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AbstracGSolute adsorption to dislocations and cracks is considered in both the Boltzmann and Fermi- 
Dirac models. Explicit sums are developed for the integral amount of solute adsorbed in the defect 
fields. Examples of the use of the method are presented for the case of hydrogen in iron and compared 
with earlier results. Tbe similarity of the condensed atmosphere of hydrogen to hydride precipitation 
is noted and its relevancy to hydrogen embrittlement models is discussed. 

R&mm&-On etudie I’adsorption de sol& par les dislocations et les fissures, en utilisant les mod&es 
de Boltzmann et de Fermi-Dirac. On obtient des sommes explicites pour la quantite intigrale de 
solutC adsorb& dans le champ des dkfauts. On presente des exemples d’application de la mbthode 
dans le cas de I’hydrogtne dans le fer, et on les compare avec des r&hats antirieurs. On remarque 
une similitude entre l’atmosphte concensize d’hydrogtne et la pr6cipitation d’bydrure. et on discute 
de son incidence sur les mod&s de la fragilisation par I’hydrogtne. 

Zmaasung-Im Boltzmann- und Fermi-Dirac-Model1 wurde die Adsorption gelester Atome 
an Versetzungen und Rissen betrachtet. Es werden explizite Summen fir die integrale Menge adsor- 
bierter Atome im Bereich der Defekte entwickelt. Beispiele fir die Anwendung dieser Methode werden 
fur den Fall des Wasserstofis in Eisen angegeben und mit friiheren Ergebnissen verglichen. Die iihnlich- 
keit der kondensierten Atmosphiire von Wasserstoff mit Hydridausscheidung wird aufgezeigt und deren 
Wichtigkeit fiir die Wasserstoffversprbdungsmodelle wird diskutiert. 

1. INTRODUCTION 

In their original treatment of the adsorption of solute 
to the stress fields of dislocations. Cottrell and 
Bilby [l] used the Boltzmann approximation 

C = COexp(W/kT) (1) 

where C and C,, are the atom fractions of solute in 
equilibrium, respectively, in the defect field and 
remote from the defect, while W is the interaction 
energy between solute and defect. Beshers [23 first 
noted the inadequacy of equation (1) for the case of 
dislocation cores, where the large ratio of W/T made 
necessary the use of the Fermi-Dirac form 

C ccl W 
-==e-pexp~ 1 

More recently the need for the use of equation (2) 
for other solute-dislocation problems has been widely 
recognized [3-53. A particular case is that of inter- 
stitially dissolved hydrogen in bee metals where W 
is relatively large and where permeability and diffus- 
ivity studies [6-S] indicate sufficient mobility for 
appreciable solute atmosphere formation at room 
temperature and below. Knowledge of the amount 

of hydrogen adsorbed at dislocations is important in 
assessing permeability and diffusivity of hydrogen, es- 
pecially as influenced by cold work. 

The integral amounts of hydrogen adsorbed to dis- 
locations in iron at room temperature have been esti- 
mated by Bockris et ol. [9] on the basis of an integral 
of equation (1). However, as described in Appendix 
1 (see also Ref. [lo]). they omitted several important 
terms in their series expansion, leading to an overesti- 
mate of the integral amount adsorbed by a factor 
of 10’. As shown in the next section, their method 
can be replaced by a somewhat more rapidly converg- 
ing series solution to the integral using a method 
which is an expansion of that giving equation (14-50) 
in Ref. [4]. The latter solution, though. is based on 
equation (1) which is still likely to lead to an overesti- 
mate of the integral amounts adsorbed to disloca- 
tions. 

