(4), provided the Hamiltonian has been decomposed into irreducible
tensor components under this symmetry group. An SU(3) x SU(4) tensor decomposi-
tion has recently been given ®) for various modifications of the Kuo-Brown interaction
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for the 2s-1d shell. The full SU(6) x SU(4) tensor decomposition °) for thess inter-
actions can be achieved by a further coupling of thz SU(3) tensor components by
means of reduced SU(6) > SU(3) Wigner coefficients 22°2%). The SU(6)x SU(4)
content is shown in table 1 for several of the effective two-body interactions which
have been used in recent 2s-1d shell calculations. The table shows only the SU(6) x
SU(4) content of the interactions, the cozfficients C(¢ 400 [fo][Fo]) of eq. (9), since
this is the quantity of primary interest in the present application. The SU(6) x SU(4)
content is obtained by summing over the SU(3) and L, and S, and M, components
of the interactions, [the sum over @, and B, of eq. (9)]. For example, the space
symmetric-symmetric part of the interaction with SU(6) x SU(4) irreducible tensor
components [fo][F,] = [424][2?] is obtained by summing over all central [Ly = S,
= 0) components of the SU(3) irreducible representations (1o4,) = (44), (60), (06),
three independent (22)’s, and (00), as well as over the tensor (Lo = S = 2) com-
ponents of the representations (1opo) = (33), (41), (14), (11) besides the (44), (60),
(06), (22)°, and (00) representations which make up the full SU(3) content of [f,] =
[42*]. (Note that [F,] = [2?] contains no components with ST, = 10. Note also
that the interactions of table 1 are all charge independent (T = 0, no Coulomb con-
tributions). SU(6) x SU(4) tensors of the type [0][21°] are therefore completely
missing since the SU(6) representation [0] contains only L, = 0 components while
the SU(4) representation [21%] does not contain S,7, = 00.)

The two-body interactions which have been singled out are those which have recent-
Iy been used successfully in extensive shell model calculations in the 2s-1d shell. Table
1 includes (i) the central interaction of Akiyama, Arima, and Sebe 24); (ii) the modi-
fication of the Kuo-Brown interaction used by the Oak Ridge group *°) in their
shell model calculations in the 4 = 17-24 region; (iii) a somewhat more drastic
modification of the Kuo-Brown interaction obtained by Preedom and Wildenthal 26)
from an empirical best fit to nuclei in the 4 = 18-22 region; and (iv) a modification
of the Kuo-Brown interaction used by the Darmstadt group [Manakos et al. *”)] in
which the symmetric-antisymmetric and antisymmetric-symmetric parts of ths Kuo-
Brown interaction have been increased empirically by rather sizeable factors in order
to achieve a fit for the K-band separations in nuclei such as **Mg. Table 1 also gives
the SU(6) x SU(4) content of the bare G-matrix elements of Kuo *®) and the re-
normalized matrix elements of Kuo and Brown 2°). The one-body part of H has bzen
taken from the spectrum of *70O. Its SU(6) x SU(4) tensor content can be obtained
in one-body form from

. — /10 1—Mop[1[15]:[214]; [212]
Z I;-s; = \/101; (=1 T T ooy =i 1) Lo = 1Mo3 So=1, ~ MoTo=0 > (30a)
H (1]
2 Z[11[153; [0 [0 2R E1151:[2143; 0]
Z li = 10\/67}[005001; to1 501‘2\/30T([2z]§oo; £21a 00 - (30b)
i

Alternately, it may be convenient to express the operators Y I*, > 1-s in terms of
two-body irreducible tensor operators (see table 1).
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Expressions for the centroids have been given by Parikh ©). In terms of the irre-
ducible tensor coefficients of eq. (8) the needed separation between centroids of
different [f] (fixed n) is given by

e 1, o
EAUD~PLU D = | s ClONOD - s

c(aal01[0)

X [(GDr—<Gdpql,  (31)

where the U(4) Casimir invariant {G,;s; is given by ¥ .7 +3f;+ fo~F3—3f,. The
magnitudes of ¢(ss[0][0]) and c(aa[0][0]) can be read from table 1 by taking the
square roots of the corresponding coefficients C(rows 7 and 14 of table 1, respectively);
¢(ss[0][0]) is positive, while c(aa[0][0]) is negative for all interactions of table 1.

