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The properties of jets produced by a gluon source are examined in QCD. We give a 
simple derivation of the jet opening angle (up to an undetermined constant) using argu- 
ments of general applicability. At asymptotic energies, gluon jets are found to be wider 
than quark jets in an intuitively natural way. Unfortunately, in the energy range antici- 
pated for PEP or PETRA, the results are quite sensitive to variations in the undeter- 
mined constant so that firm quantitative predictions cannot be made within the present 
approximations. 

1. Introduction 

Reasonably direct experimental confirmation of the existence of quarks is found 
in the decay schemes of heavy quarkonium states, in deep inelastic scattering, and 
in the observation of jets in e ' e -  annihilation ***. However, while these results are 
suggestive of an asymptotically free field theory, the precise details of such a theory 
remain unconfronted by experiment. In particular, existing data shed little light on 
the nature of those partons which are not quarks. 

That perturbation calculations can be applied to strong interactions is the result 
of fairly recent theoretical developments. Because of asymptotic freedom, the 
running coupling constant decreases with increasing energy. Nevertheless, many 
cross sections cannot be calculated perturbatively at high energies due to mass sin- 
gularities as role  ~ O. Recently, Sterman and Weinberg [2] have stressed the impor- 

* Supported by the Department of Energy. 
Partially supported by a University of Michigan Rackham Predoctoral Fellowship. 

*** For recent reviews of this evidence, see ref. [ 1 ]. 
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tance of  cross sections which are free of  such singularities and for which one may 
take the quark masses to be zero at the outset. They have suggested that such cross 
sections might be susceptible to direct experimental confirmation, despite compli- 
cations associated with confinement of  quark and gluons. This has stimulated a 
variety of  applications * 

In ref. [2], the production of  N-jet final states in e+e - annihilation was discussed. 
Here, and henceforth in this paper, the number of  jets in a final state of total 
energy E is counted by neglecting soft particles (with energy < eE) and grouping 
hard particles with angular separation less than 26 in the same jet **. By considering 
the dependence of  the 2-jet production cross section on 6 and e in a manner 
reviewed below, Sterman and Weinberg suggest that one can understand in detail 
the width of  jets and, conversely, use data on jets to test QCD. They define an 
angle for quark jets 6q (E) (see eq. (5) below) produced in e -e  + annihilation, which 
they compute perturbatively to orderg 2 for 6, e < <  1. To that order, 6q(E) differs 
from zero because of  gluon bremsstrahlung from the quark-antiquark pair. 

In this paper, we apply QCD to the analysis of  gluon jet production. Detailed 
experimental confirmation of  our results would be strong evidence for the vector 
gluon nature of  QCD. Unfortunately, it turns out that at energies available at accel- 
erators such as PEP or PETRA, one will have to go beyond the approximations used 
here to perform quantitative tests. 

Normally, the primary source of  gluon production in e -e  + annihilation is hard 
radiation from light quarks, as discussed in detail in ref. [4]. To understand how the 
gluon jets are smeared out in a manner analogous to the calculation of  ref. [2], one 
would calculate the soft or approximately collinear corrections to this three-jet pro- 
cess. This requires going to next order in perturbation theory, a formidable (though 
not impossible) task. Even then, one would have to discuss a way to differentiate 
gluon jets from quark jets. However, in the decays of  heavy quark bound states, it is 
believed that gluons are produced directly from quark-antiquark annihilation. Thus, 
for example, the total decay rate into hadrons of  0 -+, 0 ++, 2 ++, etc., bound states 
(such as ~?c) is thought to be via two gluons [5,6]. The hadronic decay of  1 - -  states 
such as 4(3.1) or T(9.4) is thought to be predominantly via three gluons [6 -8 ] .  
Certain radiative inclusive decays such as T'  -+ 3' + hadrons may be expected to 
yield two gluon jets [8,9] ***. Higgs bosons may also lead to two gluon jets [I 0]. This 
suggests that the investigation of  jet production from a local source of  gluons might 
be more than an academic exercise. Since gluons carry a higher color charge than 
quarks, we can anticipate that they will bremsstrahlung more efficiently and be 
more dispersed. Consequently, a gluon jet may be broader than a quark jet at the 

* For examples, see ref. [3]. 
** The cross section for two jets, so defined, differs slightly from the definition used in ref. [2] 

which specified a fLxed detector. For a 4n detector, our definition seems more natural. For 6 
and e sufficiently small, the two definitions agree for 6 > e. 

