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Section I: Programs, program packages and systems 

A C O M P U T E R  P R O G R A M  F O R  M U L T I V A R I A T E  R A T I O  A N A L Y S I S  ( M I S C A T )  

William M. STANISH and Gary G. KOCH 
Department of Biostatistics, University of North Carolina, Chapel Hill NC 27514 

and 

J. Richard LANDIS 
Department of Biostatistics, University of Michigan, Ann Arbor, 31148109, USA 

Analysts must deal frequently with missing data in multivariate analysis. In such cases, estimating the covariance maxtrix V 
of the dependent variables usually involves initial estimation and iterative adjustment of imputed missing data values, and/or 
smoothing of an estimate I 7" which is not necessarily positive semi-definite. This paper presents an alternative procedure for com- 
puting estimates of relevant multivariate parameters in situations where missing data occur at random and with small probability. 
MISCAT is a computer program which computes multivariate ratio estimates of the means and a corresponding positive semi- 
definite estimate of the covariance matrix. It is an extension of GENCAT, which is a program for the generalized least squares 
analysis of categorical data. Thus, one advantage of dealing with missing data in this manner is that variation among the ratio 
estimates may be conveniently analyzed within MISCAT using asymptotic regression methodology, provided that sample sizes 
are sufficiently large. An example is given to illustrate such analysis for longitudinal data from a multicenter clinical trial. 
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1. Introduction 

The analysis of  multivariate data is frequently 
complicated by missing observations for some of  the 
data vectors. Since interest generally lies in inferences 
about functions of  the mean vector It and/or the 
covariance matrix V, numerous techniques have been 
suggested for estimating these parameters when there 
are missing data. Some of  them yield an estimate o f  
the covariance matrix which is not,  in general, posi- 
tive semi-definite. Moreover, the various methods of  
computat ion typically require estimation of  the miss- 
ing data values and this introduces an additional 
source of  difficulty. For  a brief review of  the perti- 
nent literature on this topic,  see Stanish, Gillings, and 
Koch [6]. 

This paper describes both a methodology for the 
analysis of  incomplete multivariate data, and the 
computer  program, MISCAT, which implements the 
calculations. The methodology is concerned with 
inference on ~t w h e n y  = O'l  . . . .  ,Yr)' is a vector of  
dependent random variables and some of  the ob- 
served vectors involve missing data. It is assumed that 

the missing data occur at random, by which we mean 
that the observance or non-observance of  a dependent  
variable is unrelated to the value of  the variable that 
would have been observed in the complete data case. 
The methodology involves multivariate ratio estima- 
tion of  It via indicator random variables which denote 
the presence or absence of  data. The primary advan- 
tages of  this procedure are 4 fold: 

(i) The estimate of  the covariance matrix of  ~ is 
always positive semi-definite. 

(ii) No estimation of  missing data values is required. 

(iii) There are no distributional assumptions required 
about the random vector y .  

(iv) There are no iterations required to obtain the 
final estimates. 

The proposed methodology is asymptotic,  and 
thus appropriate only when the sample size is large 
(at least 25) within each subpopulation (or domain) 
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of  interest. This provides for approximate normality 
of  the ratio estimators and consistency of  their esti- 
mated covariance matrix, which is based on a linear 
Taylor series. Upon obtaining the estimators, one 
may investigate variation among the elements of  !* by 
fitting linear regression models by weighted least 
squares and using generalized Wald [7] statistics for 
hypothesis testing, as described n.ore fully by Koch et 
al. [4]. 

In this regard, the computational framework for 
analyzing the data via asymptotic regression models 
is the same as that used for the generalized chi-square 
analysis of  categorical data by weighted least squares. 
Thus, the computer program, MISCAT, was written 
as an extension of the categorical data analysis pro- 
gram, GENCAT [5]. The extensions involve 2 major 
features: 

1. MISCAT provides for the direct calculation of  
means, whereas in GENCAT, the user is required 
to specify a number of  functions and a corre- 
sponding linear combination of  these in order to 
obtain a single mean score. Furthermore, MISCAT 
has the additional capability of handling continuous 
data. 

2. When some of the data are missing, the calculation 
of the means and the corresponding covariance 
matrix is modified according to the methodology 
presented in this paper so as to reflect the inherent 
structure of  the missing data. 

Otherwise, it should be noted that MlSCAT has all 
tire capabilities of  GENCAT, together with the extra 
option to deal with missing data and the improved 
features for computation of  means. 