The case of nine particles in the 2s-1d shell (4 = 25) has been singled out as a
special example. On the one hand the 4 = 25 system is possibly beginning to come
within reach of modern shell model computer technology without truncation of the
(2s-1d)" space 3°°31). On the other hand, the spectra of 4 = 25 nuclei show well
developed rotational bands, and any understanding of the collective nature of the
states can come only from a highly imited part of the full shell model space related
to the underlying [SU(6) > SU(3)] x SU(4) symmetry. This has recently been dem-
onstrated by a shell model calculation ®) using a truncated basis including only
nine favored SU(3) representations from each of the two highest possible spatial
symmetries, [f] = [441] and [432]. This calculation has been remarkably successful
in reproducing the experimentally observed spectra, [energy spacings, B(E2) and
B(M1) values, and the K; nature of the three lowest positive parity rotational bands).
A vital factor in the success of this calculation, however, has been the introduction
of a (A1) dependent renormalization of the two-body interaction of the type proposed
by Harvey *?) to account for core polarization effects (in place of the 3p-1h Kuo-
Brown renormalization terms). To gain a further understanding of such renormaliza-
tion terms, it may therefore also be interesting to study the 4 = 25 system with a
larger part of the full shell model space and interactions which have been successful in
lighter nuclei using the full (2s-1d)” space. Since calculations in an [SU(6) = SU(3)]
x SU(4) basis with a much larger part of the shell model space are still prohibitively
time consuming, it will be advantageous to use spectral averaging techniques to give
at least a qualitative or semiquantitative measure of the admixtures of lower spacs
symmetries [f'] into the higher space symmetries, particularly [f] = [441] which is
the predominant component for the low energy part of the spectrum. For this pur-
pose the admixture coefficients xz([f], [f*]) have been calculated for the four highest
spatial symmetries [f]=[441], [432], [4311],and [333], and all possible [f*]. Results are
shown in table 2 for the interactions (1)—(4) of table 1. Although the admixture coeffi-
cients can give reliable quantitative information only when x> < 1, in which case x*([f],
[f'1) measures the total intensity of the admixture of all states of [f"] into an average
state of [f], the results of table 2 can be used as a qualitative guide to indicate how
the full shell model space can be truncated in terms of representations [f] of SU(6).
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Table 2 shows that the two-body part of the central interaction used by AAS leads
to remarkably little mixing of different space symmetries [f]. For this interaction the
mixing arises mainly from the single-particle part of H (the spin orbit term), leading
to strong admixture coefficients for only one or two [f’] for each [f]. For the
(K +12fp) interaction the two-body part of the interaction makes important con-
tributions to the symmetry breaking which reinforce the effect of the one-body spin
orbit term. However, admixture coefficients are important only for symmetries [f]
and [f”] which can be connected by tensors of [21*] symmetry, and each [f] has strong
connections to only one or two [f*]. The symmetry breaking is even stronger for the
PW interaction and becomes so large for the Darmstadt interaction that the SU(6)
x SU(4) symmetry must be expected to break down completely for this interaction,
precluding a truncation of the shell model space in terms of the space symmetries
[f1. For the (K+12fp) or AAS interactions, however, a truncation in terms of
quantum numbers [f] should be expzcted to be valid. The only symmetries with
significant direct admixtures into the dominant highest symmetry [f] = [441] are
the symmetries [f'] = [432] and possibly [4311]. Since [432] is itself strongly con-
nected to [4311] it should be expscted that a valid truncation of the shell model space
would have to include at least the three spacs symmetries [f] = [441], [432], and
[4311]. Since [4311] again has strong connections to [4221], and this symmetry has
strong connections to even lower symmetries, even a truncation in terms of the sym-
metries [441], [432], and [4311] may be open to question. Here it becomes important
to bear in mind that the coefficients of table 2 give a measure of the admixture of
[f'] to an average state of [f]. Since a strong subgroup symmetry, SU(3), plays an
important role, the low energy states of [441] are far from average states but are pre-
dominantly states of high SU(3) symmetry (large values of A and p), in particular
(An) = (66) and (93). States of symmetry [f’] can therefore be expected to lead to
significant admixtures for the lowest states of [441] symmetry only if [f” ] is connected
to [441], directly or indirectly, by large admixture coefficients, and only if [f'] con-
tains states of high SU(3) symmetry (4x). The only such states for the space sym-
metry [4221] come from the single SU(3) representation (Ax) = (82); and SU(6)
representations of even lower space symmetry contain no states of very high SU(3)
symmetry. The detailed shell model calculations of ref. 8) show that admixtures of
(1) = (82) are quite unimportant for the three lowest rotational bands, dominated
by (A1) = (66) and (93), so that a truncation scheme based on the space symmetries
[441], [432], and [4311] should be valid. Since both {432] and [4311] contain an
SU(3) representation (i) = (74) which has strong connections to (93) and (66)
through the simplest SU(3) symmetry breaking terms of the interaction, it must,
however, be expected that some states from both [4311] and [432] symmetries must