*** The investigation of the even-charge conjugation channel by radiative decays of narrow, 
odd-C resonances in e-e + annihilation was suggested in ref. [9a]. 
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same energy, and this expectation is borne out by our calculation. Experimentally, 
this might be studied by comparing the jets observed (if any) from a series of  reso- 
nances (bot tomonium, toponium ....  ). 

In a slightly more speculative vein, we remark that it may also be possible to 
study gluon jets in hadron collisions although meaningful investigations presumably 
await the construction of new pp or p~ colliding beam facilities. 

The outline of  the paper is as follows. In sect. 2, we review the situation for 
quark jets, stressing the limited quantitative validity of  theoretical results so far. In 
sect. 3, we derive a result for gluon jets analogous to ref. [2] in order to identify 
how bremsstralllung by gluons will differ from bremsstrahlung by quarks. Sect. 4 
contains a discussion of this results. Finally, in sect. 5, we conclude with some com- 
ments on confinement and the parton model and on the implications of  our con- 
clusions for future work. In the appendix, we present some mathematical details of  
the derivation of the result in sect. 3. 

2. Review of quark jets 

The Sterman-Weinberg result for the two-jet production cross section to order 
g2 is [2] 

ao 1 - 4 - ~  C2(R) n 1 I n ~ e - ~  + ~ - 2 -  ' (1) 

where 

4 7r~ 2 
Oo = 5 ~ - - N  c ~ Q ]  

is the zeroth-order total cross section; Nc, the number of quark colors; Qi, the 
charge of quarks of  flavor i. In eq. (1), C2(R) is the value of the quadratic Casimir 
operator for the fermion representation * (C2(R) = 4 for the SU(3) fundamental 
representation). Eq. (1) represents the first terms of  an expansion in 8 and e in 
which terms vanishing with 8, e -+ 0 have been dropped. 

Since the total cross section to order g2 is [12] 

the fraction f of  events consisting of two jets may be written as 

1 - f =  4~s C2(R) n In ~- + (3) g • 

* Our notation for Casimir operators follows ref. [11 ]° 
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Table 1 
(a) Fraction f (in percent) of events for various values of e and 6 (in degrees), (b) Value of 
In 6-l(ln(1/2e) - ~) 

e/~ 1 5 10 15 20 30 

(a) 

0.05 <0 <0 3 29 42 59 
0ol <0 28 45 56 63 72 
0.15 35 57 66 71 75 81 
0.2 69 77 81 82 83 86 

(b) 

0.05 6.28 3.79 2.71 2.08 1.63 0°56 
0.1 3.48 2.10 1.50 1.15 0.90 0.56 
0.15 1.84 1.11 0.79 0.61 0.48 0.29 
0.2 0°67 0.41 0.29 0.22 0.18 0.11 

It is apparent from the preceding discussion that the constant term in (3) is 
dependent upon the precise nature of the source (in this case, a vector electromeg- 
netic current). On the other hand, the terms divergent as 6 or e tend to zero are 

presumably source independent (although we have not proved this rigorously ~) and 
are characteristic of QCD itself. Recall that eq. (1) and, hence, eq. (3) are obtained 
by neglecting terms of 0(6)  or O(e) and higher. Their regime of applicability, there- 

fore, requires 6 and e sufficiently small, presumably so that the logarithmic terms 
are larger than the constant terms. Yet, to apply perturbation theory, a s must be 
sufficiently small so that the corrections to the cross section (eq. (1)) or to f ( e q .  (3)) 
are small. Even at the highest energies anticipated in the not-too-distant future for 
PEP or PETRA, these approximations are marginal. 

