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In this paper we strive towards a mathematical theory for “marked digraphs” in which 
the nodes are signed. For completeness, we begin with an extensive list of definitions, 
including that of “consistency” in marked digraphs. We then provide three different 
descriptions of the concept: one an alternative in terms of directed cycles, another in 
terms of partitioning the nodes, and a third in terms of arc-digraphs and balance. We 
conclude with two additional observations, one characterizing the structure of consistent 
strongly connected marked tournaments and the other giving a criterion for a digraph to 
be “markable” in a caesistent way. 

SIGNED DIGFXAPHS AND BALANCE 

Balance theory in the study of two-valued (positive-negative) relations provides a 
mathematical model for “likes-dislikes” situations. It was introduced by Heider (1946) 
in the three-element (P-O-X) setting. Cartwright and Harary (1956) extended the 
concept to directed graphs in general, and additional results on duality and measure- 
ment have been obtained by Harary (1957, 1959). S ome of the configurations studied 
by these authors were directed graphs in which each arc is positive (for “likes”) or 
negative (for “dislikes”) and in which the nodes (points, vertices) represent people or 
objects. Figure 1 shows an example of such a structure. See Harary, Norman, and 

+ 
FIG. 1. A signed digraph. 
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Cartwright (1965, Chapter 9), for an exposition of balance theory and for all concepts 
concerning digraphs not explicitly defined here. 

A signed digraph is called balanced if each of its semicycles is positive. (A semicycle is a 
directed cycle in which some of its arcs have been reversed; its sign is the usual product of 
the signs of its arcs.) Cartwright et al. (1956) f ound the following criterion for balance. 

STRUCTURAL THEOREM FOR BALANCE. A signed digraph is balanced if and only z. its 

nodes can be partitioned into two sets (one possibly empty) in such a way that arcs joining 
two nodes in the same set are positive and arcs joining two nodes in different sets are 
negative. 

Zajonc (1968) observed that signed digraphs constitute the basic underlying structure 
of cognitive consistency. However, Osgood and Tannenbaum (1955) assign the signs to 
elements (standing for persons) rather than to the relationships (the arcs). 

One can give an example of a simple situation in which signed nodes are important. 
Consider a group of people, each of whom either always lies or always tells the truth. 
Within the group there is a communication network of “who talks to whom.” If a rumor 
or message is planted within the group, can any results be stated regarding the consistency 
of the versions heard by various group members ? 

In mathematical terms, the underlying structure for this situation is a directed graph 
in which the nodes have signs (positive or negative) and the arcs represent direct commu- 
nication. The problem becomes that of determining the consistency of sign of the directed 
paths from one node to another. This is the topic to which we address ourselves in this 
paper. 

MARKED DIGRAPHS AND CONSISTENCY 

A digruph (directed graph) consists of a set V of nodes and a set S of ordered pairs of 
nodes called arcs. We generally denote nodes by letters such as u, v, or w, and arcs by 
letters a or b; an arc such as (u, v) we frequently denote by UV. A diwalk consists of an 
alternating sequence of nodes and arcs v,, , a, , cur ,..., a,_, , a, , vu, with arc ai directed 
from vieI to vi . The length of such a diwalk is n, the number of occurrences of arcs, and 
it is called a vs : v, diwalk. A diwalk is closed if the first and last nodes are the same. 
A dip&h is a diwalk in which all nodes are different, while a dicycle is a closed diwalk in 
which all nodes except the first and last are different. A digraph is called strongly connected 
(or strong) if there are dipaths from each node to all others. We are primarily interested 
in strong digraphs here. 

A digraph is called marked if each node is designated as being either positive or negative; 
it is then denoted M. The sign of a diwalk in M is defined as the product of the signs of all 
its nodes except the last. Finally, a marked digraph M is called consistent if there do not 
exist two nodes u and v with diwalks from u to v of opposite signs. Figure 2 shows two 
marked digraphs; the first is consistent, the second is not (since there are both positive 
and negative diwalks from u to v). 
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FIG. 2. Two marked digraphs, one consistent and one not. 

We observe that in a strong marked digraph M, if for some pair of nodes u and ZJ all 
u : z, diwalks have the same sign, then the entire structure M is consistent. For, suppose 
this is not the case; that is, there are nodes x and y  with a positive diwalk IV, and a 

negative diwalk W, both from x to y. Since the digraph is strong, there are dipaths P 
from u to x and Q from y  to ZI. It follows that there are u : v  diwalks of opposite sign, one 
formed as P, W, , Q and the other as P, W, , Q. 