e included in the shell model space for the 4 = 25 system.

Although the partial width formula presented in this investigation does lead to a
very simple @ priori test for the goodness of SU(Q)x SU(4) symmetry for a major
nuclear shell, the example of the 4 = 25 system does point up the additional compli-
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cations which arise if there is a strong symmetry associated with a subgroup of a higher
symmetry group. Unfortunately it has not yet been possible to derive a formula for
admixture coefficients for the representations of a subgroup imbedded in the
SU(Q) x SU(4) group of a simplicity comparable to that derived in this investigation
for the admixture coefficients for the SU(Q)x SU(4) group itself. Further work re-
mains to be done to develop a simple, reliable, and complete a priori measure for the
admixture of group representations.

It is a pleasure to acknowledge conversations with J. B. French and J. C. Parikh
which formed the stimulus for much of this work.

Appendix 1

DERIVATION OF THE PARTIAL WIDTH FORMULA

The n-particle state vectors are labeled by the irreducible representation labels of
U(R)x U(k), |[f]ap), where a stands for a complete set of subgroup labels for
U(Q), B for a complete set of subgroup labels for U(k). Operators are built from
single-particle creation and annihilation operators with [U()x U(k)] irreducible
tensor character ajy = t51, g, = (— 1Y@ with [1%] = [1971] for
U(Q) and [1*] = [1¥7'] for U(k). The phase factors n(a) and n(B) are as always
somewhat dependent on phase conventions. Since the final result for the partial width
formula is independent of these phase factors, no specific phase conventions need be
specified. Two-particle operators are coupled to components with definite irreducible
tensor character by

[“ X“+]£{21[f2] az Z AR EAID A ZI(RATA [1]ﬁ1|[12]ﬁ2>a11ﬁ1 Aoripy s
(A.1)

where the coefficients are full Wigner coefficients for unitary groups U(Q) and U(k),
respectively; and an analogous expression is used to construct the coupled pair an-
nihilation operator [t(a)x #(a)]f2/2). A two-body operator is then expanded in
terms of the basic U(Q) x U(k) irreducible tensor operators

nqé.o[(,fO][FO] = Z Z <[f2'*]°‘,2*[fz]°‘z|[fo]°‘0>

oz’ 2% BB 2
X LF5*185 [T 1Ba[FolBod[a* x a* T u(a) x @Iz (A2)
where ¢, is a shorthand notation for [f5][f5'], see fig. 1. (Note that the Wigner

coefficients are free of multiplicity labels if [£,]([f,]) are restricted to two- or one-
particle representations.) The Hamiltonian can be expanded in terms of the basic

irreducible tensor operators 7¢°/°lFol [see eq. (8) of the text]. In terms of the irre-
ducible tensor components of H, the operator H? can be written

