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AIMrsct--Tbe numerical scheme for the computation of a shock discontinuity developed by MacCormack 
has been extended to solve a number of d~erential equations, including cases explicitly containing 
higher-order derivatives: (1) Koneweg-de Vries equation with a term of third-order derivative, (2) a system 
of nonlinear equations governing nonsteady one-dimensional plasma flow in cylindrical coordinate, (3) 
equations of solar wind. Comparisons with previous results are made, if available, to illustrate the 
advantages of the present method. The question of convergence of the numerical calculation is discussed. 

1. INTRODUCTION 

The fundamental difficulties in treating time-dependent compressible flows stem from the large 
number of dependent variables, both hydrodynamic and thermodynamic, and the possible 
presence of shock discontinuities in the flow field. The difficult numerical study of shock waves, 
which are unique to the supersonic flows, has been directed towards smearing out the shock 
discontinuities while retaining accuracy away from the surface of discontinuity. Among the 
contemporary numerical techniques, Lax method[l] has the asset of simplicity hence is easier 
to be adopted in treating complex flow systems. Following Lax's initial study, MacCormack et 
a1.[2-4], had made some improvements, especially in establishing a convergence criterion for 
the nonsteady one-dimensional flow in rectangular coordinates. MacCormack's method has 
generally been applied to solving a set of differential equations explicitly expressed only with 
first-order derivatives. 

In the present study, we adopt the Lax-MacCormack technique to solving transient flow 
problems of more diversified configurations and physical situations. Consequently, the 
differential equations may involve, explicitly, second- and third-order derivatives, e.g. the 
propagation of a finite-amplitude water wave as described by the Korteweg-de Vries equation 
and the self-consistent (particle-field) study of plasma expansion where an electrostatic dis- 
continuity is present. In the Korteweg-de Vries equation, the order of differentiation with 
respect to time is still of the first order but it is of the third order with respect to space 
coordinate. The result of our computation agrees well with previous work by Vliengenthart[5]. 
In the study of a plasma expansion, where flows of both ion and electron species are involved, 
the Poisson equation of the electric field must be taken into account. Thus the present 
numerical study takes on a new wrinkle. Expansion flows of cylindrical configurations is 
treated. Although Novak[6] has applied the MacCormack method to a flow problem in 
cylindrical coordinate, the differential equations treated are, however, of the first order. The 
convergency problem pertaining to the computations of plasma flows turns to be rather critical 
particularly with the cylindrical case. Finally we apply the method to the nonsteady spherical 
expansion flows of solar wind. 

To ascertain the accuracy of the present method for equation in spherical coordinate we first 
solved two sets of linearized equations of second order and with different boundary conditions 
and compared the results of numerical computation with the analytical solutions. They are in 
very i;ood agreement. Then we applied the method to solve a solar wind problem which has 
been studied by Hundhansen and Gentry [7]. Hundhausen and Gentry used the particle-in-ten 
(PlC) method together with the combined Eulerian-Lagrangian scheme for solving the flare 
generated disturbance in the solar wind. As pointed out by Gentry et al. [8], the PlC method is 
accurate to the second order of the increment in space coordinate and to the first order of the 
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time increment. The use of MacCormack method makes it possible to improve the accuracy of 
the functional time dependency. Since physical quantities may have rapid changes in many fluid 
problems, the MacCormack method which is accurate to the second order of time increment 
can save some computation time for reaching the same accuracy. 

2. NUMERICAL TECHNIQUE 

Let the differential equations in question he written in the following form 

/ ,  = a/ ,  + b/, ,  + c/,~ + s (I) 

where f and s are column vectors representing the dependent variables and the "source-like" 
terms, respectively, in the governing equations. Following MacCormack's scheme, from given 
initial values of fj" at the time t, the predicted values, denoted by fj"-~, are computed from 

- ~j = a; /7÷ f f  t , , 
A.t +b; 

n ~ P~l 
+ c, (&r--"~,+2 + 3~" - 3/?+, - f~'-,) + s; 

where the subscript denotes a physical position, and the superscript denotes the time. Rear- 
ranging the equation, we ot',ain the predicted values 

where 

1 
=/; + ;" + f;-'- el;) 

I . 
+ Acj" (~r) (f~+" + 3fp - 3f~+, - f';-,) + A.tsp (2) 

= A,_.~t (3)  
~ r "  

The final corrected values at t +&,t,/~"+~, is the average of /p  and the predicted values at 

n÷2 

t = ~ A.t denoted by ~"~.  
lqnl 

fj.+7 is obtainable from eqn (2) with backward difference in r for first and third derivatives. Hence 

where 

I . + f~) (4) 

" r ~ u j  Uj+! ~J j - I  --~Jj ! 