Accordingly, in this treatment we derive the expres- 
sion for the integral amount of solute adsorbed in 
the field of a dislocation in the Fermi-Dirac model 
of equation (2). In addition. we extend the earlier 
treatments to include the adsorption field at a planar 
mode 1 crack tip, of interest in hydrogen embrittle- 
ment problems. While the derivations and discussion 
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focus on the particular case of hydrogen in iron, the 
results are, of course. general and apply to any solute- 
solvent metal case. The case of a Fermi-Dirac atmos- 
phere of interstitial atoms in the field of a dislocation 
lying along a [IOO] direction (N in Fe) has previously 
been solved numerically by Li and Chou [S]. How- 
ever, they do not present explicit sum solutions. Since 
erroneous sums have been derived for the analogous 
Boltzmann atmosphere case. we present the explicit 
sum solutions for both types of atmosphere for a dis- 
location and extend previous results by giving ana- 
logous explicit sum results for the mode I crack. 
Comparisons of the results for the two cases are use- 
ful also in delineating solute-strain field interactions 
which can be teated in terms of the simpler Boltz- 
mann approximation. 

t. SOLUTE ADSORPTION FIELDS 

2.1 Integral atmospheres 

For the edge dislocation of Fig I, the interaction 
energy between solute atoms and the dislocation in 
the isotropic elastic approximation is 

W = A sin 8/r (3) 

with r, 6 cylindrical coordinates fixed on the disloca- 
tion and A is a parameter, containing position-inde- 
pendent material constants, which is discussed in a 
following section. The integral number of solute 
atoms adsorbed in the elastic field of the dislocation 
per unit length is 

N 
--“p 
L 

(C - Co)’ dr de, (4) 

with r. and R, respectively the inner and outer cutoff 
radii and p the number of solute atomic sites per 
unit volume. With the Boltzmann approximation of 
equation (1) and with equation (3). this expression 
becomes 

N 2x R 

t 
= PC0 

s I 0 h3 

x [exp(F) - l]rdrdB. (5) 

The integrand of equation (5) is expanded in a Taylor 
series expansion. Odd-powered terms in the integral 
over 0 are set equal to zero because of the symmetry 
of the sin 0 functions, and even-powered terms are 
evaluated by item 3.621 in Ref. [I I]. The integrals 

Fig. 2 

over r are then straightforward with the result 

I 

x n[2”+‘(n + 1)!]2 
[a”( 1 - p- 2”)] 1. (6) 

with the non-dimensional reduced parameters 
a = A2/‘rik2T2 and /I = R/r,. Bockris et al. [9] pres- 
ented a different sum for N/L in this case. However. 
it is.shown in Appendix 1 that they neglected some 
important contributions: when the latter are included. 
the two sums give identical results. 

For the Fermi-Dirac distribution of equation (2). 
considerable manipulation is required to obtain the 
expression for C-Co to be used in equation (4). The 
derivation is presented in Appendix 2, leading to the 
result, equation (2.7). Substituting equation (2.7) into 
equation (4). we follow the same procedure as above. 
dropping odd-powered terms and so forth, with the 
result 

N 
- = q&a (f (1 - ZCo)(l - Co)2 

L 2 
InB+ i 

m-1 

with 7 = C&l - Co). 
For the crack of Fig. 2. the interaction energy 

between solute atoms and the elastic field of the crack 
is 

w = (B cos em/, F, (8) 

with B a factor discussed in a later section. In the 
Boltzmann approximation of equation (I), equation 
(8) gives an expression analogous to equation (5) but 
with a different argument of the exponential function, 
The further procedure is as above. except that for 
this case both odd and even powers of the expansion 
contribute. The result is 

N (B-1, 1 
- = 2npCor$f2 { + - 
L 4rl 

62 In B 

1 
+ f -- --- [r/“(l - /.J-“)I 

n= I n[2~+r(n + 2,!]2 

4’ 1 

+ k “go (2n - 3) 

x (6 2[4.-‘~*(l _ p+J’t)] 

[ 1 I . (9) 
Fig. I. 
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Here /I = R/r, is retained as the ratio of cutoff radii 
and rl = B’/r,kT is the other non-dimensional par- 
ameter. 