Our first theorem simplifies the testing of strong marked digraphs for consistency by 

showing that one need not consider all diwalks, only dicycles. 

THEOREM I. The following statements are equivalent for a strongly connected marked 
digraph M: 

(1) M is consistent. 

(2) Every closed diwalk of M is positive. 

(3) Every dicycle of M is positive. 

Proof. (1) implies (2). Th’ is is proved by contradiction. Assume (1) holds but that M 

has a negative closed diwalk W. Let u be a negative node in W, and without loss of 
generality we may assume u is the first node. Let v  denote the second node. Then the arc 
uv provides a negative u : v  diwalk, while W followed by uv gives a positive one. This, 
however, contradicts (1) and proves the implication. 

(2) implies (1). We again use a proof by contradiction. Assume that (2) holds but 
there are a positive diwalk W, and a negative diwalk WI both from node u to node v, 
Let W be any diwalk from v  to u. Then, depending on the sign of W, either the closed 
diwalk formed by W and W,, or that formed by W and WI is negative. Hence (2) could 
not hold. 

(2) implies (3). A fortiori if every closed diwalk is positive, so is every dicycle. 

(3) implies (2). To prove this, we show that every negative closed diwalk contains the 
nodes and arcs of a negative dicycle. This we prove by induction on the number n of 
arcs in the closed diwalk. The statement is true if n = 2. Assume it is true for all values 
of n less than k, and let W be a closed negative diwalk of length k. I f  W is not a dicycle, 
it can be considered as the succession of two closed diwalks of shorter length. One of 
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these must be negative and, by the induction hypothesis, contains a negative dicycle. 
So by the Principle of Mathematical Induction, the result is proved. l 

This theorem provides us with two criteria for a strong marked digraph to be consistent. 
Since they involve diwalks, as does the definition of consistency, both are quite similar 
in nature to the definition. 

Balance in signed graphs and digraphs, as well as consistency in graphs, has previously 

been defined in terms of all cycles (or semicycles) being positive. Our definition seems 
closer to the objects under investigation here: communication networks with two-version 
stories being consistently reported. Theorem 1 shows that in the strongly connected case, 
the two conditions are equivalent. 

Our next criterion for consistency is in terms of partitions of the set of nodes and applies 
to all digraphs, strong or not. Hence this characterization resembles the Structure 
Theorem for Balance. 

THEOREM 2. A marked digraph M is consistent if and only af its set of nodes can be 
partitioned into two sets VO and V, (one possibly empty) with the property that for each set, 
all arcs from positive nodes go to nodes within the same set and all arcs ft-owl negative nodes 

go to nodes in the other set. 

Before proving this result, we illustrate it with the marked digraph M of Fig. 3. The 
nodes have been labeled so that each ui is positive and each vj negative, That the structure 

M: i4 

+ 
u3 

FIG. 3. A consistent marked digraph illustrating the theorem. 

is consistent can be seen by observing that any cycle containing one negative node 

contains exactly two. The two sets described in the theorem can be taken as V, = (a1 , u2 , 

u3 , q> and VI = {vZ , v3 , u4}. Each node ui then has all its outgoing arcs directed to 
nodes within the set containing it, and each node vi has all outgoing arcs directed to 
nodes in the other set. 

Proof. In proving the sufficiency of the stated condition, we assume that M is a marked 
digraph and that V, and VI form a partition of its nodes with the property described in 
the statement of the theorem. Let u and v  be any two nodes. If  they are in the same set, 
then all diwalks from u to v  must go between V,, and V, an even number of times, so 
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that they are all positive; while if u and u are in different sets, all u : v  diwalks must 
similarly be negative. Hence, M must be consistent. 