2. Methodology 

Let y '  = (Y l, Y2 . . . . .  Yr) be a random vector with 
expectation p '=  (/a 1,/J2 ... .  ,/lr). Suppose that a sam- 
ple o f n  observation vectors is taken from a popula- 
tion, and some of the vectors involve missing data. 
The problem is to find an estimator ~ and its covari- 
ance matrix under these conditions. One method of 
estimation which is convenient for missing data situa- 
tions is based on a generalization of a method sug- 
gested by Cornfield [2]. With this method it is 
assumed that there is an additional random vector 
u' = (u I, u 2 . . . . .  ur) which controls the missing data 

process, and is such that uj is independent o f y j ,  for 
each/'. The component  u i takes the value 1 if thej- th  
dependent variable is observed, and the value 0 other- 
wise; thus, the observed random variables are fi = 
yju / ,  for/" = 1,2 ..... r, where 'missing' is assigned the 
value zero. The mean /a /o f  the j-th dependent variable 
is estimated by the mean of  the data present, i.e., the 
ratio estimator: 

n n 

= exp {log e 0~) - loge (uj)) (2.1) 

where l indexes subjects. By construction, this esti- 
mate is the same as the mean of  the data which are 
present and is thereby equivalent to the estimate 
which would be obtained if missing data were 
replaced by this mean. However, the ratio formula- 
tion (2.1) provides its inherent structure relative to 
the sample as a whole and hence is the basis for the 
estimation of  the corresponding covariance matrix. 

When the pertinent random variables are included 
in one vector g'  = (fl ,  f2 ... . .  f r ,  ul ,  u2 ... . .  Ur), the 
multivariate ratio estimator of  1' can be expressed as: 

R : exp (A loge(g--) } (2.2) 

where ~ is the sample mean vector of  the g's, log(a) 
transforms each element of  a to its natural logarithm, 
exp(a) transforms each element of  a to its antiloga- 
rithm, and: 

A = [ I r , - I t ]  (2.3) 

To estimate the covariance matrix of  R,  let V~- 
denote the multinomial model maximum likelihood 
estimate of  the covariance matrix o f ~  as discussed by 
Koch et al. ([4] appendix 2). That is: 

Vg-= { V~-kk, ) 
n 

= ( ~  (gkl -- gk)(gk'l -- gg')/n2 } (2.4) 
l = l  

Suppose F is a vector of  functions o f g .  Then a con- 
sistent estimator for the covariance matrix o f F  is: 

VF = H V g H '  (2.5) 

where H = [dF(x ) /dx lx  =~] is the matrix of  first 
derivatives of  the functions F evaluated at g. Succes- 
sive applications of  the operations in (2.5) to the 
compound function (2.2) yield the result that a con- 
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sistent estimator of the covariance matrix of R is: 

VR = O R A D ~  I V~D~ I A ' D  R (2.6) 

where D a is a diagonal matrix with elements of a on 
the main diagonal. Furthermore, it is clear from the 
construction process that this estimated covariance 
matrix is positive semi-definite. 

Suppose there is a set of s subpopulations under 
investigation, indexed by i = 1, ..., s. Then, for each 
subpopulation, a sample mean vector gi and its cor- 
responding estimated covariance matrix V i can be 
constructed in a manner analogous to that described 
for ~ and V¢ in the previous discussion. To analyze 
the subpopulations simultaneously, the vectors ¢i are 
concatenated to form ~,  and the matrices Vi become 
the diagonal elements of the block diagonal matrix 
V¢. Equations (2.2) and (2.6) are still applicable for 
computing R and its estimated covariance matrix, 
except that in this case: 

A = [It, - I t ]  @ I  s (2.7) 

where@denotes Kronecker product and Ik is the 
identity matrix of rank k. 

All of these estimates may be obtained using 
GENCAT provided that the response data are cate- 
gorical and the user specifies the appropriate indica- 
tor functions and transformations. However, the esti- 
mates are automatically computed by MISCAT when 
the user specifies the dependent variables of interest 
and the missing data option. Furthermore, MISCAT is 
capable of analyzing continuous response data as well 
as categorical data. 

Variation among the elements of R may be anal- 
yzed with MISCAT via asymptotic regression models 
[4] of the form: 

EA (R) = It : X p  (2.8) 

where E a denotes asymptotic expectation, II is a vec- 
tor of unknown parameters to be estimated, and X 
is a design matrix directed at the relationships among 
the components of It with respect to the independent 
variables of interest. Model goodness of fit and 
hypotheses concerning linear combinations of the 
parameters are tested with Q statistics which have 
appr~)ximate chi-square distributions provided that 
the sample sizes from the respective subpopulations 
are sufficiently large than R is approximately multi- 
variate normal. Thus, these aspects of MISCAT are 

the same as those which are incorporated in 
GENCAT. 

The use of multivariate ratio estimation in missing 
data methodology deserves some further comment. 
Ratio estimators have long been used in sampling 
methodology [1,3]. There, the properties of ratio 
estimators are satisfactory when the sample size is 
large since, in that case, their bias is negligible, and 
they are approximately normally distributed. Large 
samples also enhance the consistency of the estimate 
of the covariance matrix of R since that estimate is 
based on a linearized Taylor series. 