In table 1 a, we evaluate eq. (3) for various values of e and 6 for a c.m. energy E = 
30 GeV. In so doing, we have ulilized the asymptotic QCD formula [6] 

oq (E) = 6 (4) 
7r (33 - 2Nf) ln(E/A) ' 

with a scale A for the logarithm taken to be 0.5 GeV. However, the number of quark 
flavors Nf to be included here is ambiguous at Finite energies. Presumably, we should 
include those flavors for which the quark mass is negligible at any given energy. We 
will assume that only the lightest three flavors are to be included for the range of 
energies of interest ** 

* We have in mind that the soft or collinear corrections to a non-infrared divergent process may 
be calculable from an analog of the low-energy theorem of QED given by Low [ 15 ]. This 
analogy suggests that perhaps the constant term in eqo (1) is also source independent. 

** To some extent this can be resolved experimentally by observing how frequently the jets 
detected contain the heavier quarks. 
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For E = 30 GeV, as/n is quite small (0.06), so one would expect perturbation 
theory to be good. However, perusal of table la shows that we are caught in a bind. 
To justify the expansion in e and 6, we must choose them small. Yet the smaller we 
choose them, the larger the correction term, i.e., the more questionable is the per- 
turbation expansion. Clearly, the formula makes sense only for ln(1/2e) > 43- (e < 
0.236) and for 6 sufficiently small so that the log term is larger than the constant 
term. In table lb, we list the value of 

1 
In ~ (ln ~ -  0.75) 

which is to be compared with the constant term ~Tr 2 - 7 ~ 0.38. Apparently, the 
range of validity of this formula is barely marginal at this energy. Because as 
decreases only logarithmically with energy, the applicability of eq. (3) improves only 
very slowly with increasing energy. 

A more sensitive test of the energy dependence was suggested in ref. [ I ]. At any 
given energy E, what opening angle 8q(E) is required so that some predetermined 
fraction f o f  the events have at least 1 - e of their energy within the solid angle 
defined by 6q(E)? Solving eq. (3) for 6 yields at asymptotic energies the power law 

( l - - f )  i" 33-- 2Nf 
6q(E) = E  8 \41n( l /2e) -  3]  . (5 )  

ForNf  = 3 and e = 0.1, this gives E 0"98(1-f)  . 

One cannot expect this asymptotic formula to work at finite energies any better 
than eq. (3) itself. Inclusion of the constant term is given by the substitution in the 
exponent of 

1 - f - +  1 - f -  ~ C2(R)(ln 2 - 7 ) .  (6) 
7r 

The correction term is of magnitude 0.11 for E = 30 GeV and represents a very sig- 
nificant change. It would be fortuitous if the uncalculated corrections to eq. (3) 
were negligible. Since the failure of eq. (3) is primarily due to the expansion in 6 
and e, it should not be difficult to obtain a more reliable formula by calculating the 
next few terms in the expansion * 

3. Gluon jet derivation 

In this section, we will derive a formula for gluon jets analogous to eq. (3). Before 
getting into details, we can anticipate some features of the result. Bremsstrahlung 
by a gluon will be proportional to the "color charge" C2(G) of a gluon,just as the 
corrections in eq. (3) were proportional to the quark "charge" C2(R). Since for 
SU(3) color, C2(G ) = 3 while C2(R ) = 4, we are likely to find a much larger effect. 

* Elsewhere, one of  us (BGW) presents the exact calculation of the fraction f to first order in %. 
See ~ef. [17]. 
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In addition, a gluon may split into quark-antiquark pairs. Altogether then, resolv- 
ing a gluon jet  may well require much higher energies then resolving a quark jet.  As 
a first step toward quantifying these qualitative remarks, we derive a formula for 
the opening angle of  a gluon jet  6 q(E) analogous to eq. (5) for a quark jet.  Therefore, 
we compute in this section to o rde rg  2 the two-jet production rate from a gluon 
source * which we choose to be (F~v) 2. 

The remainder of  this section is devoted to sketching the derivation o f  the result 
exhibited in eq. (9), to which the reader uninterested in details may pass. We define 
the following production rates: 

W o = the total  rate to o rderg° ;  
W 2 = the order g2 contr ibution to the 2-jet production rate; 
W 3 = the o rde rg  2 contribution to the 3-jet production rate. 