In the Fermi-Dirac case. equation (1.7) is used 
together with equation (8) in equation (4) with the 

result 

N p-1 1 
- = 
L 

Znpyriq’ IT! -+Glnfl 
41 ) 

x (1 - 2Co)(l - co? + 1 
In= I 

x “$, ;‘,;:yn4’,-::,r * cm - 8-v} 
i 

‘I 
.,m-lm2n+l(_l)m-! 

+3$ iI 
m 1 n=O (2n - 3) 

where cij is the stress tensor of the dislocation. V 
is the reference volume containing the solute atom 
and eij is the local internal strain field produced by 
the solute atom referred to this reference volume. For 
either octahedral or tetrahedral site occupancy, the 
strain field referred to cube axes is l ii z=- er2 = l J3. 
other eij = 0. 

For a screw dislocation. the stress field is well- 
known in coordinates fixed with Xi parallel to the dis- 
location line. Transformed to cube axes (Ref. [43. p. 
471) the normal stress components. the only ones con- 
tributing to equation (13). are 

ui 1 = (pbhJ6nr)(,/6 sin0 - \‘2 cost?) 
d z2 = (phJ6xr)(- !6sin0 - ,‘?cosf?) (14) 
u3j = (pbhJ6nr)(2,* costI) 

Substituting in equation (13). we find 

(10) 

(El, - f22) 
i 

, 

(15) 
2.2 The interaction energ! 

When the strain field of the solute atom has spheri- 
cal symmetry. the interaction with the other defects 
is purely with the hydrostatic stress component, aii/3. 
In this case the interaction energy for the dislocation 
is given by [l-4] 

with the factor in brackets defining A in equation 
(3). Here p is the shear modulus, h, is the edge com- 
ponent of the Burgers vector. r is Poisson’s ratio and 
t’ is the internal increment of expansion of the solute 
atom. The analogous form for the mode I crack. with 
the hydrostatic component of the stress tensor given 
by Rice [ 121, for example. is 

1 cos @I2 
7. (12) 

\r 

Here K, is the stress intensity, with the form G, 4% 
for a uniform remote tensile stress u, and a half- 
crack length a for a contained internal crack. Stress 
intensity factors for other external loadings are listed, 
for example, by McClintock and Argon [ 133 and by 
Sih [ 143. The factor in brackets defines B in equation 
(8). 

These results are exact, in the isotropic elastic 
approximation, for substitutional solutes and for in- 
terstitials in f.c.c. metals. For interstitials in b.c.c. 
metals, however. there are additional interaction 
terms. We derive these terms for the dislocation case 
as an example and show that the form of equations 
(6) and (7) still holds while equation (3) remains a 
fair approximation. With other stress component in- 
teractions. the interaction energy assumes the 
form [l5.4] 

U’ = UijCljV. (13) 

where b, is the screw component of the Burgers vec- 
tor. There are three types of interstitial sets with ei 1 
defined alternatively along each of the cube axes and 
with differing local energies. but they all give the same 
contribution when integrated over AB = 2n, so equa- 
tion (15) suffices for all three. If the factor in brackets 
is identified with A in equation (3). the term including 
cot0 then represents the correction to eqution (3) for 
this case. Proceeding with the development as in the 
previous section. we find that the integral over 0 has 
the same form (Ref. [I I]. item 3.661) as the previous 
case, but with an additional &independent factor. 
The result is the same as for equations (6) and (7) 
except that the sum over n contains the additional 

, factor 4(4/33” + i 
The edge dislocation case is considerably more 

complicated and is presented in Appendix 3. Even 
for the edge case. however, the approximation of 
equations (6) and (7) is shown to be fairly good. 