(5) A _ ~-~'Ii ¢*-;'f + ~ ¢.-'~ A.tST ~I. + .,,-, 

3. KORTEWEG-DE VRIES EQUATION 

To apply the MacCormack scheme to differential equations with higher order, the Koneweg-de 
Vries equation is used as a test case. The KdV equation for water waves can be written as [5] 

83 ~2 
(6) 
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where ~ is the dimensionless magnitude of variation; a, 0, ~ are dimensionless coefficients; x, t 
are dimensionless space and time coordinate. Initial conditions used in the computation are 

= 1 as x < O  

~ = 0  as x > O .  

Boundary condition at large x is assumed as 

(7) 

Quantities used in the computation are Ax = 0.2, At = 0.015, a = 0.I,  # = 0.I, # = 0, 0.01 and 
0.I. The results are shown in Figs. 1-4. The curves shown in Figs. I and 2 for the case of  
a = 0 . I ,  # = 0.I and # = 0 at t = 1.5 and t = 6.0 agree exactly with Fig. I I  in the work of 
Vliegenthart [5]. 

4. PLASMA EXPANSION INTO AN AXIALLY SYMMETRIC VACUUM SPACE 

To extend the MacCormack scheme to differential equations involving Poison's equation, 
the expansion of uniform plasma into a vacuum is studied. Suppose that the plasma is initially 
contained in the axially symmetric space r > a. At t = 0, the plasma expands into the vacuum 
space 0 < r < a. The governing equations are written as follows 

d..~v= _~_~_~ (8) 
dt 8r 
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Fig. 1. Solution of KdV equation with a ffi 0.1, B = 0.1, tt ffi 0 at t = 1.5. 
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Fig. 2. Solution of KdV equation with a - 0.1, ~ = O.l, ~ = O at t = 6.0. 
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F'~g. 3. Solution of g d V  eqtmdon w i t h ,  = 0.I. • = 0.I. ~ , ,  0.01 at t = 6.0. 
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Fig. 4. Solution of KdV equation with a = 0.1~ $ = 0.1,/~ = 0.1 at t = 6.0. 

dr 
- - =  u ( 9 )  
dt 

1 d N =  au u (10) 
N dt Or r 

a2¢ +1 a¢ 
a-';- r~7 " = e ' - N  (II) 

where u = the dimensionless velocity; @ = the dimensionless potential;  N = the dimensionless 
particle density of ion; r = the dimensionless radius; t = the dimensionless time. Initial conditions 

used are 

N = I  as r > r  l, 

N = 0  as r < r i ,  

u = 0 for all r. 

(12) 

And boundary conditions at the wave front, r = r/, 

8A 2 
@ = In (I - A2r~) 2 

" ~  = 1 - A ' r ;  

(13) 

(14) 



8A 2 
4' = In (1 - A2r2) 2" (15) 

With the potential ~ obtained, the values of u and r are determined with the use of the 
MacCormack's scheme. Finally the particle density N is integrated. Thus, by repeating the 
above procedures the variables are obtained at successive time steps. 

The convergence criterion is found such that as the time increment is determined by 

A r  
A t  = (16) 

ilUllm~ 

-i .0 

C# must be less than or equal to 1. The results shown in Figs. 5-8 are computed with Ar = 0.025 
and C,t = 1. 
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Fig. 5. Distributions of dimensionless potential. 
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where A 2 -- exp (~be)/8 and Oo is the potential at r = 0. Boundary conditions of ~ and O01Or at 
r--,® are expected to be zero. 