The number of  jets in the final state is defined exactly as in sect. 1 and should not  
be confused with the number of  quarks or gluons in the final state. To this order, 
the total  production rate is simply the s u m  Wto t = W 0 + [d ]2 + /4 '3.  W 2 receives con- 
tributions from infrared divergent pieces, viz., the virtual corrections to the two- 
gluon final state plus the soft or nearly collinear configurations in the three-gluon 
state. However, since Wtot, Wo, and W 3 are all infrared finite, it follows that  W 2 is 
also not divergent, as expected. Note that the fraction of  two-jet events may be 
writ ten to this order as 

Wo + W 2 W 3 

f -  Wo + w + w 3 1 - w o '  (7) 

Thus, f m a y  be calculated directly from I4, '3 and Wo wi thou t  encountering any diver- 

gences. In particular, there is no need for infrared regularization ** 
We proceed to calculate W 3 = f df(2/r) 4 ~ (p f  - p i ) lTI  2 to order g2, where the 

phase-space integration includes all 3-jet events. In the limit g, e ~ 0, df inc ludes  all 
of  3-particle phase space, and W 3 is divergent. This is due to bremsstrahlung, as fol- 
lows: if particle 1 is emitted by particle 2, the associated Feynman graph has the 
propagator 1/(p 1 +p2 )  2 = 1/2plp2(1 - cos A), where A is the angle between Pa and 
P2 and Pi is used to denote both  a 4-vector and its zero component .  The denomina- 
tor displays both  infrarea (Pi ~ 0) and colllnear (A ~ 0) singularities, and the d f  
integral would diverge. However, for 6, e > 0, all singular points are excluded from 
the df in tegra t ion ,  and W 3 is finite. 

Performing the df integral  is technically difficult for two reasons. First,  the inte- 
grand is a priori a complicated function of  the phase space variables, although it 

• With slight genetalization, the following derivation applies to and yields the same result (eq. 
(9)) for any Lorentz- and gauge-invariant local source of gluon pairs with non-vanishing gl~v 
term so long as the source produces more than two gluons only at the expense of additional 
powers ofg. 

• * Precisely analogous remarks apply to the derivation of eq. (3) for quark jets and can be used 
instead of the method given in refo [2]. In essence, eqs. (1) and (3) can be obtained by sub- 
tracting the cross section for three jets (given in ref. [4]) from the total cross section. 
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Fig. ]. Relevant Feynman rules for 0CD with source (F~v) 2. 

might be that, as in the Sterman-Weinberg calculation, the integrand simplifies dras- 
tically under an appropriate choice of  variables. Second, the limits o f  the dfintegra- 
tion corresponding to 3-jet final states are not simple. However, in this paper we 
compute W 3 only up to an undetermined contribution which is finite as 6, e ~ 0. 
Thus, we are free to make approximations whose errors terms remain finite in that 
limit. As a result, the calculation turns out to be very easy. 

Our Feynman rules are given in fig. 1. For now, we neglect quarks. Then, the 
only singular contributions to T are graphs of  the form shown in fig. 2. Although 
the singularity structure of  the propagator looks fike 1/plP2 A2, T itself has a collin- 

I 2 

Fig. 2. Singular contribution to 2". 
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ear singularity going like 1/A. This is because every term in the numerator o f / ' h a s  
a factor of  e i • p/, which is of  order A for A small. (Here, we take advantage of  the 
fact that we may choose the gluon polarization to satisfy e ° = 0, e i = ei, and ~i "Pi = 
0.) 

Thus, the singularity structure of  T looks like (plP2A) -1 . But, as shown in the 
appendix, phase space contains the factor PiP2 sin A. It follows that a cross term 
contribution to W 3 consisting o f  the product of  a singular and a non-singular graph 
is non-divergent as 6, e ~ 0 and can be neglected. Therefore, we need only consider 
products of  singular graphs. 

The details of  the remainder of  the calculation of  W 3 may be found in the appen- 
dix. The result is 

1 - f = 4 ~ C 2 ( G )  n In +r(6,e (8) , 

where the remainder r(8, e) is finite in the limit 6, e -+ 0. 
As expected, the formula is quite similar to eq. (3) except that Ca(R ) for quarks 

has been replaced by C2(G) for gluons. Since C2(G)/C2(R) = 9, we can immediately 
conclude that the expansion in 6 and e will be valid only at extremely high energies. 