H>=HH" = , UZ][F o UZ][F C(q’o[fo][Fo]“o ﬂo)C*(¢o[fo][Fo]“o Bo)
oL/ 0 [+] ] 0. D
a of'o
oo % Trpu[fo][Fo]T fp o*[f ) (___ 1)'1(0! 0)+7(B'0) (A3)

@oBa
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(It is possible but not necessary to choose the phase factors # = . Since final results
are again independent of these phase factors, no specific choices need to be made.) The
product of two U(Q) x U(k) irreducible tensors can be coupled further to resultant
irreducible tensor character [fo0][Foo] of the product tensor by means of U(Q)
and U(k) Wigner coefficients. Since the average of H? is determined solely by the

U(R) and U(k) invariant parts of this operator, only invariant coupled tensor opera-
tors are needed

[T<00If olFol x TPl ollF o] If uo] {OIIFoo] [0}

foo=0
= Z ﬂzlf’ <[folxal folool[010X<[F o186 [FolBol[010>
x® T%"g; o](EF o]Tfp o{f ’o][F o] ( A, 4)
where

L folotol £ 1ol [010> = Spprqgpreo1 Furause — 1) [dim [ fo1]7%,
LFoIBLFLIBAII0I0> = OFanino1dpapre( =)' PLdim [Fo]17% (A.5)

The invariant part of H? can then be written

2 C(@% @a[fo][ﬁoj)
H?(invariant) = (g;,, s Utos dim [f,] dim [Fo]

% Z T‘Po[fo][Fo]T(P o*[fo*][Fo*](__ 1)71(0‘0)4“5(30)’ (A.G)
aofio
where the intensity coefficient, C(@o95[fo][F o), is defined by eq. (9) of the text,
and where eq. (A.4) and its inverse have been used, along with the reality of the c-
coefficients.
The decomposition into the partial widths, defined in eq. (3), is then accomplished
by expressing the average of H? in terms of

Z([f}ocﬁ!H"‘ =% ¥ . C@o9s [fol[Fo])

{71 vorolfoltFol dim [ fo] dim [Fo]

x BZB CLf Tl TSN 7 Ter B5<LF JoBI T2 LS 71 B, (A7)
a’[(;' ¢

where we have used
(LS T BT g — 1y H B 1
= ([f1eBIT? LS f T’ D%, (A8)

and the reality of the matrix elements of 7 ?ol/oltFal,
The sums over subgroup labsls «, § are easily evaluated if the matrix elements of T
are expressed in terms of unitary group Wigner and Racah coefficients. The matrix
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element between two n-particle states |[f]af) is reduced to the matrix elements of
two-particle states by the usual c.f.p. expansion, where the full # to n-2 particle c.f.p.
is factored into two parts, one for the U(Q) symmetry, the second for the U(k)
symmetry. With &k = 4, the factoring of the full c.f.p. is the familiar one into a space
and a spin-isospin part, and is given by *3:34)

['/Vm’] 718 L L1 18 LO LA 1ALy x <[ 1B T [ /1S LI F1BST).