The application of the methodology in this paper 
is not generally recommended in situations where 
more than ten percent missing data occur for any of 
the variables under study because the fundamental 
missing data assumption is more likely to be violated 
with larger amounts of missing data. This issue can 
be recognized by recalling the fundamental assump- 
tion of the multivariate ratio analysis, namely, that 
the missing data random variable uj is independent of 
the study variable yi, for each ] = 1,2 ..... r. There is 
no direct way of testing this assumption since the test 
would involve comparison of the observed values with 
the unobserved values for each dependent variable. 
Therefore, some caution must always be exercised in 
interpreting the results of  the multivariate ratio anal- 
ysis. Stanish, Gillings, and Koch [6] give an indirect 
method for testing the fundamental assumption and 
suggest a possible alternative strategy for analyzing 
the data if there are indications that the assumption 
is not true. 

Finally, it should be emphasized that statistical 
manipulations are not a panacea for poor study 
management. Good management in clinical trials (and 
other experiments) should result in a minimal amount 
of missing data, in which case the methodology used 
in this paper is likely to be appropriate. When there 
is a substantial amount of missing data, say more than 
10%, then the application of elaborate statistical 
strategies is probably not defensible. In this case, only 
a limited analysis should be undertaken for whatever 
data are available, and the results should be inter- 
preted in a correspondingly limited context. 

3. Use of MISCAT 

Because MISCAT is an extension of GENCAT, and 
the use of the latter program has been thoroughly 
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described elsewhere [5], this section is directed at 
details regarding the extended features of MISCAT 
and their relationship to previous features of  
GENCAT. In GENCAT terminology, the input mode 
of interest is raw data. 

Suppose first there are no missing data. Means may 
be specified in the function definition stage in the fol- 
lowing manner: 

F(l)  = MEAN(l) 

F(2) = MEAN(2) 

F(3) = MEAN(3) (3.1) 

In this specification, the/'-th function is defined, for 
/ = l, 2, 3, as the mean of the ]4h dependent variable 
(on the input record),yj. A maximum of 80 variables 
can be read in to define subpopulations and func- 
tions. Also, the program is currently written to 
accommodate a maximum of 80 functions. As in 
GENCAT, the information on each card begins in 
column one, and no blank spaces are allowed within 
the specification. 

Strictly speaking, GENCAT has always computed 
means as the original functions of  raw data input. 
However, in that setting, each function is a mean of 
scores based on a weighted or unweighted indicator 
function. If the indicator functions are unweighted, 
the resulting means are proportions. Specification of 
one or more cells of a conceptual multidimensional 
contingency table yields the proportions of  subjects 
who are categorized to those cells. If  the indicator 
functions are weighted by certain constants, the 
resulting means are simply the weighted proportions. 
Furthermore, if the response data are numerical (or 
ordinal), and the weights are equal to the respective 
observed values (or assigned scores) of some variable 
Yi, then the estimated marginal mean (or mean score) 
corresponding to y / i s  obtained by summing these 
weighted proportions over the set of possible weights 
(observed values). Thus, the GENCAT user specifies 
contingency table cells and, optionally, weights as 
in the following example: 

F(1) = G(1, l) 

F(2) = G(I, .) ~- W(I.0) 

F(3) = G(2, .) = W(2.0) 

F(4) = a ( l ,  l)  + G(., 2) (3.2) 

The G(a 1, a2) specification refers to the cell of the 
contingency table for whichy i = aj , j  = 1,2. Thus, the 
first function is the proportion of subjects in the sub- 
population under study for whichy I = 1 andy2 = 1. 
If  a/is replaced by a period in the specification, vari- 
ableyi is ignored. Thus, functions 2 and 3 are 
weighted proportions of subjects for which y i is 
equal to 1 and 2, respectively. If these are the only 
values y 1 can assume, then the estimated mean is ob- 
tained as F(2) + F(3). Finally, the symbol '+' is used 
to specify more than one cell of the contingency 
table. Thus, function 4 is the proportion of sub- 
jects for which (Yl  = 1,y2 = 1) o ry  2 = 2. 

The MISCAT user can specify functions of the 
form (3.1) and (3.2). Moreover, MISCAT has greater 
flexibility than GENCAT, since the GENCAT specifi- 
cations allow only 1 weight per function, whereas 
each mean specification of (3.1) assigns whatever 
weight is equal to the value of the observation. 

