
COMPUTERS AND BIOMEDICAL RESEARCH 11,435-458 (1978) 

Linear Machinery for Morphological Distortion 

FRED L. BOOKSTEIN* 

Center for Human Growth and Departments of Statistics and Biostatistics, University of Michigan, 
Ann Arbor, Michigan 48109 

Received October 13,1977 

In 19 17 D’Arcy Thompson reduced the problem of comparing two homologous shapes to the 
construction and depiction of a mathematical distortion in the plane. Attempts at algorithms for 
this computation, found mostly in the biological literature, ignore the primacy of the boundary 
correspondence within the data. One can define roughness of a map as the extent to which the 
image of the centroid of a square deviates from the centroid of the images of its corners; 
analytically, this is the sum of the squared Laplacians of its real and imaginary parts. When data 
are supplied geometrically in the form of a boundary correspondence and homologous point 
pairs, one can compute by wholly linear methods the function (splined over a mesh) which 
accords with geometric homologies and has least integral roughness. The necessary high-order 
matrix operations are available in the numerical-analysis literature under the rubric of “fast 
Poisson solvers.” The resulting explicit smooth functions lend themselves naturally to 
diagrammatic display in terms of the eigenstructure of the symmetrized geometric strain and 
integral curves of its principal directions. 

The classic literature of interpolation (cf. Davis (10)) treats mainly of maps of RI, 
the real line, into R’. Within this field, the mapping into R’ of Rm, m greater than 1, is 
a subspeciality, recently reviewed in Schumaker (2.3). On problems associated with 
the mapping of Rm into R” for n greater than 1 there is no general literature, but only 
the records of specific fields, notably photogrammetry and remote sensing, grappling 
with their data-specific problems: see, for instance, Doyle (II). Such fields, by 
happenstance, operate at a precision approaching that of celestial mechanics; their 
technology is very well suited for functions of a very few parameters explicitly 
measurable. The proprietor of softer data, notably measures of biological growth and 
form, cannot make much use of algorithms so demanding. 

Morphometrics, the subject of the application in this article, has been seriously 
retarded by this methodological lacuna. Through all its history it has found no 
technical aids suited to its quantitative needs except for the relatively unspecialized 
maneuvers of multivariate statistical analysis. Morphometrics’ central problem, the 
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characterization of shape contrast and shape change, is neither subtle nor arcane; yet 
it has not been able to share a practical lore with any neighboring disciplines that 
might provide fresh insights. It has but one indigenous method, whose demands have 
perplexed a small band of workers for 60 years. 

D’Arcy Thompson’s classic On Growth and Form (25) proposed the method of 
“Cartesian transformations” for the inspection of specific distortions. It was 
Thompson’s happy idea to compare two related shapes by contemplating a single 
geometrical object, the diffeomorphism between them that accorded with biological 

FIG. 1. Transformation grid from Diodon to Orfhagoriscus. from Thompson (2.5 I 

homologies. This map is depicted by its effect upon a square (“Cartesian”) grid 
superimposed over one of the shapes. The apparent distortion of the biologically 
homologous grid in the other shape embodies the shape transformation in a diagram 
beholden not to any aspects of the original shapes themselves, but only to the 
distortion between them. Even should the shapes individually be intricate and 
indescribable, the resulting grids might demonstrate the distortion to be 
“homogeneous,” the expression of a simple system of forces. Figures 1 and 2 display 
two of Thompson’s best-known examples. 

Several generations of biometricians have essayed quantifications of Thompson’s 
suggestion. I reviewed the vicissitudes of their ideas in Bookstein (4 j. Quantification 
has hitherto been considered a matter of reduction of dimensionality: to describe 
usefully a particular distortion function using a small number of parametric 
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“features” which permit the summary and comparison of populations. This quest has 
proved quite frustrating in practice. When formalisms capture the shifting details of 
empirical distortions, they are statistically intractable; when they are drawn smooth 
and homogeneous, they are not subtle enough to capture the manifold local aspects 
of form change. In Thompson’s original exposition, this dilemma was avoided. The 
master drew the grids himself, selecting pairs of shapes for which the distortion was 
already quite homogeneous and simplifying further by selective inaccuracies of 

Human rkull. 

Skull of chimpanzee. Skull of baboon. 

FIG. 2. Transformation grids from Homo sapiens to Pan and to Pupio, from Thompson (25). 

penmanship. He left no algorithm, no notes by which we might fit such smooth grids 
to latter-day data. Since his time there have been several rigorous attempts to place 
the engridments on an algorithmic basis. 

