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A new technique of incoherent complex spatial filtering is presented. The advantage of this technique is its use of white 
light, for which the unavoidable coherent noise in the coherent optical processor may be removed. Although the technique 
is effective only in one dimension, it may be applied to some problems in complex spatial filterings, for example, image 
enhancement, image restoration, smear correction, etc. 

1. Introduction 

One of the most interesting and important applications of optical information processing is signal detection by 
complex spatial filtering [ 1 -6 ] .  However, most of the complex optical processing techniques require a coherent 
source. But coherent optical processing systems are plagues with the well-known artifact noise, which in practice 
is unavoidable. 

Although techniques of  optical information processing by incoherent light are available [ 5 - 7 ] ,  they generally 
have a serious shortcoming; namely the production of error terms due to the bias level in the signal and other 
transparencies. 

In this letter, we propose a new technique that permits signal detection by complex spatial filtering to be carried 
out with a spectrally incoherent light source (that is, a white light source). Our processing system can be used for 
signal detection (i.e. matched filtering). We also note that this incoherent processing technique may be extended 
to more general complex spatial filtering problems, such as image enhancement, image restoration, etc. 

2. Incoherent complex spatial filtering 

We now discuss the application of this technique to signal detection. We place a diffraction grating behind an 
input-signal transparency, s(x, y), at the input plane P1 of an incoherent optical processor, as shown in fig. 1. The 
resultant complex amplitude transmittance function of the input plane is then 

s(x ,y)  T(x) = Ks (x , y )  [1 + cos(p0x)l, (1) 

where T(x) represents the diffraction grating, K is a proportionality constant, P0 is the angular spatial frequency 
of the diffraction grating, and (x, y )  is the spatial coordinate system. 

Since the input plane is illuminated by collimated white light, the complex light distribution at the back focal 
plane P2 of the transform lens, may be written 
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Fig. 1. An incoherent optical processor, s(x, y), input signal transparency; T(x), diffraction grating;H(p 1 P0, q 1), spatial filter, 
and I, incoherent point source. 

E(p, q) = c f f f  s (x ,y )  [1 + cos(P0X)] e x p [ - i ( p x  + qy)] dx dy d)~, 

where the integral is over the spatial domain and spectral bandwidth X of the light source, (p, q) denotes the 
angular spatial frequency coordinate system, and C is a complex constant. 

For simplicity of  analysis, we evaluate eq. (2) for a given wavelength X, i.e. 

E(p ,q ,  )t) = C f f  s (x ,y )  [1 + cos(P0X)] e x p [ - i ( p x  +qy)]  dx dy 

(2) 

= C 1S(p;q)  + C 2 S ( P -  Po,q)  + C3S(P + p o , q ) ,  

where the C's are the appropriate complex constants, and 

S(p, q) = f f  s (x, y)  exp [ - i  (px + qy)] dx dy , 

(3) 

the Fourier spectrum o f s (x , y ) ,  p = (2n/Xf)a and q = (2n/Xf)/3 are the angular spatial frequency coordinates, 
(a,/3) denotes the linear spatial coordinates system of (p, q), and f is the focal length of the transform lens. 

We note that, eq. (3) can also be expressed in terms of the spatial coordinates of  a and t3, that is, 

E(a,/3; X) = C 1S(o~,/3) + C2S(a - (Xf/21r) P0,/3) + C3 S(~ + (Xf/27r) P0,/3)" (4) 

From the above equation, we note that the two first-order signal spectra (i.e. second and third terms) are dis- 
persed into different rainbow colors [8,9] of  the signal spectrum along the ~ axis, and centered at 

= _+(xf/2~) P0 • (5)  

Thus we see that the origin of  the differently colored signal spectra is linearly dispersed over the spatial frequen- 
cy coordinate c~. We emphasize that-it is the diffraction grating, at the input plane, that causes this dispersive effect. 

In the analysis of  complex signal detection, we assume that a complex spatial filter for X = Xl, is constructed, 
i.e. 

H(Pl ,  q l )  = K2 + K21(S(Pl , ql) l  2 + 2 K 1 K 2 I S ( P l ,  ql)[COS[/30q 1 + ~b(p I , q l ) l  , (6) 

where Pl  = (2rr/)tl f)o~, q l  = (2n/)tl f)/3,/30 is the spatial frequency in the q (or t3) direction, K ' s  are the appropri- 
ate constants, and 
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S(Pl, q 1) = [S (P l ,  ql)[ exp [iq~(pl, q l ) l  , (7) 

the complex signal spectrum of s(x ,y) .  
We note that the complex filter of eq. (6) can be generated by the interferometric technique of Vander Lugt 

[1-61.  
If we insert the complex spatial filter of eq. (6) in the spatial frequency domain P2, but centered at 

o~ = (X 1 f/2rr) PO, (8) 

then the complex light field (for a given X) immediately behind the filter plane is 