To solve the above set of equations, the value of A is adjusted by satisfying the condition 
that the O and O~b/gr approach zero at large r. The value of 4, in the region r > r 1 is determined 
by the Taylor's series expansion and in the region r < r / is obtained by the analytical solution 

98 99 I00 I01 102 
r 

Fig. 6. Distributions of dimensionless particle density. 
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5. VERIFICATION OF THE MAcCORMACK METHOD 

To make it certain that the MacCormack's method is applicable to non-steady spherically 
symmetrical flow problems, two cases with linearized equations are studied first. The physical 
meanings and the corresponding equations are given as follows. 
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Fig. 7. Distributions of  dimensiordess velocity. 
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Fig. 8. Change of wave speed. 

(a) Linearized equations without source 
Consider a sound wave propagating spherically into undisturbed medium. Equations can be 

written as 

Op /Ou 2_~Ur) = -~- + po~-~ + 0 (17a) 

02 = -a20P (17b) 
dt po dr 

where Oo, p are densities of undisturbed and disturbed medium respectively, u the velocity, a 
the speed of sound, t the time and r the radius. 

(b) Linearized equations with sources 
Consider that a sound wave propagates spherically into a medium under chemical reaction. 

The equations then can be written as 

a p / a u _ 2 u ~  ( ro+at - r )  
- g  * - 7  ) = a 

aU 02b~ t h H ( r o + a t - r )  

(lSa) 

(18b) 
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where/o is the mass source, rh the momentum sink and H[(ro÷ a t -  r)la] is a step function 
such that 

H(ro-l.l~t-r)__[l 0 asas r>(ro+ at)r<(r°+at) 

in which r = r0 is the surface where the sound wave starts. 
The results of numerical computation are described separately for the two cases. 
(a) To illustrate the numerical computation works for the cases of discontinuity across the 

wave front, the initial and boundary conditions are so chosen such that p = go, u = 0 in the 
region ro< r < =  at t = 0 and 

p=po+AH(t )  at r = r o  (1%) 

u = aA (to+ at)H(t) at r = ro (1%) 
poro 

where A is a constant, IA[ < po and H(t)= I as t > 0 and H(t)= 0 as t < 0. It is necessary that 
the velocity u be expressed as above for satisfying the differential eqns (17a, b) and (18a, b). 
The analytical solution of eqns (17a, b) is 

• _ ro . . [ r o +  a t  - r \  
) (20a) 

aAro. . at)H(.ro+ at- r). (20b) 

The results of numerical computation and the analytical solution are shown in Figs. 9 and 10. The 
numerical values of physical quantities used in the calculation are given as follows 

Pu = 0.00125 fm/cm s, A = 0.001po, 

a = 3.40180 x I04 cm/sec, ro = 100 cm, 

At = 0.9 &r, Ar-- I cm, 
Q 

t = 0.0016932 sec. 
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Fil. 9. Density distribution of linearized equations without source. 
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Fig. I0. Velocity diitribation of li~irLzed e.ql,,,tions without source. 

(b) The analytical solution of eqns (14a, h) are 

p = p o + A ~  • - H (ro+ a t - r ) + y [ ( r _ r , ) H ( r  - r , ) - ( r -  r2)H ( r -  r2)]H ( r°+ a t -  

aAro. + at)H(,ro+ at-r)+~a (r - r~)H(r-r~)-(r- r2)H(r- r2)]H(,r°+at-r) u = - ~ r  (ro 

= #[H(r-  rl)- H ( r -  r2)] 

d~=P°/[(3-~-~)H(r-rO-(3-~)H(r-r2)]. 

In the numerical computation, the additional quantities used are 

= 10 -~ a s = 11.57224 x 104 cm/sec 2 

r~ = 139 cm, r: = 144 cm. 

t = 0.0018306 sec., At = 0.99 Ar. 
a 

(21a) 

(21b) 

(22a) 

(22b) 

6. S O L A R  W I N D  

While disturbances are generated by flares on the solar surface, spherical shock waves are 
often propagating radially into existing solar wind. This physical condition is ideal for applying 
the MacCormack method. 

It is found that the results converge to the analytical solution as Csv < 1. 