The botanist G. S. Avery (3) realized that these distortions can be visualized in a 
noninvasive manner during the ordinary course of growth. On an immature tobacco 
leaf, he inked a square grid of dots and photographed their configuration as they 
moved apart during the leaf’s maturation. The series of photographs encapsulated 
the ongoing distortion directly. Different regions of the original leaf form displayed 
spatial variations in rate and principal orientation of growth. In the elegant growth 
regulation of plant meristems, as reviewed by Schiiepp (22), there is a similar aid to 
visualization. The pattern of distortion is nearly invariant as a spatial field defined in 
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relation to the moving meristematic apex. Any snapshot of such a tissue contains 
images of its own transforms in the visually apparent cell lineages gotten by tracing 
patterns of cell walls. 

These techniques both take ungeneralizable advantage of the manner of leaf and 
shoot growth, which consists in multiplication of biomass between all pairs of loci with- 
out morphogenetic movement or tissue attrition. Most applications of Thompson’s 
technique, however, involve sibling forms, or a form and an archetype, rather than a 
succession of material modifications. One does not have the luxury of a coordinate 
system fixed in the body of the tissue, but the correspondence of grid points must be 
constructed indirectly. C. F. A. Moorrees, for instance, diagnoses abnormalities of 
orthodontic form via Thompson grids which he constructs by bending lines around 
the irregularly strewn points that customarily provide the orthodontist his data. On 
any sagittal cephalogram (xray of the head from the side). there can be identified a 
considerable number of biological landmarks, loci of specific form or function: the 
ear hole, the frontmost incisor, the bridge of the nose, etc. These are fairly evenly 
distributed over the whole image of the face and jaw. A “standard” form can be 
constructed for any population by the statistical averaging of these landmarks’ 
locations according to some conventional coordinate system. Should a Cartesian 
grid be superimposed over the configuration of landmarks for the standard image. 
each landmark is fixed at a particular locus inside some square of the standard mesh. 

Moorrees (16, I 7) reverses this determination--he imagines the intersections of the 
grid as located by relative coordinate inside polygons whose vertices are landmarks 
surrounding them. For any cephalogram encountered in clinical practice. grid 
intersections can be constructed from the empirically observed positions of the 
landmarks just as the standard nodes were reconstructed from the standard positions 
of the landmarks. When grid nodes are connected by suitably smooth-looking 
curves, there results an empirical distortion grid which is quite legible by the trained 
orthodontist. 

Instead of constructing a grid directly, one might construct a mapping tunctton 
explicitly, then infer the grid by holding constant each Cartesian variable in turn. 
P. H. A. Sneath (24) suggested constructing the mapping function by least-squares 

bivariate polynomial fit (trend-surface analysis) to the separate Cartesian coordi- 
nates of landmark displacement from one image to the other. The resulting function 
summarizes the broad features of a grid in a small set of coefficients. But the function 
is insensitive to local fluctuations: it depicts only an approximation to the mapping. 
The error of the approximation is a further distortion awaiting further display. 

THE IMPORTANCE OF BOUNDARY 

None of the preceding methods recognize that the images analyzed in these 
computations are biological outlines: simple closed curves, together with their 
interiors, that are homologous all around their boundaries. The literatures of shape 
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measurement have not taken this twofold composition into account. In certain 
methods, each boundary is measured as a separate point-set in the plane, with no 
pointwise correspondence from instance to instance. Shape contrast, then, becomes a 
matter of subtracting pairs of parameter vectors, a process quite distant from the 
biological processes by which they might have been related. Good reviews of the 
techniques of this approach include Zusne (26, Chap. 5) and Duda and Hart (12, 
Chap. 9). In another tradition, commonly found in cephalometrics (cf. Merow (25)), 
the positions of corresponding points are scrutinized closely, but the phenomenon of 
the outline itself, which is mainly responsible for the perceptual components of shape, 
bulges and bumps and vaults, is ignored. The tangents and curvatures of the outlines 
are disregarded, and with them a massive amount of information not associated with 
landmark positions at all. I explained the complementary failures of these two 
standard approaches in my dissertation (5, Chaps. 2-3). 

Acknowledging the primacy of the extended boundary correspondence alters the 
structure of the interpolation problem in all essentials. The data by which a pair of 
shapes is to be compared present not a collection of methodologically equivalent 
isolated points but a sample from a continuous function that maps boundary onto 
boundary, together with some correspondences of interior pairs. The homology is 
extended imard from the boundary: the computational problem is, indeed, one of 
interpolation. The bulk of the information for computing a Thompson transform is 
implicit in the pairing of boundary forms, a crucial locus hitherto overlooked. 