Here A4, is the dimension of the irreducible representation [f] of the permutation
group of # particles, .47 the dimension of [f'] for the permutation group of n-2
particles’. The labels &, have been introduced for the moment: & denotes all U(£2)
subgroup labels other than LM, ; similarly for B. If the space part of the c.f.p. is
combined with the angular momentum vector coupling coefficient, the resultant
coefficient can be identified as a unitary group Wigner coeflicient for U(Q),

KUMIELL f208 Lo} FIELYL "My Ly My JLM > = K[ 1o L2 leal[f o),

similarly for the spin-isospin part of the ¢.f.p. In terms of such unitary group Wigner
coefficients the c.f.p. expansion for the matrix element of a two-body tensor operator
is then given by

. .
LS TepI TGN T B> = dn(n—1) [;_“_‘ﬁ.u_}
‘T

L1020 2] r/V[_f]r/V[f

x Zﬁ U 1o Lo doa L e <L 1o L JoalLf Je>

22820'28"2

s P18 LA B 1B 18 LB T 18>
x <[ fyJata Bl TSN £, B3, (A.9)

The two-particle matrix elements of 7" can be evaluated from the defining eq. (A.2)
to give

(L foJoa Bl TSN £ Tty By = —2(— 1)) 78D
% 8go, proarr KL " 105 Lo Joa LA Joo L5 ¥ 15 L2120 [Fo1Bod.  (A.10)

t It should perhaps be pointed out that this factoring into space and spin-isospin parts, based on
the phase conventions of Jahn and Van Wieringen 33) or Elliott, Hope and Jahn *#), assumes that
the states of [f] and [f] transform confragrediently under a permutation of the n particles; see, e.g.,
eq. (1C-23) of Bohr and Mottelson 35). It is often more convenient to use space and spin-isospin
functions which transform identically under a permutation of the » particles. With this convention
the above n to n-2 particle c¢.f.p. must be multiplied by an additional phase factor (—1)*; see, e.g. a
footnote in ref. ®). This phase factor is important in determining the phase of a specific matrix
clement. However, since y is a function only of [£”], [f21, and [f], it can be adsorbed into the phase
conventions of the unitary group Wigner coefficients. Since the present applications, which depend
only on averages of products of matrix elements, will be shown to be independent of such phase
conventions, all results will be independent of .
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To evaluate the sums over subgroup labels «”, §” a,. . . it is convenient to make use
of a symmetry property of the unitary group Wigner coefficients

L1 L2 Jeallf 1>

o [M_] (_1)n(a'z)+@([f”][f’z][f’J)<[ff]ar[fé*]a'2*][ "]oz"), (A.ll)

dim [f"]

and the analagous relation for the U(k) Wigner coefficients. As in all such symmetry
relations, the phase factor must include the conjugation phase factor n(«3) but is
subject to phase conventions also in its overall dependence on [f”'], [f;], and [f"].
With egs. (A.10) and (A.11), the sums over subgroup labels of eq. (A.9) can be ex-
pressed in terms of products of three U(Q) Wigner coefficients and products of
three U(k) Wigner coefficients. Such sums can be evaluated most economically by a
generalization to the higher unitary groups of the well known result for angular
momentum vector coupling coefficients:

A MZM <L1M1L2M2]L12M12><L12M12L3M3!LM>
PEF RS el

XLy My Ly MLy My3»
= Ly ML, M23{LM)U(L1 Lo L1y L32L23). (A.IZ)
The corresponding sum for the Wigner coefficients of the unitary group U(Q) is
PR WM AN A A N O M A Y A A 5

ot aen”

x<Lf3* 105 [ 2 doal [foTorod
= ; LS T Lfodool Lf o>, UCLS ILS5" LA ILS1: Lf 1L olp). (A.13)

Here, the U-coefficient is a unitary group Racah coefficient **~'®) written in a
notation which is a straightforward generalization of that for the ordinary angular
momentum recoupling cocfficient in unitary form. Since the direct product [f”]
% [fo] is in general not simply reducible, both the unitary group Wigner and Racah
coeflicients will depend on a multiplicity label p. The a-sum cannot be expressed as a
product of a single Wigner and Racah coeflicient but involves a sum over the multi-
plicity label p. With the use of (A.13) and the corresponding result for the U(k)
coefficients, the matrix element of a tensor operator T9°/olFel can be put into compact
form. The result still depends-on phase factors such as ¢([f"'1[f51[f’]) and therefore
seems to be complicated by phase conventions. Such phase factors, however, can be
eliminated by expressing the final result in terms of ratios of Racah coefficients. Setting
[fo] = [0] in eq. (A.13), we note that