For the converse, assume M is a consistent marked digraph. We prescribe a partition 
of the nodes of M into two sets V,, and Vi as follows. Choose an arbitrary node v,, and 
put it into V,, . For any other node ZI, choose a u s : v  path P. If  P is negative (recall that 
the sign of path P ignores the sign of v), put v  into Vr; otherwise into V,, . (By the 

definition of consistency, this partition does not depend upon the choice of path.) Suppose 
that this partition does not satisfy the stated conditions; that is, there is an arc uu such 
that either (i) u is negative and u and v  are in the same set, or (ii) u is positive and u and v  
are in different sets. In either case, it follows that there are two v,, : v  diwalks having 
different signs. This contradicts the hypothesis of consistency and completes the proof. g 

We observe that as a consequence of this theorem we have the fact that a consistent 
marked digraph has no three mutually adjacent negative nodes. This fact also follows 
readily from the definition since either a cyclic triple of negative nodes or a transitive 
triple violates the definition. 

The directional dual of this theorem is also of some interest and requires no further 
proof. 

THEOREM 2’. A strong marked digraph M is consistent ;f  and only [fits set of nodes can be 
partitoned into two subsets V,, and VI (one possibly empty) with the property that for each set, 
all arcs to positive nodes come from within the same set and all arcs to negative nodes come 

from outside the set. 

This gives a different partition for the consistent net in Fig. 3. Now one set is {ui , u2 , 

u3 , vs , vs} and the other is {vi , ZQ}. 

CONSISTENCY AND BALANCE 

Consistency is in fact more closely related to balance than just having a similar defini- 

tion. The connection is given in the following result. The simple construction given there 
is illustrated in Fig. 4. 

M: 

FIG. 4. A marked digraph and its associated signed digraph. 
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THEOREM 3. Let M be a strongly connected marked digraph and let S be the corresponding 

signed digraph in ahich each arc has the sign of its first node. Then M is consistent if and 
only if S is balanced. 

Proof. Let M be a strong marked digraph and S the corresponding signed digraph. 
Clearly every dicycle of M is positive if and only if every dicycle of S is. Therefore, by 
Theorem 1, M is consistent if and only if S is balanced. 1 

We note that Theorem 3 does not mean that “consistency” and “balance” are equivalent 
for all strong digraphs. For, the only signed digraphs which are obtained through markings 
as described in the theorem are those in which all outgoing arcs at each node have the 
same sign. In terms of this being a “likes-dislikes” model in balance theory, each 
person either likes no one or dislikes no one. 

By directional duality, one also obtains those digraphs in which all incoming arcs are 

alike at each node, with each person liked by no one or disliked by no one. 
It has been shown (Harary, et al., 1965) that in a strongly connected signed digraph, 

every undirected cycle (semicycle) is positive if every directed cycle (dicycle) is. The 

corresponding result does not however hold for marked digraphs. The marked digraph M 
in Fig. 4 is consistent and strongly connected but has a negative undirected cycle. In 
contrast, all undirected cycles in the corresponding signed digraph are positive. 

As tests for consistency of marked digraphs, the criteria of the three theorems vary in 
the ease of their application. The second theorem probably gives the easiest means of 

checking, and it can be adapted to all marked digraphs, not just the strongly connected 
ones. The algorithm we now give is essentially that given in the proof. First, partition 
the nodes into two sets V, and V, as follows: Choose an arbitrary node z, for V,, . For 

any other node w, find a v  : w path. If  it is negative, put w in VI , otherwise in V, . Now 
check whether all outgoing arcs from negative nodes go to the other set and all arcs from 
positive nodes remain within a set. I f  this is the case, the marked digraph is consistent; 
if not, it is inconsistent. There are variations of this in which one can check for in- 

consistencies as one proceeds: Put node v  into V,, . Now take a node x adjacent either 

(i) from or (ii) to an assigned node w. If(i), p u x into the set containing w if w is positive t 
and into the other set if w is negative; if (ii) put x into the set containing w if x is positive 
and into the other set if x is negative. Before proceeding to another node, check for 
inconsistencies. This procedure works for all marked digraphs. We illustrate it with the 

example in Fig. 5. We begin with ZJ in I-,, . Then place w and x in VI since z, is negative 

Y-l- t+ 

v  -t 

--@ 

X 7 

w L. 

FIG. 5. Testing a marked digraph for consistency. 
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and adjacent to both. Now since w is negative and adjacent to u, put u in V,, . Next we 
take x; it is adjacent from u and X, both of which are positive and in different sets. This is 
an inconsistency. 

CONSISTENT IUARKED TOURNAMENTS 

An interesting special case of digraphs are the tournaments, those which have exactly 
one arc between each pair of nodes. (In terms of communication networks, exactly one 
of each pair would talk to the other.) The following theorem tells which strong marked 
tournaments are consistent. 