Proceeding from the primacy of the boundary, I construct in this article a new 
framework for quantification of distortion which combines attractive features from 
all the pioneering efforts I have reviewed. From Avery I preserve the notion of 
representing this function by explicit grid points in a distorted image; from Moorrees 
the systematic adjustment of these grid points to preserve a proper relation to a small 
number of movable interior landmarks; from Sneath the convenience of estimating 
real and imaginary components of the mapping function separately in linear 
analyses. Unlike all the earlier efforts, however, my algorithm divides the 
computation into two steps explicitly reflecting the dualism of the data: an 
interpolation from boundary values only, followed by an adjustment for such 
scattered interior data as may be present. At each step the interpolant may be 
computed by applying nearly standard linear methods. 

THEMEASUREOFROUGHNESS 

Algorithms for the “computation” of an interpolating function usually select, 
instead, from within a prescribed vector space of functions. That space may have 
dimension much higher than the dimension of the data supplied, so that an entire 
subflat of the function space will be found to fit the data exactly, and selection of a 
particular interpolant must proceed via some ancillary condition, It accords with the 
biotheoretical foundations of this problem that the computed interpolant should in all 
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cases be as “smooth” as possible. I shall set forth a measure of “roughness” instead. 
which shall be minimized. 

Let there be given a pair of shapes C, C’ and a biological homology in the form of 
a distortion function mapping between them. A suitable operational interpretation of 
“smoothness” is as follows. Consider a small dot square in C and its image in C’, as 
in Fig. 3a. I suggest a map be considered smooth if the center of the Cartesian square 
maps into the centroid of the distorted square. As in Fig. 3b, roughness will be 
characterized for this little cell by the squared distance between the image of the 
centroid and the centroid of the image configuration. 

. 

. 

FIG. 3. (a) A small square and its image. (b) Roughness is the squared distance between the image of 
the centroid and the centroid of the image. 

Roughness has a simple analytic approximation. Let the input square have corners 
of coordinate (x, + h, y, + h) and let the mapping function (x, y) + (u, U) be 
expressible around (x,,, yO) as a Taylor series of second order. Then the four corners 
of the image configuration are, to second order in h, 

of centroid 

(u(x,,~J, Gq,,L’o)) + 2h2 (V’ ~9 V2 ~‘1 
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where V2 is the Laplacian operator a2/&c2 + a2/8y2 and all derivatives are taken at 
(x,,, y,). The value of the roughness is then just 4h4((V2 u)~ + (V2 v)~), to fourth order 
in h. A suitable quantity independent of the scale h of the square is just (V2~)2 + 
(V2 vy. 

Conformal mappings are smooth and look smooth. The elegance of illustrations of 
the classic conformal maps, such as Fig. 4, lies in the even seamlessness of the image. 
The distortion seems to pass from one point to any other with utter smoothness. In 

FIG. 4. Conventional diagram of a conformal mapping. 

fact, for any conformal map (x, JJ) + (u, v), u and v are each harmonic functions, 
which is to say, V2 u = V2 v = 0, so that the roughness is everywhere identically zero. 
But it is not necessary for u and u to be conjugate harmonic functions for a map to 
have zero roughness. Any two harmonic functions U, v define a map (x, JJ) --) (u, v) of 
zero roughness. For instance, the bilinear map of Fig. 5, which is by no means 
conformal, is perfectly smooth. As u and v are separately bilinear in the Cartesian 
coordinates, all derivatives of order greater than one vanish. 

Roughness is invariant under rotation of the coordinate system for either shape. 
Rotation through an angle 6, in either coordinate plane, multiplies the roughness by 
(cos26 + sin28)2, which is, of course, unity. Then the roughness computed for 
infinitesimals aligned with the square 0 is the same as for the square 0, or any 
other. In the definition of roughness as (V2 u)~ + (V2 v)~, therefore we did not have to 
fix the Cartesian axes in the biological form; the computation is invariant with 
respect to their orientation. 
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In the algorithms that follow, all distortion functions will be required to have 
minimum net roughness in the set of all functions affording the requisite homologies. 
(By “net” roughness I refer to the integral of JV2f[*, in continuous analyses, but to 
the unweighted sum of discrete approximations therefor in the discrete-mesh 
version.) This is an explicit generalization of certain characterizations of splines. In 
one dimension, the familiar cubic spline has the minimum of i (Y”)~ dx subject to 
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FIG. 5. A bilinear map which is not conformal but which has roughness identically zero. 

constraints at knots and at the boundary (cf. Ahlberg et al. (I)). The integrand here is 
the square of the numerator of the simple curvature of the function y(x) as a locus in 
the plane. The minimum is attained for a piecewise cubic, which perforce has y’” = 0 
except at the knots. For the two-dimensional, complex analysis, (y”)* is generalized 
to 1 V*f 12. It can be shown by use of Green’s formula (cf. Briggs (7) or Collatz (9. 
Sect. V.5.6)) that any function which minimizes II V*f(* over a region satisfies 
V*V*f = 0 there. This neatly generalizes the finding that y’” = 0 for minimum- 
curvature one-dimensional splines. Now V* V’f = 0 is the biharmonic equation, the 
equation satisfied by thin elastic metal sheets subject to point displacements, just as 
the spline equation was originally derived to model one-dimensional elastica pinned 
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to a draftsman’s board. That my interpolation function satisfies the elastic equation 
is not a postulate of the model, however, but a deeper consequence of the more 
intuitive, data-oriented mathematical formulation in terms of smoothness of 
interpolation. 