2.3 The volume expansion 

The strength of volume expansion r to be used in 
equation (11) and the corresponding cube displace- 
ments E, I V, cl2 V and ej3 V are related to the internal. 
local expansion on formation of the solute 
atom [l6-181. The external volume expansion con- 
tains an image expansion factor 3(l - v)/(l + \*). 
Hence, contrary to earlier treatments. the relation 
with the thermodynamic quantity F. the partial molar 
volume of the solute, is 

1’ = v(l + v)/3NA(1 - 15). (16) 

where N, is Avagadro’s number. The assignment of 
P itself is a problem in interstitial systems, in particu- 
lar for hydrogen in iron. as discussed in detail else- 
where [lo]. The quantity P is often determined from 
experimental measurements of the change in solu- 
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bility with pressure 

8 = - k T(? 1 n C,/dP). (17) 

However, because of experimental difficulties with 
low-temperature interstitial systems, the measure- 
ments are often made for specimens under simple ten- 
sion and P is taken as - (rii/3 = -u I /3. In this case, 
however, other stress components can effect the result 
via terms analogous to those in equation (13). Hence 
the p itself may only be an apparent value: estimates 
of the effect [lo] suggest that the apparent value can 
exceed the true value of F by as much as 60”/, (the 
equivalent in the present work would be a shift in 
A by this amount from equation (11) to equation 

(3.2)). 

2.4 Solute site density 

For a substitutional solute, p is simply the number 
of atomic sites per unit volume and saturation corre- 
sponds to a region of pure solute. For the interstitial 
case, p can differ from the atomic site density both 
intrinsically and because of site blocking [19-201. For 
f.c.c. crystals there are two tetrahedral sites and one 
octahedral site per solvent atom while for b.c.c. crys- 
tals there are six tetrahedral sites and three octahedral 
sites per solvent atom. Hence sufficient site occupancy 
to correspond to compounds MXs and MXg would 
be possible in principle. However, site exclusion of 
elastic or electronic interactions in general reduces 
the maximum occupancy. For the case of iron-hydro- 
gen, of particular interest here, there are no thermo- 
dynamically stable hydrides. However, a recent survey 
by Speiser [21] shows that other transition metals 
have hydrides with compositions MHz (mainly rare- 
earth metals with large atomic size) and MH. Accord- 
ingly, we select a value of p for the iron-hydrogen 
case equal to the number of iron atom sites per unit 
volume, equivalent to a site-saturated composition 
FeH. As is evident from equation (I). we assume that 
there is no interaction energy between hydrogen 
atoms. This assumption is consistent with thermo- 
dynamic data for hydrogen solubility [20], but may 
not apply as site saturation is approached. However. 
data are not available for the interaction energy, 
which would also be required for an accurate estimate 
of site exclusion as discussed above. so the interaction 
energy is taken as zero. 

3. PROCEDURE 

As an example of the comparison between the 
Boltzmann and Fermi-Dirac solute distributions, we 
select hydrogen in iron at 298 K. For the material 
parameters in A in equation (3), we take the Voigt 
average elastic constant values [4] p = 86 GPa. 
y = 0.29; the partial volume of hydrogen in iron [9] 
P = 2.66 x 10-bm’/mol. and U- P. geing 
(A/kT) = 4.416 nm. With r0 = h = 0.248 nm this 
would give a value of z = 317.1. so z values in this 
range were selected. On the basis of the work of Gon- 

zales [22], the concentration C,, at 298 K is 
3.5 x lo-* in equilibrium with a hydrogen pressure 
p = 1.013 x lo5 Pa (1 atm). A typical value of the 
enhanced concentration produced by electrolytic 
charging is C,, = IO- ’ at 298 K. Hence values of 
C,, = y = 5 x 10-s and lob5 were examined to span 
the room temperature range of hydrogen concen- 
trations encountered in practice. In order to evaluate 
N/L p was taken as 1.409 x 10’ molim3. 

For the parameter B in equation (8). the above 
values were selected together with K1 = 0.3494 
MPa, m, corresponding to a value of the local stress 
equal to the theoretical perfect crystal strength of 
E/10, with E the Voigt average value of Young’s 
modulus, at r = b. These values result in B’/kT = 
16.53 nm, which for r,, = 0.248 nm gives q = 66.65, so 
values in this range were selected for computation. 
These values correspond to the purely brittle crack 
case for iron. Also, for a plastically-relaxed crack in 
an iron-based alloy, the recent model of Thom- 

son [23] indicates that the crack tip is screened from 
relaxation over spacings of the order of the values 
selected here for R. Thus, the present results also 
apply to the case considered by Thomson [23]. 