UL LA 0 ILAD; LoD

= (=1)PU A ETD [dim ‘E}n’} [d{ m} [f’]} L (Al9)
' 2
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The matrix element of a U(Q)x U(4) irreducible two-body tensor can then be
expressed in the following compact form

_ . s
LF LI ToHSEN f ol By = F(n) T _{u_]
1

(1 LA gy N g

1 ¥ UUPILAAILGY: L ILAR) o pr
e | 7 v AR v o Bk

O I U WD) (gt a1 s
R T AT AT O At (819

with #(n) = —n(rn—1). A similar expression holds for the matrix element of a one-
body operator (¢o = [1][1?7*]), if the factor —n(n— 1) is replaced by F(n) = +n,
and if [f"'] are interpreted as (n—1) particle representations, while [f,] must in this
case denote the representations [1]. By expressing the final matrix element in terms
of the above ratio of Racah coefficients, the result becomes independent of specific
phase conventions chosen for the unitary group Wigner coefficients.

Although the sum over multiplicity labels complicates the evaluation of any one
specific matrix element, it will actually lead to simplicity when such matrix elements
are averaged over an irreducible representation [f]. Using (A.15), the sum over sub-
group labels in (A.7) becomes

Y KL IBIT e L T B LTI TS oL T B

afixoBo
“lﬁl

— (T N s 1 1 ¥
7 (n)[f "z%f"ﬂ N er1H 1 [dim [f:]1dim [f;] dim [f{]dim[f 1']]
XY UL ISP ILAALAY: L 0 fede) UCLF LA I0AAL s LA I ole")
e ULAILATILPILAL LAA00D) U IDAT 0 10D LAVI0D)

x 3 KL T Thodool [ 1> oKL Tl Lo Tl L T,

UQLF LM IR L5 M Fo1p) U ILA*ILFILAT: LT ILF16')
# UPILA P AL 0D o000 LFI0en)
x ﬂéﬁ([f 1B TFo1B0ILT 18> 18 [Fo1Bol[F 185 (A.16)

The sums over subgroup labels can now be carried out, using the orthonormality of
the unitary group Wigner coefficients

Z ( Z <[f’]al[f0]a0i[f]“>p<[f,]a’[f0]a(}{[f]a>p’) = app’ dim [f}:

§(g_’é LT IBTE1BILT 185K LT 1B [Fo1BolLT16Y5) = 653 dim [f].  (A.17)

This finally leads to the partial width formula, eq. (13) of the text.
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Appendix 2
TABULATION OF RACAH COEFFICIENT SUMS

Although expressions for the Racah coefficients of the unitary groups U(X)
with N > 2 are complicated by the multiplicity structure **~'#), the only quantities
needed in the present application are the sums Z([f'1Lfollf1; [faT1L211f5']
A*IAMST) of eq. (13b) involving the products of Racah coefficients of U(N)
summed over the multiplicity label p. Such sums are independent of the details of the
multiplicity structure. They are functions only of NV and the axial distances, 7,,, Where

Tap = fa‘fb“a'{'b‘

Compact expressions for the sums Z have recently been derived by permutation group
techniques *®). The derivations and more general tabulations will be given else-
where *®). In the present application the only nontrivial case with [f'] # [f] involves
the representations

[f'1= [f(a®bc?d?e. . )] = [f(dPcde. . )],

where the notation implies that the tableau for [f'] is obtained from the tableau for
[£] by first adding two squares to every row of [f], then removing three squares from
row a4, one square from row b, two squares from rows ¢, 4, e, and all remaining rows.
Similarly, [f'] = [f(ab)] is the tableau obtained by removing one square from rows
a and b of the tableau for [f]. The quantities X are tabulated as functions of N and
1, in table 3 for the special case [f'] = [f(a®bc*d*e* . . .)]. The only representation
[fo] for which it is possible to have [f{] # [f2], [fi] # [f2] is the representation
[fol = [21772]. Even for this case only the sums X with [f{] = [f2], [fi] = [f2]
are tabulated, since the remaining possibilities can (in the special case [f'] =
[f(a®*bc?d?e* . . .)]) be obtained from