THE VECTOR SPACE AND ITS ASSOCIATED FUNCTIONS 

Let C be some simple smooth closed curve in the plane. Let h be some small 
spacing, perhaps 5% of the diameter of C, and let (x, yO) be some fixed point. 

. . 

. . . 

. . . 

*  . *  

*  . . 

*  . . 

’ . . . 

FIG. 6. (a) The set S for preassigned boundary C, arbitrary origin (x,,y,), and spacing h. (b) The set 
S’ which depicts a particular vector defined “over” S. 
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Consider the set S of points (x, y) properly inside C which satisfy the equations 
(x - x,, = hn, y - y, = hm for some integers IZ, m. S is in fact the restriction of a 
square lattice to the inside of C, as in Fig. 6a. The number of points of S will be 
denoted by N. The elements of S need to be assigned some fixed order, perhaps by 
columns within rows from the top. 

For later use I shall need the set Si c S of “interior points” of S, points all four of 
whose nearest lattice neighbors lie in S. Let Nj be the count of points in Si. I will 
assume throughout that for no point in S are both its lattice neighbors above and 
below, or both its lattice neighbors left and right, outside S. In other words, S must 
be everywhere “wider than 1.” 

,,.I- . ..F..1 
. . . ..r-.*.Lr.I. 

-,..*a *..(I.. ..,,,a 
,,........*.>..,L1* 
.**.......n......i,‘ 
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*1 .‘I . , . , I  

FIG. ‘7. The gnomon G around the boundary of S. 

I represent the N-dimensional vector space W over the complex numbers rL: by 
assigning a complex number to each point of S. A basis for this space may be taken 
as the set of vectors b, equal to (1,0) at the point s and (0,O) at ail other points of S. 
For any vector ZJ of W, on another picture plane we place the points whose complex 
coordinates are the very numbers u, assigned to points s of S by the vector v, that is, 
its components in the basis (b,}. These points form a set S’, shown in Fig. 6b. In 
fact, N! elements of W have this same picture. By connecting each point of S’ to the 
images of those points which were the nearest neighbors of its carrier in S, one 
achieves a visual suggestion of distortion. (For all but at most one of the N! vectors 
in W corresponding to any set S’, the connections will cross somewhere, unless S 
has improbable symmetries. The crossing-free representation suggests the distortion 
I mean.) 
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A gnomon G, of lattice points may be placed about S such that the set S u G, 
includes all lattice points which are within one lattice step of S in any of the eight 
cardinal directions (north, northeast, east, southeast, south, southwest, west, north- 
west), A gnomon G, of lattice points is placed about S U G, similarly. The set 
G = G, u G, is now a gnomon two thick around the boundary of C, as in Fig. 7. 

To each vector D in W, I associate a smooth function f, defined throughout C, 
which has continuous derivatives of first order within C, as follows. Each point of C 
lies inside some square of side h whose corners are all points of S U G,. Suppose that 
for every point of S u G, there is supplied a (complex) value of the functionf,, its 
derivatives af,/ax and 8fv,lay in the x and y directions, and its mixed derivative 
~*fJ~x 8~. Within each square {(x, y) )x0 < x < x, + h, y, < y < yO + h} the function 
f, will be set to the “Coons patch”: 

f,(x, y) = [u3 uz u 11 MBM’ [w3 w2 w I]‘. 

Here ZJ = (x - xJlh, w  = (y - y,,)/h, M is the matrix 

[ll 

i -3 0 2-2 1 0 3 0 i -3 0 2-2 1 0 3 0 -2 0 11 IO’ -1 0 I -2 0 11 IO’ -1 0 I 
and B is a matrix of complex numbers selected from those presumed supplied: 

B= 

* 

This function f, is the unique bicubic polynomial in the Cartesian coordinates which 
satisfies 16 corner conditions, namely, assigned values off,, af,lax, &‘f,ltYy, and 
82fv/8xc3y at each of the four corners of each little square (cf. Forrest (13) and 
Rogers and Adams (21, Chap. 6)). It can be shown that this function is Ci at all 
lattice points and on all vertical or horizontal segments through lattice points. Inside 
each square, of course, it is Cw by virtue of its polynomial form. 