With the above values, the several sums were evalu- 
ated by numerical methods. 

4. RESULTS AND DISCUSSION 

Results for the dislocation case are presented in 
Table 1. For this case. the results for the Fermi-Dirac 
solution show divergence at values of z somewhat 
below the value z = 317 corresponding to the case 
r,, = 0.248 nm previously considered for the Boltz- 
mann solution [9. lo], with divergence at a relatively 
smaller z value for the larger value of C,,. This indi- 
cates condensation to a ‘nearly site saturated solution 
in the vicinity of rr,. For these cases. therefore. the 
smaller values of x for which a convergent solution 
obtains, and a correspondingly larger value of ro, 

must be selected to obtain specific results for N/J!, 
the hydrogen atmosphere in the remote strain field. 
The appropriate r. values for the z values in 
Table 1 (and for the rl values in Table 2) are listed 
in Table 3. The results show that the first-term 
approximation in Ref. [4] gives a poor estimate of 
N/L. However. use of the simpler Bohzmann series 
solution is seen to give a fairly accurate estimate of 
the Fermi-Dirac solution in all cases. the maximum 
deviation being four percent. 

The results for the crack case are presented in 
Table 2. In this case convergence is obtained for rl 
values larger than that. 66.6, corresponding to 
r. = 0.248. As for the dislocation case, the simpler 
Boltzmann result gives a fairly accurate estimate of 
the Fermi-Dirac result, while the first term approxi- 
mation is very poor. 

The contribution of the remote stress field atmos- 
phere to the apparent enhancement in hydrogen solu- 
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Table 3. Values of rO, A/kT and R’jkT in nm. correspond- 
ing to the z and q values fisted in Tables 1 and 2 

9 50 loo 200 226 300 

0.625 
A;lioT 4.416 

0.442 0.312 0.293 0.255 
4.416 4.416 4.416 4.416 

rl 58.7 loo 130 170 

&T 
0.282 0.165 0.127 0.097 

16.53 16.53 16.53 16.53 

bility or permeability can be calculated by comparing 
N/L with No/L, the amount of hydrogen that would 

be present in an unstrained cylindrical section of in- 
ner and outer radii r. and R, respectively. The contri- 
bution to the mean hydrogen concentration would 
be proportional to N/L for a dislocated crystal with 
dislocations spaced by a distance R so the enhance- 
ment of con~ntration wouid be a factor N/N,. For 
a crack, N/N0 represents a local hydrogen enhance- 
ment factor. Table 4 presents such calculations. For 
dislocations the enhancement is modest in compari- 
son to earlier estimates [9] because of the smaller SL 
vafues required for a convergent solution. The en- 
hancement is important only for smaller fi values, cor- 
responding to large dislocation densities or highly 
work hardened material, or to material near a crack 
tip. For example. the dislocation case with an en- 
hancement factor of 6.105 corresponds to a disloca- 
tion density of 1.16 x 10” cm-‘. 

Within a distance r. of the defect, a “core” region 

excluded in the calculation of N/L, one must perform 
atomic calculations for the hydrogen con~ntration. 
Use of the Fermi-Dirac model is crucial in this region 
where the atmosphere is nearly saturated, a point not 
included in the work of Bockris et al. who obtained 
a result for a single-site core atmosphere which was 
an overestimate because of the use of a Bottzmann 
approximation for the calculation [IO]. For core 

regions of interest here. with r0 ranging up to 
0.442 nm. the interstitial sites within the cores are 
those listed in Table 5. For the dislocation case. for 
example. Table 5 shows that up to 96 sites per repeat 
distance may require atomic calculation. No such 
estimates are attempted here since the requisite 
atomic potential is unavailable. but the table does 
give the upper limit of the hydrogen concentration 
enhancement in the core. For the case where IV/No 
is 6.105 in Table 4 for example. the limiting core fac- 
tor is associated with 42 sites per repeat distance, cor- 
responding to NC,,rujNo = 1.48 x 104. 