E ( p , q ;  ~) = C S ( p -  Po, q) H(PI  - PO, q l )  , (9) 

where H(p  1 - PO, q l )  represents the corresponding filter translation that centers at a = Ot 1 f ]2n)p  0 and/3 = O. 
With reference to the incoherent optical processor of fig. 1, we see that the output complex light field at P3 is 

g(x,y;X) = cffs(p - po, q) H(Pl  - PO, q l )  exp [i(Pl x + qlY)] dPl  dq l  , (10) 

where the integral is over the spatial domain o f H ( p  1 - P0, ql)" We also assume that H(p  1 - PO, q l )  is spatial 
frequency limited. 

First, we evaluate eq. (10) for the case X -- X 1. By substituting eq. (6) into eq. (10), we obtain 

g (x , y ;  Xl) = s ( x , y )  exp(iP0x ) + s ( x , y )  exp(iP0x ) * s ( x , y )  exp(iP0x ) * s*(x ,y )  exp(iP0x ) 

+ s(x, y)  exp(iPoX ) * s ( x , y  + 30) exp(iP0x ) + s ( x , y )  exp(iP0x ) * s*( -x ,  - y  + 130) exp(iP0x ) , (1 1) 

where * denotes the convolution operation and the superscript * denotes the complex conjugate. For simplicity, 
the proportionality constants K were dropped from evaluation. 

From eq. (11) we see that the first and second terms represent the zero order terms, which are diffracted in 
the neighborhood of (0, O) in the output plane, and the third and fourth terms are the convolution and correlation 
terms, which are diffracted in the neighborhood of  (0, -30)  and (0, ~0) respectively, as shown in fig. 2. For the 
time being, the zero order and the convolution terms are assumed of no particular interest to us; it is the correla- 
tion terms that one uses for signal detection. 

3rd t~r~ 2nd term ,on  color blurred 
I 

Ist term / 4th term 
~ o r  relation 

Fig. 2. Sketch of the output diffraction of a complex spatial 
filtering. 

We now discuss the case k 4= ~1' Since it is our present objective to investigate complex signal detection, we 
therefore focus our attention on the correlation term, i.e. 

R ( x , y ;  ~) = f f S ( p  - PO, q) S*(Pl  - Po, q l )  exp ( i [PlX + (ql - 30)Yl) dPl  dq l  , 

where p = (2n/kf)ol,  q = (2zr/Xf)3, Pl = (27r/•1 f)ot, and ql  = (21r/?tl f )3 .  

(12) 
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Alternatively, eq. (12) can be written, 

R ( x , y ;  ~) = K f f s (o~ - (Xf/27r)p O, fi) S*(o~ (Xlf/27r) P0,/3) exp(-i l30y ) exp[i(27r/Xlf)(o~x + i3y)] dc~d~ 
(13) 

From the above equation, we see that there is a mismatch in location of  the incoming signal spectrum with respect 
to the filter function. Thus for two sufficiently different wavelengths, i.e. 

'fl°t=(fPo/27r)lX 2~11, (14) 

where A s  denotes the incremental separation. We see that the correlation function of  eq. (13) is very weak. In 
other words, if the spatial carrier frequency P0 of the diffraction grating is high, a narrower color spread of the 
correlation peak can be obtained. We note that the color spread exists only in the x direction. That is the resolu- 
tion (or accuracy) [10] of  the correlation peak in the x direction is expected to be somewhat lower than that in 
the y direction. Thus, we see that this incoherent processing technique is effective only in one dimension..In other 
words, for some two dimensional processings, this technique may pose some drawbacks. 

Finally, we emphasize that this technique will offer a lesser speckle effect in complex signal detection and it 
can also be extended to the application of  some problems in complex spatial filterings. 

3. Conclusion 

We have introduced a new technique in incoherent complex signal filtering. Although the color spread (i.e. the 
accuracy) of  the correlation detection is somewhat broader in x direction than in the y direction, the result can be 
significantly improved by simply increasing this spatial carrier frequency of  the diffraction grating. We note that 
diffraction efficiency can also be improved if a thin dichromated [11] diffraction grating is used. 

Since all spatial filters, including real and pure phase, can be synthesized by the interferometric technique, 
this new technique can therefore also be applied to some problems in the complex spatial filterings. In short, this 
incoherent optical processing technique may be extended to the application of hnage enhancement, image restora- 
tion, smear correction, etc. 

Finally, the basic advantage of  this technique is a white light processing capability in which the coherent noise 
in the processing system may be considerably reduced. 

We wish to acknowledge Professor E.N. Leith for his valuable comments and suggestions during the course of 
this work, and we acknowledge the support of the Air Force Office of Scientific Research (Contract AFOSR- 
773356). 
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