The values off, on S are available-they are the components v, of v, the points of 
S’. To compute the partial derivatives for the preceding formula, it is convenient to 



446 FRED L. BOOKSTEIN 

estimate values off, upon the gnomon G as well. The extension is by extrapolation 
along the eight cardinal directions. For any point g of G, let s, be the closest point of S 
such that so = g + Z(e,, e,,), where 1 is equal to 1 or 2 and each of e,, eY is 0 or 2 1. Let 
n, be the minimum n greater than zero for which g + (t + n)(e,, eY) is outside S--see 
Fig. 8. If n, exceeds 4, set it equal to 4, to avoid instabilities engendered by distant 
values. The set of points {g + (1 + n)(e,, e,,) (n = 0, 1, . . ~ ., nR - 11 is a one 
dimensional lattice upon which we can pass a unique (n, - l)th-degree polynomial 
through the values off, (= complex numbers UJ assigned there. The value off, at g is 
set equal to the value of this polynomial at g. (A special adjustment to this routine for 
the case ng = 1 searches for a parallel line of lattice points upon which to fit a 
polynomial which is then shifted. In practice it is invoked rarely.) 

FIG. 8. Domain for extrapolation into G. 

With values forf; now assigned at every point of S u G, values of af,idx, df,/dy. 
and a2f,lax ay are assigned at any point s of S u G, as follows: 

af,lax is set to the derivative at s of the unique fourth-order polynomial through 
the values of f, assigned at the points {s + I(h, 0) (I = 0, + I, + 2 ), should these points 
all be in S IJ G; otherwise to the derivative at s of the unique fourth-order polynomial 
through the values assigned at {s + Z(h, O)ll = -l,O, 1. 2, 31 or {s + I(h, O)(l = -3. 
-2, -1, 0, 1 }, whichever of these sets is entirely within S U G; 

i?f,lay is set to the output of a similar numerical differentiation along the ordinate, 
that is, replacing (h, 0) by (0, h) in the previous paragraph: 

a*fJax ay is set t0 (4/i*)-' {f,(s + (h,h)) + f,(~ - (h, h)) --,f,(~ + (h, -4)) -- 
f,(s + (-h, h))), a simple four-point approximation. 

These formulas may be compared with those of Akima (2), which are based on 
nonlinear estimators. Neither my technique nor his should be confused with ordinary 
bicubic spline interpolators (cf. Schumaker (23)), whose values are determined 
globally by all the values f, together with certain boundary conditions. These 
bicubics themselves minimize certain integrals in ) V*f I *; in the algorithm I present it 
is the vector, not the funciton f, which bears optimality properties. 

Values off, and its derivatives now having been set throughout S u G,, the values 
off, anywhere inside C may be computed square by square according to the 
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interpolation formula [ 11 preceding. Since f,, maps each point of S into the 
corresponding point of S’---the point v, carried by the sth component of v-it may 
be considered a Cl interpolant of the mapping S -, S’ as a function defined 
throughout C. 

These functionsf, are themselves clearly a vector space over C isomorphic to W. 
For each s, the formulas for the derivatives are linear on W, as is the formula for 
interpolation within lattice squares. Then for fixed (x, JJ) E C, lattice point or no, the 
value fV(x, JJ) is a linear functional on W. We will use this fact presently. 

It is useful to consider an alternative basis for the vector space W, one naturally 
associated with the roughness measure. Lets be any point of SP Then the sth element 
of the alternate basis is the vector 

rs = b, - $ z b 
s’ neighbors of s 

north, east, south, west 

Let M, be the vector of coefficients of r, in the ordering of S; in general it looks like 

(0, *. -, 0, -$, 0, . . .) 0, -3, 1, -f, 0, . . .) 0, -4, 0, *. .) 0). 121 

A well-known approximation in numerical analysis states that h*V*f(x,, y,) w  
fb,, yo> - t(f(x, + h, uo) + f(xo - h, yo) + f(x,, Y, - 4 + f(xo9 Y, - h)). In the 
current notation, this means that the roughness off, at s is approximately ( rs v’( 2, 
where IzJ is the Gaussian norm (zZ) l’* I shall hereinafter identify roughness with this . 
value. 