ORI LA IAILA T Y LA
= (=02 2L LA ILLILA L LATILAILGD)
* E(LF 20 20T [ IALA T [ LA D, (A.13)
withv = 0 for [f3] = [1*],and v = 1 for [f;] = [2], and

DX (0|3 Gt | WA H A2 | W2 H WA | P | )
= ('L L LAPILAILA T LA ILAILSE D
x SR 202 DA A0AD0A T LA ILATLF Y DT (A.19)

with v = 0 for [£11f{1 = [212] or [1?][12], and v = 1 for [£51[f{] = [2][1?] or
[12]]2]. [Note, however, that these simple relations hold only for the special case
[f']1 = [f(a®bc*d?e* .. .)]. For the case [f']= [f], for example, the sums with
[£11 # [f31, [f:] # [f>] are in general more complicated *%).]
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TaBLE 3

The sums Z([f'ILAILF1 LAFILLILF 1 LA ILAILF D) with [f1] =
= [f(a®b*d®e*...)])

L1071 £ with [fo] = [20%72], [f5*1f.] = [ 11[1]

@] NI ™2

Tab_l

LIl Z with [fo] = [21"77], L2101 = [2"77][2]

N(N+1) T —3
N+2 75 1451
N(N+1) . (5 —2)(tp+1)
N +2 b Tab(tab —_ 1)
N(N + 1) - (Tab —2)('5“0 + 1)(’5‘1,,: 3 2)
2(N+2) 5 (tap—Dra(tpe+1)

Caaltfas)] ™ E\TN;; 1) 1;[, [(rab - 2(% ;)zz)frab + 1)] 3

4 NN+1) 1 [(ao—2) (70— 3)(’%«: + 1)(fbc +2) o
LA(aa)]Lf(ac)] N+2 IbI l: 2(Tay— D (tap— 1)Tac(The+ 1) ]

e Mt B e ]

L/ (aa)]Lf(aa)]

L/ (ab)]Lf(ab)]

Lf(ac)ILf(ac)]

a a N(N + 1) ’ (Tab - 2) (tac + 1)(€ad + 1)(1’.2:«: +2)(€bd + 2) H
L7 (ad)]Lf(ac)] 2(N+2) "5 (t5—1) [ Taelaa(Tpe + 1) (Tpa +1) }

Lr 11 Z with [fo] = [21"77], [f3*10f2] = (172 1[1°]

R e e ey

) O | e ;)(1)+1)]
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TaBLE 3 (continued)

] Z with [fo] = [20"7%], [£¥I0/.] = [2¥11[17]
@hIlf(an)]  @r+D]] =
' (Tab = Z)Z(Vac - 1)(Tbc + 2) %
[f(a b)] [f(a(:)] (N * 1) I;’I 1: Z‘Eag,("i@ - 1)€ac(“"bc + 1) ]
¢ N+1 't (‘Cab - 2)(Tac - I)(Tbc + 2)

R ) Sy St

N + 1 z (Tab' _2) (?ac“ 1)("7416 "‘ 1)(%(: + 2){‘55:! +2) 3
L/ad)]if(ac)] 2 b (tp—1) [ Tae Taa{Tpe + L)(Tpa+1) ]
LF 0771 Z with [fo] = [21"7?L [£°10/20 = [1¥7%1[2]

N~1 .' (tab - 2)(?::1(: + 1)rbc
[f(ac)ilf(ac)] 7 b (o Denmt 1)