A T = Csr ~r. (23) 
a 

The comparison between the numerical and the analytical solutions is given in Figs. 11 and 12. 
From Figs. 9-12, we can easily see that the numerical solutions agree very well with the 

analytical solution. That means the MacCormack method does work for the spherical coor- 
dinate. The numerical calculations were done using the time step of 
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Consider an unsteady disturbance propagating outward radially into an inviscid, adiabatic 
medium which is a perfect gas, the gravitational force is opposite to the radial direction, and 
mass source, momentum sink and energy source are allowed in the medium. The derivation of 
equations is omitted here since it is not of our primary interest. The basic equations without 
source terms are given in the paper by Hundhausen and Gentry[7]. The governing equations in 
dimensionless form can be written as follows: 

8--~ -= - a u ~ - ~ - n  a aR r ] ti 

au #u aT T an G 
57 = 

8T aT 2 ( au 2u~+2 
a-T= T r /  3 

(24a) 

(24b) 

(24c) 

where n = the dimensionless panicle density; u = the dimensionless radial velocity: T = the 
dimensionless temperature; r = the dimensionless radius: t - - the  dimensionless time: G = the 
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dimensionless gravitational constant; ~i, m, 4 = the dimensionless mass source, momentum sink 
and energy source, respectively. 

For the present purpose where the variations of n(r,  t), u(r,  t)  and T(r ,  t )  are of interest 
only, the absolute values of them are of no concern. Since many physical quantities are 
expected to vary with the exponential function of the dimensionless radius r, it is desirable to 
introduce the new space variables 

l r 
R = ~ In ~ (25a) 

and 

dR 1 e_~ .  (25b) 
a - d r  -- A'B 

In the numerical computation, the steady state solution has been used to prescribe the initial 
values of n, u and T. The values at the inner boundary are specified according to Rankine- 
Hugoniot relations for possible shock discontinuity. At the outer boundary, values are cal- 
culated by assuming that the slope of f~ is the average of slopes at j -  1 and j + 1, i.e. 

fin - f~-I = ~[(f~+,--fj') + Oej"-I- f~-2)]. 

Hence 

n N 
f,+, -- f7-2 + 3 f ;  - 3f~-, .  (26) 

This relation has been used for both the predicted step and the corrected step. 
It is of interest to test for the convergence criterion of the present computation. Now that 

the time step 
AR 

At  = Cs/ (U + O)max (27) 

we found that the results converge as C, I < 1. 
The steady state solution of solar wind obtained by Whang[9] is used as our initial 

condition. For convenience equation forms approximately matched to Whang's result are used. 
However, they are checked through our numerical computations, the result of 30 time step 
computation shows that they represent the steady state solution. The equations of our initial 
conditions are 

n = r  -3 

u = 0.107676(30) (1'-'-0'(') 

T = r - ° ' ~  

= 1.77808 x 10 -2 r "°'6~3 

m = t i = 0 .  

Constants used in the calculations are 

G = 4.82643 

A = 0.238198 

B = 0.788046 

c.=o.8 

AR = 0.5. 
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At the inner boundary the shock strength for the computation are 
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n = 1 + 3  sin t, 

u = 0.107676 + 0.430704 sin t, 

T =  1 + 24s in  t. 

The results of numerical computation without mass source and momentum sink are shown in 
Figs. 13-15. These curves are compared with the results of Hundhausen and Gentry, they are in 
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good agreement qualitatively. No quantitative comparison could be made, because the physical 
quantities used in their calculations are not completely given in their paper. 

7. CONCLUSION 

From this study we can conclude that the MacCormack method can be applied to 
generalized l-dimensional compressible fluid flow with rapid variation. The method is success- 
ful for equations with third order differentiation with respect to space coordinate as in the case 
of the KdV equation and the coupled equations of plasma flows. 

The procedure of numerical computation appears simpler than many existing methods, e.g. 
PIC method, and the accuracy of each step in computation is to the second order of At. 

The convergence criteria are that with At calculated from eqns (16), (23) and (27), C,I 
usually must be less than 1. This point agrees with the previous works by MacCormack et al. [4] 
and Novak [6]. 

The present study has been supported by the NASA Research Grant NGR 23-005-094. 
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