So far we have neglected quarks. Their inclusion in the calculation of  I4 '3 involves 
no new ideas, and we obtain 

l _ f = 4 a S I C 2 ( G )  l n l l n  1 11 1NfC2(R) 11 (9) 7r [_ O 2 6 -  ( ~ C 2 ( G )  -- In , 

neglecting terms which are finite as 6, e ~ O. This is the desired analog of  (3). Notice 
that the constant coefficient of  In(l/6) is precisely the factor occurring in the/3- 
function which determines as(E) [6]. 

4. Discussion of results 

Given our caveats concerning the applicability of  the formula for quarks (eq. (3)), 
the reader will have no difficulty appreciating that this situation is even worse for 
gluon jets. From eq. (8), we see that we must now choose e < 0.2 to obtain a mean- 
ingful expansion in e. Unfortunately, now we have not calculated the constant addi- 
tional term so it is impossible to estimate how small 6 must be chosen. As before, 
we expect that for a range of  values of  8 and e sufficiently small to justify neglect- 
ing the constant t e r m , f  will not  be near I, signifying a breakdown of  perturbation 
theory. (Indeed, for e = 0.1 and 6 ~< 30 °, we findf~< 64% f o r E  = 30 GeV.) Conse- 
quently, we suspect that eq. (9) is quantitatively useless until extraordinarily high 
energies. 

As before, it is interesting to "solve" for 6 to obtain the asymptotic power law 

( l - - f )  ~ 33-- 2Nf 
6q(E) = E ~ ~'41n(1/2e-~-(3-3-2Nf)/9]. (10) 
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This suggests that the collimation of  gluon jets will shrink much more slowly than 
for quark jets. F o r N f  = 3 and e = 0.1, we find E -0"44(1 -f) .  

F o r N f  = 3, the correction to the In 2e term is fortuitously exactly the same as 
in eq. (5), so we may say that * 

6g(E) ---- ~q(E) 4/9 , (11) 

where, it must be noted again, the exponent is simply the ratio C2(R)/C2(G ) of 
"color charges" for the quarks and gluons, respectively. 

5. Concluding remarks 

In this paper, no mention has been made of  the non-perturbative confinement 
mechanism which prevents the quarks and gluons themselves from emerging as 
asymptotic states. The interpretation of  the perturbative calculations as predictions 
for physical cross sections rests on certain, often unstated assumptions about the 
nature of  the confining mechanism. We follow the usual parton-model hypotheses 
by supposing that each quark or gluon of  large momentum leads to a jet of  hadrons 
characterized by a sharply damped, transverse-momentum distribution; typically, the 
mean transverse momentum (p±) is 500 -800  MeV. It is further assumed that this 
non-perturbative transverse-momentum cutoff  is essentially independent of  the 
large momentum of  the original quark or gluon. It is supposed to approach a finite 
value in the infinite momentum limit of  the parent parton ** 

This means that a parton of  momentum P will yield a jet of  hadrons with a non- 
perturbative opening angle A ~ (p±)/P, which must be distinguished from the angle 
~q or ~g given in eqs. (5) or (10). In our discussion we have tacitly assumed that 
6 > >  A. At finite energies, this gives a lower limit on the range of  applicability of  
the perturbative formula. For example, for a parton of  momentum 15 GeV, we find 
A ~ 3  °. 

From the parton point of  view, the angular dependence on 6 discussed in this 
paper or in ref. [2] should not be thought of  as the spreading of  a jet but rather the 
extent to which, at any given energy, three embryonic jets will be confused as two. 

We would like to conclude by reemphasizing that, at energies of  experimental 
interest, the expansion in e and 6 given in eqs. (3) and (9) are invalid. Since the 
higher-order correction to the total cross section is quite small (see eq. (2)), a per- 
turbation theory calculation of  1 - f should be valid for large enough e and 6. Con- 
seqt,ently, it seems worthwhile, as a test of  QCD and the confinement hypotheses 
here, to recalculate 1 - f i n  e -e  + annihilation without expanding in e and 6. This 
calculation should not be difficult and will be presented in a subsequent publication 
[17]. 

