INCREASING HEMOLYSIS AND PREDICTABILITY OF ANEMIA IN THE CLOTH COVERED STARR-EDWARDS PROSTHETIC AORTIC VALVE
John T. Santana, MD; Jairus F. Flora, PhD; John G. Batesakis, MD; Marvin M. Kirsh, MD, University of Michigan, Ann Arbor, Michigan

This is an evaluation of the frequency and severity of increasing hemolysis in patients with hemolytic anemia from prosthetic valve replacement. In addition, LDH dehydrogenase (LDH) values were evaluated in an attempt to predict future anemia. Patients attended the postoperative clinic and had regular screening studies for hemolysis including serum LDH levels (normal 23-65). Patients were placed into anemic and non-anemic groups.

The yearly increase in the anemic group is significantly different from the non-anemic group (p<0.005). A subset of these patients showed a one-year increase of 3 LDH units in 12 non-anemic patients and 242 units in 17 anemic patients. The predictive value of the LDH level was assessed from values obtained prior to diagnosis. A value of 250 units predicted anemia on the next yearly visit with a 28% false positive and 4% false negative accuracy. The increasing hemolysis in the anemic patients was associated with clot wear (found in 5 of our 6 reoperated patients). Our current prevalence of anemia in the totally cloth covered aortic valve is 36/69 patients (49%) Therefore, monitoring of the LDH level is suggested. Values in excess of 250 units (4 times the upper limit of normal by other LDH methods) and/or increasing levels would suggest future anemia.

MAIN LEFT CORONARY ARTERY DISEASE. Patrick J. Scanlon, M.D., James V. Talano, M.D., John F. Morau, M.D., and Rolf M. Guwag, M.D., FACC, Loyola University Stritch School of Medicine, Maywood, Illinois 60153 in a 1 1/2 year period, 76 patients (pts) were found to have greater than 50% obstruction of the main left coronary artery (LCA) by coronary arteriography. The presentation of one of pre-infarction angina (PIA) in 30 pts (39%). Total occlusion of the LCA was found in two pts. Severe obstruction of other coronary vessels was present in most pts. Total occlusion was present in the right coronary artery in 32 pts (42%) and in the left anterior descending artery in 18 pts (24%). Isolated obstruction of the LCA was seen in four pts. Calcification of the LCA was seen fluoroscopically in 18 (24%). Inter coronary collaterals were visualized in 51 (67%) of 76 pts undergoing left ventriculography, 49 (70%) had obvious contraction abnormalities. One pt (1%) became hypertensive and died at the termination of the procedure. Another pt developed myocardial infarction six hours after study and died within 24 hours. 66 pts (87%) were considered operable; 51 underwent surgery with an operative mortality rate (MR) of 12% and a total long term MR of 16%. 24 pts who survived CA were not revascularized; 6 (25%) eventually died. Of 30 pts with PIA, surgical MR was 13% (3 of 23), and nonsurgical MR was 57% (4 of 7) (p<0.05). It is concluded that LCA disease, especially when presenting as PIA, is a lethal condition on which careful attention was accorded in this study and was treated surgically at an acceptable risk.

NON-TRAUMATIC DETERMINATION OF CARDIAC OUTPUT AND LEFT VENTRICULAR EJECTION FRACTION BY RADIONUCLIDE ANGIOGRAPHY. Heinrich R. Schwertb, MD; John W. Verba, PhD; Gary W. Brock; Allen D. Johnson, MD; Frank J. Rose, MD; Naomi F. Alazraki MD; William L. Ashburn, MD, University of California, San Diego. School of Medicine-VA Hospital, San Diego, CA

Previous reports indicated that cardiac output and left ventricular ejection fraction (LVEF) can be determined non-traumatically by radionuclide angiography. By recording the passage of a radioactive bolus through the heart a time-activity curve corresponding to LV volume changes can be derived. The purpose of the study was to develop a computer program for calculating CO and EF and to examine effects of background activity, scattered radiation and assignment of regions-of-interest (ROI) on these determinations. In 20 patients CO and EF were calculated automatically in time segments for the entire LV time-activity curve. The correlation coefficient between EF obtained from biplane cineangiograms (arithmetic method) and calculated for background only during the early downslope of the LV time-activity curve was 0.92. EF was overestimated when the background ROI was too close to the LV and underestimated when the LV ROI encompassed other cardiac structures. There was good agreement between CO determined by RCG and dye-dilution (r=0.96). It is concluded that although CO and EF can be measured by this non-invasive technique with great accuracy, proper assignment of the LV and background ROI are important.

BUNDLE BRANCH BLOCK DUE TO HIS BUNDLE LESIONS. Benjamin J. Scherlag, PhD, Nabil El-Sherif, MD; Ralph Iaizara, MD, Mount Sinai Medical Center, Miami Beach, and Veterans Administration Hospital, Miami, Florida

We have previously reported that ischemic lesions in the His bundle (HB) could result in bundle branch block patterns in the presence of normal conduction in the atria and ventricles. To more definitively study this problem, 10 in vivo and 4 in vitro studies in dogs were performed. Electrograms were recorded from the proximal and distal HB as well as the right (RB) and left (LB) bundle branches (BB). Vagal slowing or atrial pacing showed normal intraventricular conduction within a wide range of heart rates, 20-300/min. Lesions were induced by ischemia (ligation of the anterior septal artery) or by trauma (needle puncture). In vivo HB damage was manifested as fragmented or split HB potentials (HB, HB). Atrial pacing or proximal HB pacing induced H-H' delay with concomitant RB or LB block. However, distal HB pacing at comparable or even higher rates produced a normal U wave. In 3 dogs trauma to lesion induced a split HB potential which showed bradycardia-dependent right bundle branch block with concomitant delay and temporal alternation between HB and HB' in vitro, using a modified Elizari preparation containing the HB, proximal and distal HB and RB, normal conduction from HB to proximal BB (10-15 msec) and HB to earliest ventricular muscle activation (26-33 msec) observed at pacing rates of 30-220/min. Resting potentials of HB cells ranged from 65-85 mV. Punctate lesions placed above the branching HB caused bradycardia-dependent (10-30 beats/min) delays to the distal HB, 2:1 to complete HB or HB' block. In addition, some portions of the distal HB were activated after the bundle branch potentials. We conclude that lesions in the HB can cause bundle branch block probably due to dissociation of normally synchronous conducting pathways in the common bundle.