For points of s not in Sr, the formula for roughness at s cannot be that given 
above. The usual approximation is instead the Shortley-Weller (19, p. 442). Ifs is not 
in S,, it has one or two neighbors outside C. The segments from s to those neighbors 
cut the boundary of S as shown in Fig. 9. At such cuts there will eventually be 

Y 

FIG. 9. Geometry of the roughness computation near the boundary of S. 
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assigned scalar values b, and b,, “boundary values,” derived from the one-to-one 
correspondence between boundaries. On either arm of the cross through s, through 
the three values unevenly spaced there passes a unique quadratic polynomial, which, 
extrapolated, yields a value to assign to the missing neighbor outside S. From the 
reconstructed full-size cross the roughness may be computed as usual; it is a 
Hermitian form in the components and the scalars. For the case illustrated in Fig. 9, 
the approximate roughness is the square of the norm of 

-2u,J(l + d,) - 2v,J( 1 + d2) + (2/d, + 2/d,) v,~ - 2b,ld,(l + d,) -- 26,ld,(l -t d, j, 

where d,, d, are the distances to boundary shown. Should only one neighbor of s be 
outside S, the formula is modifled by setting the other d to unity and replacing the 
boundary value (a scalar) by the appropriate U, (a component). The possibility of 
other forms of the cross has been eliminated by the assumption that S is everywhere 
wider than 1. 

The homogeneous part of Eq. 131 supplies a vector M, for the points s of S - St. 
just as (2) supplies M, for s E Si. Construct the matrix M, which is N x N. by 
M = (M,‘(M,‘(. . . IM,‘). Most monographs on the numerical solution of partial 
differential equations prove that this matrix is nonsingular. (See, for instance, Collatz 
(9, Sect. 1.5.5, Theorem 2 and p. 348).) Then this change of basis is proper, i.e.. of full 
rank. A special algorithm for computing its inverse will be described in due course. 

INTERPOLATION FROMBOUNDARY VALUES 

Let B be the vector in W, of components indexed by s in S, which has entries 0 for 
s in Si and the appropriate nonhomogeneous term of an equation like [31 for s not in 
Si. Consider the system of equations u,M = B, where M is the matrix defined just 
above. Since M nonsingular, we can solve this system of equations for L’~: z:,, =- 
BM-‘. By the manner in which M and B were constructed, the vector L’~ can be 
characterized as the unique vector which, in conjunction with the boundary values 
which entered into the components of B, has approximate roughness exactly zero at 
every point of S. 

The functionf, corresponding to v,, will not take on exactly the values used in the 
computation of B at points such as those drawn in Fig. 9, for two reasons: 

(a) for points s with two neighbors outside S, there are two free parameters b,, hz 
in the correspondence, but only one degree of freedom in the system of equations; 

(b) the simple roughness formula presumes a quadratic approximation to ,f 
between grid points. while f is cubic by construction. 

In spite of these difficulties, in all applications for which the boundary values are 
smooth functions of position, the fit between fV, and the components of B will be 
reasonably close. 
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Suppose, now, that the boundary values entering into the components of B are 
assigned as boundary points, themselves complex numbers, of a second shape C’. 
The assigned values are to be the exact homologs, under some conventional 
interpolation, of the boundary points of C which served as surrogate neighbors in the 
Shortley-Weller formula 131. Then the set of components of vO, plotted as points 
making up a set S’, will depict a distortion of S which interpolates into the interior of 

DIODON 

FIG. 10. Boundary-driven correspondence between Diodon and Orthagoriscus, driven by a seven- 
landmark digitization of the data in Fig. 1. 

C’ with roughness exactly zero, and the function f, will be just the distortion 
function needed in the D’Arcy Thompson formulation for this mesh. 

This entire approximating procedure will be well defined once a rule is at hand for 
the provenance of the boundary values. In my implementation, the boundaries of 
shapes are constrained to be segments or arcs of conic sections between a small 
number (~$100) of landmarks. Between corresponding segments the homology 
between boundaries is linear in distance; between corresponding arcs it is linear in 
arc length. Examples of this computation are displayed in Figs. 10 and Il. 
Corresponding to their exactly zero roughness, they appear smooth throughout. 
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FIG. 11. Shape change from “stage 13” to “stage 15” of the protonotochord oi ‘the newt, boundar! 
driven interpolation only. Data from A. G. Jacobson and R. Gordon. J. E~J. Zonl. 197.191 t 197hi. 

INTERPOLATION FROMBOUNDARYVAL~JES ANDINTERIORPOINTS 

The boundary-driven interpolation function .<,, has roughness zero at every point 
of S. This function maps those boundary points on grid lines very nearly onto their 
homologs; it maps the boundary landmarks onto their homologs to the extent that 
they are represented by the nearby boundary points on grid lines, But the function f,,$, 
takes no cognizance at all of interior points---as indeed it cannot, for its vector D, is 
the solution of an exactly determined linear system, with no degrees of freedom to 
spare. 