* Of course, by the energy range where eqo (11) is valid, we anticipate Nf considerably larger 
than 3. 

** We have tacitly assumed that quarks and gluons fragment into hadrons in essentially the same 
way. Alternative possibilities have been suggested, e.g., in ref. [16]. 
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Appendix 

Here we present the remaining details of the calculation of W 3. Using covariant 
normalization, 

3 

d,-- 
(2re) 3 2pi " 

Some typical kinematical manipulations yield 

241 (27041 r~P2/~PzPlP2 df2p2 dpl dA sin A,  f 3df(2rr)4 6 Coy - pi) - 
Ip~:o 

where A is the angle between pland P2. Due to the particle interchange symmetry 
of lTI 2, we can restrict Pl ( P2 ~ t73 in the dfintegral and multiply by 6 without 
changing W 3. The resulting contribution to phase space in the limit 6, e ~ 0 is 
enclosed by the dashed line in fig. 3. However, we can safely approximate this 

PI sin~, 

~iii~/i~ i • 

Fig. 3. Phase-space subregions of interest. 

c o s / x  , 
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region by the semicircular region enclosed by the solid line in the same figure. This 
is because the resulting error in the limit 6, e -~ 0 (already taken in the figure) is 
just the integral over the shaded region. But, as observed earlier, the full integrand 
goes at worst like 1 / p l A  and clearly yields a finite integral over the shaded region. 

Therefore, excluding the two-jet phase space from the semicircular region, we 
may take our limits of  integration to be eE < k < ¼E and 26 < A < ½n. 

Since we only need consider singular graphs such as in fig. 2, 

T =  ~ g f a l a 2 a  3 -E-p-3- [ - e  1 • e 3 P  1 • e 2 + e 2 • e 3 p  2 • e 1 + e l e 2 p  1 • e 3 ]  , ( A . 1 )  
Pl "P2 

where the sum runs over the 3 cyclic permutations of  the indices and where we 
have used relations such as P2 " e3 = - P l  " ea- 

Furthermore, we need only keep those terms which have singularities in the 
semicircular region, i.e., 

gfala2a3( .  E p 3  [--el " e3Pl  " e2 + el " e2Pl  " e3] 
[lJ1 " lJ2 

Epz 
e3 " e2P2 • el + - E P - 3 e 3  " e2P2 " e l ~ - A  + B + C (A.2) + 

P3 "Pl  Pl  "P2 ) 

In computing [TI 2, we note that A 2 + 2AC has collinear divergences as fi, e ~ 0, 
B 2 + 2BC has infrared divergences, C 2 has both, and 2AB has neither and can be 
dropped. 

Now, Pl "P2, Pl "P3, Pl " e3, el " e3, and I Op2/Op2 Ip2=o are all fairly compli- 
cated functions of  p l  and A. However, considering P2, note that the difference 
P2 - -~E- P l vanishes both with P l and A. Thus error terms resulting from the 
replacement P2 ~ ~ E -  Pl all have a power o f p l A  appearing which eliminates any 
collinear or IR divergences present. Extending this reasoning for various cases, we 
find that we can make the replacements p3 = ½E, Pl  ' P3 =PIP3(  1 + cos A) ,p l  • e3 = 
- -2p lp2  sin AlE ,  e i • ej = 0 or +-1, and I3P23/~p2 fp2= 0 = 2E, as well as P2 = ½ E -  Pl.  

It is now straightforward to sum I TI 2 over the final gluon polarizations: 

ITI2 =g2Oeabe)2 ~ 1 1 
XlX2X3 sin2-~ + ~ ( - ~  (1 - cos A)2J " (A.3) 

The integrals are now trivial, yielding eq. (8). 

Note added 

A preprint has appeared [14] which determines the corrections to eq. (3) to 
order 6 2, e 2, by calculating W 3 in a manner analogous to our calculation in the 
g l u o n  CaSe .  
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