The site saturation results for the crack are per- 
tinent to the mechanism for hydrogen embrittlement 
suggested by Birnbaum rr ai. [243 and verified by 
them [25,26] for the case of hydrogen embrittlement 
of niobium. In this model. the hydrostatic tension 
field at the crack tip can modify the free energy of 
formation of a hydride so that, while unstable in the 
absence of stress, it becomes stable at the crack tip. 
Fracture then proceeds by a cyclic process of cracking 
of the hydride, crack arrest and reformation of the 
hydride. On the basis of the present results, site satu- 
ration to some level corresponds to hydride forma- 
tion. As stated before, atomic calculations with site 
exclusion effects associated with hydrogen-hydrog~ 
interactions would be required for an exact solution 
to the problem. In a macroscopic model. such interac- 
tions would contribute to the bulk and surface free 
energies of the hydride. A rough estimate of the size 
of such a region can be made on the basis of the 
present rest& Listed in Table 6 are values of r, cal- 
culated from equations (3) and (8) along the value 
of 0 where maximum elastic interaction occurs, at 
which the Fermi-Dirac calculation predicts a locaf 
hydrogen/iron ratio of I, 114. l/l6 and i/64. Known 
hydride compositions for transition metals are en- 
compassed in this range. Even for the stringent case 
of a ratio of I. the condensed region is seen to extend 
over a distance of 4-S a,, and with reference to 
Table 5, to incorporate a large number of interstitial 

Table 4. Values of No/L and N/No for several cases 

Disl., y = IO-‘, z = 100. r0 =0.442nm 
NdL 5.203 E9 5.703 E I 1 5.203 E I 3 
N/N,, 0.110 1.22 E - 3 1.33 E-S 

D&l., y = 5 x IO-s, z = 226, r,, = 0.293 nm 
NoIL 1.143 E7 1.144E9 1.144 El I 
NW, 6.105 6.13 E-2 6.15 E-4 

Crack. y = 1O-5. q = 130. r. = 0.127nm 
lVO/L 4.2% ES 4.300 EIO 4.3OOE12 
N/N, 2.607 0.951 7.11 E-2 

Crack. y = 5 x IO-‘. r) = 170. r. = O.W7nm 
N,IL 1.253 E6 I.254 ES 1.254EIO 
N/N, 7.94 0.172 9.86 E - 2 
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Table 5. Site table for interstitial site distribution about: an atom in a perfect crystal: per repeat distance a0 along 
the line of a [lOOJ(OOl) crack: and per repeat distance L 3~12 along a [ I1 I] screw dislocation. Site vectors in units 

of one-half lattice parameter. a0 

Type Perfect crystal 
of Site 

site No. of spacings 
vector sites (nm) 

[lOO](OOl) crack 
Sites 

per repeat 
distance (n’m) 

[ 1 I 11 Screw dislocatron 
Sites per 

repeat 
distance tn’m, 

[W 6 0.143 2 
1 

0 

0.143 

0.143 
0.202 

0.286 
0.320 

0.320 

6 0.1 17 

[1101 12 0.202 6 0.185 
6 0.234 

12 0.202 
I? 0.309 

6 0.248 
12 0.309 

6 0.248 

6 0.305 
I2 0.42 I 
12 0.42 1 

4 
4 

6 
16 

I2 

[w 24 0.320 

[IZI] 

c3001 
[212] 

c3101 

24 0.350 

6 0.429 3 0.429 

24 0.429 6 0.404 

24 * 0.452 6 0.429 
6 0.452 

6 0.516 

I? 0.516 
I3201 24 0.516 

[312] 48 0.535 

12 0.509 

I? 0.509 
12 0.584 

I2 0.535 

12 0.535 
I2 0.5x4 

6 0.555 

12 0.509 
6 0.584 

12 0.607 
12 0.650 

c4101 
[32'] 