THEOREM 4. A strong marked tournament is consistent if and only if it has exactly 

two negative nodes u and v, with arcs from u to all nodes except v  and arcs to v  from all nodes 
except u. 

A non-strong marked tournament is consistent if and only if it can be obtained from such a 
strong one by reversing arc uv, or deleting node u, node v  or both. 

Proof. Clearly any tournament given in the statement of the theorem is consistent. 
We must show these are the only ones, so we assume T is a consistent marked tournament. 
By an earlier observation, since any pair of nodes are adjacent, T cannot have three or 
more negative nodes. Two negative nodes cannot both dominate or both be dominated 
by a third node, nor can a negative node be on a cyclic triple with two positive ones. 
Therefore T must be one of the structures described. 1 

The structure of a consistent strong marked tournament T with p points as described 
in the theorem is shown in Fig. 6. The encircled plus sign indicates an arbitrary sub- 
tournament with p - 2 positive nodes. 

T: 

FIG. 6. The structure of a strong marked tournament. 
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CONSISTENTLY MARKABLE DIGRAPHS 

Thus far we have been considering the question of which marked digraphs are con- 
sistent. A related question is: Which digraphs have consistent markings with at least 
one negative node ? We call such digraphs markable. Clearly, any digraph can be marked 
consistently if all nodes are allowed to be positive, so we do not consider that possibility. 
Further, if a digraph is bipartite (that is, the nodes can be partitioned into two sets so that 
all arcs have one point in each set) then it can be consistently marked with all nodes 
negative. And, of course, the converse is also true: If a consistent marked digraph has all 
nodes negative it is bipartite. The following consequences of Theorem 2 give a criterion 
for a digraph to be markable. 

THEOREM 5. A digraph D is markable ;f and only ij there is a nonempty proper subset V, 

of its nodes with the property that for each node v, either all of the nodes with arcs from v  
are in VO , or none of them are. 

Proof. If M is a consistent marked digraph, let V,, be the set described in Theorem 2. 
This set has the described property. 

Now, assume such a set V, exists. We describe a marking which will be consistent. 
Let Vi be the complement of V,, . For any node v, take v positive if all outgoing arcs 
stay in the same set V,, or V, as v, and negative otherwise. It follows from Theorem 2 
that the resulting marking is consistent. 1 

We illustrate this construction with the digraph in Fig. 7. If V, is taken as (vs , va , vs}, 
then for each ZJ~ in the digraph either all the nodes or none of the nodes with arcs from vi 

FIG. 7. A markable digraph. 

are in V,, . Therefore, if V~ and zlq are taken as positive and vi , z+ , and vs as negative, 
then the resulting marked digraph is consistent. An example of a digraph which is not 
markable is given in Fig. 8. The adjacencies dictate that vi and va must both be in V,, or 
V ]. , as must zli and vs . Therefore, by Theorem 5, there is no set V,, as required for a 
consistent marking. 

480/W3-5 
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CONCLUDING COMMENTS 

In subsequent work, we plan to investigate marked (undirected) graphs. These are 
apparently more difficult, as no complete characterization of consistency is known. One 
might ask why, if digraphs are more general than graphs, can the theorems for directed 
graphs not be applied to the undirected case. The answer lies in the dicycles of length 2. 

The usual way of converting a graph to a digraph is to replace each undirected edge by a 
symmetric pair of arcs, one in each direction, as in Fig. 9. While this does in fact preserve 

G . . 
i c 

D: 

FIG. 9. Forming the digraph of a graph. 

most graphical properties, negative dicycles are introduced for each edge joining two 

nodes of opposite sign. Hence, this procedure is of no value in studying consistency, and 
the two cases, directed and undirected, are quite different. 

Related work is given by Harary, Palmer, Robinson, and Schwenk (1977). This is the 

development of a series of formulas, using techniques of combinatorial enumeration, to 
determine the number of isomorphism classes of each of the following types of 
configurations with a given number of nodes: 

(1) signed graphs (and digraphs), 

(2) marked graphs, 

(3) graphs with both signed points and lines. 

Further, the number of configurations is also determined when an interchange of the 

signs of the points and/or the lines is also regarded as an equivalence relation. 
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