] (Tab — 2)('cac + 1)1’.50 *

teallsted] -1 | Rii]
[f(@a)]Lf(aa)] (N-1) I;I

N—=1 0 Ty =2 [(Taet 1) (e + D)Tpe Tha | *
LA(ad)]Lf(ac)] 2 b Tp—1 [rac Tad(Tpe + 1)(Tpa+ 1)]
[l T with [fo] = [42V7%], [£:¥10/2] = [2¥71][2]
[ f(aa)l[f(aa)] N(N+1) I;I {%};Ia g‘“:g - Ni2 ZZ:?}

y Tap— 2 X Thi 1 1,5+1

L@/ @h)]  NV+ D] % { T ot~ et e 1}
[f(ac)]Lf(ac)]

N(N + 1) H! Tap— 2 (Tac . 1)“"I:»c Tei 1 (Tnc + 1)('!&' + 2)
2 b T—1

TaelTpe +1) {:g(‘i’ci'—- 1) N+2 1,(1.+1)
i#e
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TaABLE 3 (continued)
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Lf(aa)]Lf(ab)]

_ N+ T [(Tab —3)(tap—2)(Tap+ 1)] %

N+2 b (Tab - 1)2‘l7ab
o NN+ o [Gap—=2) (o= 3T+ D +2) |
I e b s vt
. N(N + 1) + Tap -2 (tab + 1)(Tac + 1)(Tbc + 2) N
Lf(ab)]if(a0)] N+2 l;[ Tap—1 [ 2% Tae( T+ 1) ]

4 _ NN+ 1) 117 Tap =2 [ (Tac + 1)(Taa+ 1)(Tpc+2) (70 +2) *
Li(ad)]Lf(ac)] 2(N+2) "5 t4—1 [ Tae Tad(Toe+ D(Tpa+1) :|
L] z with [fo] = [22177*1, [£,¥10] = [V 2][1%]

s N(N —1) ' (Tab _2)(1410 - 1)Tbc Tei — 1
[f(ao)]f(ac)] 2 % (ta—)tal(the+ 1) {':::Z (tu—1) N ——2}
4 26 _NN=1) o T2 [ (Tae = 1)(Taa = 1)Tpc Toa %
LA (ad)lL/(ae)] 2(N=2) "% t4—1 Lac TadToe+ 1) (Tpa+ 1)-J
LrI0r ] Z with [fo] = [3°2Y7°L [2¥10F:] = 2V 1[17]
Ty NOHD T2 [ w2
[f(ab)]Lf(ab)] 2 o 4 Lg 1) N}
a ¢ _ f2 (Tab - 2)2(Tbc + 2)(1110 - 1) %
e (v [ | G D )]
. c NN+1) (Tap—2)(Toe— e Tei 1 T +2
[f( C)] [f(a )] 2 (Tab - 1)Tac(rbc + 1) b {t:g (Tci - 1) N The }

26 _NH1 o Ty =2 [(Tae = D(Taa = D(Tse + 2)(Tpa+2) | *

) - Ay =2 Ko ot et )
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TABLE 3 (continued)

LA I0F ] Z with [fo] = [31"7°L [£*10f] = [1"2][2]

[f(ao)I[f(@d)] N(N—=1) (tap=2)(Tac= 1)se it { -t — 1 7,+ 1}

2 (o= DTac(Tpe+1) 78 i%a (ts—1) N 1,.—1

i*c

Lf@allf@)] ~N-DIT gj—zz)(:ac(: l)ff)r

[aalaa] =211 {H o %}

Ui - Yt [ 2 [ Gt Dltart Dot

2 b Tgp— 1 Tac 'Cad(?bc + 1)(’55‘; -+ 1)

( )=Y UL IR IAILLs DF70s Dole) UL/ ILAIE,T: LF7Ts Lhodp)
(A 2 A A B A O I (R 2 s A H R H T

In table 3 the following shorthand notation has been used:

=TI (1+1/7y;) (A20)

iFa
i#b

that is, the product runs over the N—2 indices i other thani = a and b.
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