Insisting that a set of interior points of C be mapped exactly onto homologs in C’ 
will require a modification off,,. To this end, consider the computation of P, not as 
the solution of a linear system but as the minimization of the total roughness 
1 vM - B 12, where 1 . 1 is now the Hermitian vector norm. I(v,, . . ,~ LJ,~)J =I- (l ~~~<~~)i/2. 
The unconstrained minimum of this form is zero, attained at the value t!,, just 

computed. 
To homologies on interior pairs correspond constraints on the vector P. Each 

constraint will be of the form f,,(x,‘,.r,‘) = (.x~‘,J’~‘). By the construction of the 
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functionf, its value at (xi’,y,‘) is a linear combination in the components of u, the 
values of f, at the grid points around (xti,yli). The coefficients of this linear 
combination are functions of the relative location of (x,‘,y,‘) in the grid square 
surrounding it and the proximity of those grid points to G. 

Let us writef, =fv, + f,, =fvo+v,, where& is the interpolant corresponding to zero 
roughness, boundary determination only, and& is an adjustment for interior points. 
We must have~,,(xif~i’) = (x2!y,‘) -&(x,‘,yi’) for every pair of points constrained 
to correspond. Since fYO fits the distortion very accurately on the boundary of C, that 
is, at the intersections of the boundary of C with grid lines, we also must have fY, 
identically zero there. We wish to compute the vector V, subject to these constraints 
for which the roughness of fV,, which is the same as the roughness of f “, is rnirimal. 

For the estimation of ulr the appropriate vector B is identically zero, for 
components corresponding to s in Si and in S - Si alike. In light of this all-zero 
boundary condition, the roughness of&, summed over all the points of S, is just 
equal to (v, M)(z? 1 M)‘. We wish the vector for which this quantity is minimal, subject 
to a set of constraints regarding interior pairs (xli,yli), (x,‘,y,‘). Let the constraints 
be assembled in the single matrix form ZI, Q = R, where Q is the sandwich of 
coefficient column vectors expressing each f,(x,‘,y,‘) as a weighted sum of the 
components of U, and R is a vector with ith entry (x,‘,y,‘) -fva(~,i,~,i), 

DIODON 

ORTHFIG. 

FIG. 12. Boundaries as in Fig. 10, with gill and center of pectoral fin as interior homologs. 
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Let us change to the alternate basis by writing u2 = u I M. The problem is now to 
calculate u2 such that v2 VZt is minimal subject to v2 M-r Q = R. This is a standard 
problem in quadratic forms (cf. Rao (20, Sect. If. 1); the solution is at the orthogonal 
projection of the origin onto the flat v,M-’ Q = R, which is 

The vector ~1~ supplies an imputed roughness at every point of s; the actual complex 
loci for ur are gotten by reversing the change-of-basis--v, = v&-r. For this u,, the 
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FIG. 13. as in Fig. 11, with tip of protonotochord as interior homolog. 

function fUO + U, maps C onto C’, approximately preserves the boundary homology 
and the homology of scattered interior pairs, and minimizes roughness over the set of 
all u whose f,, can be so described. It is the smoothest distortion function possible for 
applications of the Thompson method to data which include interior correspon- 
dences. 

Examples of this interpolation are shown in Figs. 12 and 13. These involve the 
same boundary correspondences as Figs. 10 and 11, respectively, but require in 
addition the correspondence of the one or two pairs of inside points located at those 
periods (. ) which do not appear to be part of the mesh. 
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NOTESONCOMPUTATION 

The matrix M is of considerable size. For Fig. 11, for instance, it is 162 by 162, 
and in practical problems where greater accuracy is required it could easily be as 
large as 10002. To construct its inverse would be a thankless task. We do not ever 
need M-l written out explicitly, but only the result of its operating on certain 
individual vectors: B and the rows of Q. 

The fast computation of the product of M-l by arbitrary vectors T has occupied 
numerical analysts for some 50 years. Before 1970 it was the accepted practice to 
compute TM-’ by solving the equation VM = T according to a variety of 
successively more sophisticated iterative methods. Shortly after the publication of the 
fast Fourier transform in 1965, several analysts realized more or less simultaneously 
that in the special case when C is a rectangle of sides parallel to the grid lines, the 
vector TM-’ can be computed “directly” with remarkable speed by taking advantage 
of the highly regular structure of M. The eigenstructure of M can be written out in 
closed form in these cases. When the grid count is a power of 2, in particular, the 

PROCON 

FIG. 14. Principal directions, displayed at points of S and S’, for the data in Fig. 6. The upper form 
is the cranium of Homo sapiens, omitting the jaw; the lower form is a reconstruction of the form of 
Proconsul, a 15.million-yr-old fossil. Data from Bookstein (6). 
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eigenvectors are so patterned that the components of an arbitrary vector with respect 

to them as a basis can be computed by the FFT in a small fraction of the time 
necessary for a general orthogonal rotation. In the early 1970s it was noted that for a 
general geometry, such as concerns us here, the matrix A4 is modified by a matrix of 
rank merely N - Ni from the patterned case. The modification of M-l is then a 
procedure of rank N - Nj also, rather than rank N. This brief, brilliant software 
development may be reviewed in Refs. (8), (14), and (19). 