13301 

[I411 

24 0.590 6 0.590 

24 0.590 6 0.572 

I2 0.607 3 0.607 

24 0.607 I2 0.590 

[2411 48 0.655 I2 0.640 

sites. Thus. the present results indicate that on a near yield results differing markedly from previous results. 
atomic scale in iron the model of Birnbaum et al. [24] Beyond a critical inner cutoff radius for convergence 
is possible as the specific cracking portion in the of the series solutions. the Boltzmann result gives a 
embrittlement mechanism proposed by Thom- fair approximation of the Fermi-Dirac result. Within 
son [23]. the core cutoff radius, use of the Fermi-Dirac model 

is necessary. extending over many interstitial sites: as 

5. SUMMARY many as 96 per repeat distance along a dislocation 
in the cases considered. Estimates of the extent, of 

In summary. series solutions are presented for both the condensed Fermi-Dirac atmosphere of hydrogen 
Boltzmann and Fermi-Dirac atmospheres of solute in iron indicate that the embrittlement models of both 
atoms in the strain fields of dislocations and cracks. Birnbaum et al. [24] and Thomson [23] apply to this 
The solutions applied to the case of hydrogen in iron case. 

Table 6. Values of r in nm where C equals specific values for the maxi- 
mum interaction cases where 0 = n/2. equation (3). and 0 = 0. equation 

(8) 

co = y = 5 x lo-* 
equation (3) 

co = 7 = 10-s 
equation (3) 

Co = 5 X 10-S 
equation (8) 

co = lo-’ 
equation (8) 

C 
I 114 Ii16 t/64 

0.262 0.286 0.315 0.349 

0.383 0.436 0.505 0.601 

0.944 1.03 1.12 1.24 

1.35 1.53 1.75 2.05 
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R on inserting the limits. Keeping these terms, one finds 
that their equation (27) acquires additional terms 

c, = co [-/r210(D) - x”*p-2f,(D) 
+ ~OWB) + ~"'8-'~*w8)1. (1.1) 
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APPENDIX 1 

Comparison of equation (6) with previous series solutions 

Bockris et al. [9] presented a series solution to equation 
(5). In their solution, they correctly evaluated the indefinite 
integral over dr but then neglected several terms in r,, and It. 

Equation (2.8) can he re-expressed as a finite sum of m/2 
terms. However, no simple recursion formula could be 
found for the latter sum, so there is no advantage in using . . 
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where lo and I, are modified Bessel functions of order 
zero and one, respectively and D = A/r,kT. The integrals 
leading to equation (1.1) are of the form 

i 

2” 2n 

exp@ sin @de, and 
I 

sin 0 exp(l) sin @de. 
0 0 

The first integral is given by item 3.387.1 and the second 
by item 8.431.5 in Ref. [I I]. 

For the case treated by Bockris et al. [9], i.e. 
A/kT = 17.2 r,,, R = IO’ rO, their equation (27) gives the 
result C = 51.9478 C,,. Equation (1.1) for the same par- 
ameters gives the result C, = -50.51% C* Tbe correct 
result is thus C = 1.4282 which is considerably smaller and 
gives a result for N/L a factor of 121 smaller than that 
of Ref. [9]. 

A simpler approach than modifying the earlier result 
in this manner, however, in the sense of producing a more 
rapidly converging series, is to extend the series expansion 
on p. 464 of Ref. [4], giving the result presented in equa- 
tion (6). 

APPENDIX 2 

Evaluation of (C-C,) in the Fermi-Dirac case 

We deline the quantities x = W/kT and y = expx - 1, 
in terms of which equation (2) reduces to 

(C - Co)/(l - C,) = Y/o1 + C,‘). (2.1) 

Division of the right side of equation (2.1) gives 

(C - C&l - Co) = (Coy - c;yz + cay’ - . .I. (22) 

Expanding equation (2.2) in terms of x. we find 

c - co 
-=(-Co -c; - . . . - PO) 
I - c, 

+ exp x(CO c 2C: + * *. + nCo) 

- exp 2x(Ci + 3Cd + . . . + n(n - l)C,/2!) 