DIOOON 

ORTHRG. 

FIG. 15. A sample of integral curves, with selected dilatations, from the biorthogonal grid for the map 
of Fig. 12. 

In Proskurowski and Widlund (18) there is listed a computer program which 
solves this equation vM = T for arbitrary real vectors T and a quite general class of 
object geometries (sets S) by an easy series of calls from a Fortran driver. By 
executing the computations twice, once with the real part of the boundary vectors 
and interior homologs, again with the imaginary parts, the complex problem is 
exactly solved; for the whole estimation of u is separable, roughness and all, into its 
real and imaginary components. It is not necessary to understand the mathematical 
physics of the Helmholtz equation, and the equivalence of the low-rank modification 
of M-i to an electrostatic problem of capacitances, to invoke this algorithm 
effectively. The subsystem published in (18) computed the vectors u0 and v, for all the 
grids of this article for about forty cents apiece. 
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Once the vector u and the function f, are in hand, it is straightforward to construct 
a legible diagrammatic summary of the transformation in accordance with the 
principles set forth in Bookstein (4, 6). The set S’ of components of v depicts 
distortion as Thompson did in 19 17: it does not lead the eye directly toward features 
implicit in the differentials off,, but suggests, irrelevantly, shears imposed from 
outside the forms. Summary is much more convenient by way of the principal 

STAGE. 

STRGE.15 

FIG. 16. A sample of integral curves, with selected dilatations, from the biorthogonal grid for the map 
of Fig. 13. 

directions of the strain field, those directions at any point which are at 90” in both 
forms. In terms of the function f,, these principal directions are the eigenvectors of 
the matrix A’A, where A is the 2 x 2 affine derivative off, considered as a map from 
R2 into R2. Along each of the principal directions at a point, the map f, acts by 
dilatation (stretch or shrink) and upon each 90° cross of directions by rotation. The 
mapping may be expressed, then, by the field of these crosses, diagrammed with 
arms of length proportional to the dilatation thereupon. Figure 14 shows some of the 
crosses for the map whose S, S’ were shown in Fig. 6. 
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Even better would be the integration of this field of principal directions into a 
whole network of curves intersecting at 90’ throughout the image. One could then 
extract typical extended loci which summarize whole areas of the map. after the 
fashion of (4, 6). The formulation off, in the manner I have set forth makes it 
possible to carry out such an integration directly, since the principal directions, 
functions of the affine derivative matrix, can be computed at any point inside C from 

FIG. 17. A sample of integral curves. with selected dilatations. from the biorthogonal grid for the map 
of Figs. 6. 14. This display is strictly analogous to Fig. 4 of Bookstein (61 but embodies smoothly 
curving boundary lines and a superior algorithm for integration. 

the explicit bicubic formula for .f,, there. As f,, is continuously differentiable through- 
out C, its principal directions are themselves continuous functions of position except 
possibly at isolated singularities (cf. Bookstein (4, pp. 206-210)). Samples of such 
integral curves, and some local dilatations along them, are drawn out in Figs. 15, 16, 
and 17 for the data of Figs. 12, 13, and 14. 

For a fixed region C. maps to multiple forms C’, or maps with various sets of 
internal homologies, can all be described by the same data structure, the vector r~ and 
associated discrete geometric information. The exact distribution of homologous 
points is not encoded in this structure in any fashion, any more than the input data of 



LINEAR MACHINERY FOR MORPHOLOGICAL DISTORTION 457 

a scatter are encoded in the correlation coefficient summarizing it. The represen- 
tation f, of a two-dimensional correspondence is thus highly transportable. Sets of 
thesef, can be visualized and compared and statistics of conveniently low dimension 
extracted by the tensor methods outlined in Bookstein (5, Chap. 8). These 
computations make practical the display and summary of the maps Thompson 
invoked in 19 17, which have proved hitherto refractory. 

All the computations leading to the figures of this article have been combined in a 
single Fortran program, BIORTHOG, which runs under MTS, the University of 
Michigan’s highly terminal-oriented operating system. BIORTHOG acquires 
homologous points and piecewise-conic outlines and computes S, uO, or, and the 
various diagrammatic representations off, in a fully interactive manner. At present 
writing (October 1977), I am engaged in (a) extending these techniques to three 
dimensions, and (b) designing analogues of multivariate statistics to extract scalar 
information from the tensor fields underlying the display. 
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