+ exp 3x(Ci + ...) + f.. (2.3) 
Each of the sums in C,, can be etiluatcd explicitly by 
manipulation of the basic result, item 0.23 I in Ref. [I I], 

i c: = l/(1 - Co). 
1-o 

Differentiating equation (2.4) with respect to C,, and mul- 
tiplying by Co we have 

I 

Co x nC,- ’ = .cO nCt = Co/(1 - C0)2. (2.5) 
s-0 

Further differentiation gives the other sums in equation 
(2.3), which yields 

(C - Co) = -C, + ye= - y2e2’ + y3e3= - . ., (2.6) 

where y = Co/(1 - C,). Finally, expanding the exponential 
factors in equation (2.6) and gathering terms, we find 

(2.7) 

where 

f.(Y) = mu, mmyl( - 1)” - *. (2.8) 
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APPENDIX 3 Two of the sites have the same interaction energy with 

Interaction energy between interstitial and edge disl~atio~ g = (3 + 2x9&,, + E22) + 2(3 f 4Y)fJ3. 

In this case the dislocation stress field is well 
h = r.2c,, + e22) - %l/f7. 

known 13.43 in coordinates fixed on the dislocation with The other site has 
X’, parallel to the Burgers vector b, and Xi parallel to 
the se_?se vector e and with X’i//[lll]. X;//[ilO]. 
Xi//[1 12J. Transformed to cube axes. the normal stresses 
which contribute to equation (13) are 

611 = ,2x(rt v)r U3 + 2v)sin ff 

+ 2sin’B + 2, 6cos~cos28] I 

022 = ,,,f’_ ,,tr 1(3 + 2vtsin @ 

+ 2 sin3 0 - 2, 6 cos 0 cos 28] I 

g = 2(3 + 4v)e,, + (3 + 2~)(e~~ + .sgj). 
Jr = c-rk,, + 2(e22 + %m7. 

Ident~fylng the factor in brackets in equation (3.2) with 
A in equation (3). we see that the factor containing sin*@ 
is the correction factor for this case. Proceeding as in the 
earlier examples. we find that the result is given by equa- 
tions (6) and (7) with the additional factor for the rith term 
in the sum over n 

[i l &H(2h- 1 +&Ml 
+ H(2n - 4 + &(2n - Z)(‘n - l)kZ.2! 
+ I.. + H(2n - I - 3m + 6)(2n - 2m + _‘)I h”Q! 

In the subsequent integration ail terms containing the fac- 

J 
tor cos&os26 integrate to zero. Hence, we drop the latter 
term and present a reduced interaction energy. As dis- 
cussed for the screw dislocation, there are three types of 

033 

interstitial site with the appropriate stress field given by 

= AT [(3 + 4v)sin B - 

cyclic permutation of equation (3.1). 

2 sin3 e]. 

2n. -I>O. 

(211 - m)!). 

Evidently. equation (3.2) reduces to equation (I I) and 

(3.3) 

Here 0 < 6 < 1 and H is the heaviside operator: e.g. 
H(2n - 1 + 6) = 0 for 2n - 1 c 0. HC?n - 1 + 6) = I for 

h = 0 when cl1 = fz2 IZ: cjj = e/3 with e = r/C’ equal to 
the dilatational component of strain. Even for 
Cl 1 i E22 = c33. however. the corrections to equations (6) 
and (7) are minor except for very nearly saturated atmos. 
pheres where the series converge very slowly. Since this 
case has an obvious (saturated) answer anyway. the 
approximations of equations (6) and (7) are fairly good. 

The interaction energies given by substitution into equa- 
tion (13) are of the form 

w =\&I$-$1 + hsin’8). (3.2) 