If the MISCAT function definitions include con- 
tigency table cell specifications, the data for the 
dependent variables must be non-negative integers. 
However, if the only functions specified are means, as 
in (3.1), the data for the dependent variables may be 
any continuous data. In either case, the independent 
variables must still assume non-negative integer values 
in order to define the subpopulations under study. 
One important difference from GENCAT is that the 
end-of-data card supplied by the user must contain a 
negative integer in the first data field corresponding 
to an independent variable. In GENCAT, the negative 
integer was to be placed in the first data field, regard- 
less of whether it corresponded to an independent or 
a dependent variable. 

When there are missing data and the user specifies 
the missing data option, the multivariate ratio esti- 
mates, as described in section 2, are computed totally 
by MISCAT. The function definitions usually involve 
only mean specifications of the form (3.1), but they 
may also include contingency table cell specifications, 
as in (3.2). The methodology of section 2 is still well- 
defined in this case since these functions are also 
means. The functions which are averaged in the 
numerator of a ratio estimate are weighted indicator 
functions which assume the value of the weight if the 
observed data for a subject fall into one of the cells 
specified in a function definition. Otherwise, they 
assume the value zero. Note, however, in this multi- 
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variate case, that one or more variables might be unob- 
served, and yet the function value may still be non- 
zero. For example, function 3 in (3.2) may have 
the value o f y  2 missing, but would still be nonzero if 
the value 2 were olzserved fory  I. The definitions of 
the missing data indicator functions (which are aver- 
aged to form the denominator of a ratio estimate) are 
not as straightforward in this multivariate case as they 
were in the univariate setting of section 2. The 
guiding principle is that the missing data indicator 
function assumes the value 1 (not missing) if it can 
be determined conclusively that the observed data 
for a subject either: 

1. Fall into one of the cells specified for the function; 
or 
2. Do not fall into any of the cells specified for the 

function. 

Otherwise, it assumes the value zero (missing). Thus, 
for example, the value of function 1 in (3.2) is 
missing if the multivariate observation is (M, 1), 
(1, M), or (M, M) where M denotes a missing value. 
Otherwise, it could be determined whether or not the 
observation falls into the (1,1)  cell. The values of 
functions 2 and 3 in (3.2) are missing only if the 
value o f y  i is missing. The value of function 4 is miss- 
ing if the multivariate observation is (.,M) or (M, 1), 
where '. '  denotes any value, observed or missing. 

In order to specify the missing data option, the 
user simply adds one card between the function 
definition cards and the variable order card (see [5], 
p. 205). This card should have the words MISSING 
DATA in columns 1-12. Because an indicator func- 
tion is created internally for each function specified 
by the user, the maximum number of functions 
which can be specified when using this option is 40 
(or half as many as usual). Correspondingly, a maxi- 
mum of 40 variables can be read in to define subpop- 
ulations and functions. 

When the missing data option is specified, there is 
one additional input requirement. In the appropriate 
place on the raw data parameter card the user must 
specify an extended format by which the input data 
will be read. The extended format allows the data 
to be read twice, once in numeric mode, and once in 
character mode to detect missing values. As an illus- 
tration of how the extended format is writen, con- 
sider the following possible formats of input data: 

(i) (F5.1, 10X, 3E8.2) 

(ii) (8X, F5.4, 2(2X, E15.5)) (3.3) 

The extended format expressions would be: 

(i) (F5.1, 10X, 3E8.2, T1, A5, IOX, 3A8) 

(ii) (8X, F5.4, 2(2X, E15.5), T1,8X, A5, 2(2X, A15)) 

(3.4) 

Note that the extended formats are constructed in 
the following manner: 

1. The original format is extended first with specifi- 
cation T1 (tab to column 1), which resets the 
reader to column 1 of the input record. 

2. All previous specifications are repeated, with the 
letters E and F replaced by the letter A, and with 
the deletion of each decimal point and each 
integer following a decimal point. 

Since 'X'  is a skip specification, the combination 'T 1, 
8X' is equivalent to 'T9', and thus, the second format 
in (3.4) may be shortened slightly. 

It is important to note that if a data field is larger 
than 8 spaces (i.e., specified by Aw,  where w > 8), 
then only the rightmost 8 spaces are checked to 
determine whether the field is blank. Thus, it is 
assumed that every non-missing data observation has 
a non-blank character somewhere within the right- 
most 8 spaces of the data field. If this is not the case, 
then the extended format statement can be modified 
so as to read that part of the data field which always 
has non-blank characters for non-missing data. Thus, 
for example, 'A15' could be replaced by 'A8, 7X' if 
non-blank data appeared only in the first 8 spaces of  
the field. 

Since the extended format is nearly twice as long 
as a usual format, the program has been revised so as 
to accommodate a continuation card, if necessary, 
following the raw data parameter card. The extended 
format may be continued in column one of the con- 
tinuation card if it cannot fit entirely on the raw data 
parameter card. 

Finally, when there are no missing data, it is pos- 
sible to read several input records per subject by using 
the ' / '  specification in the format statement or by 
allowing the program to use the specified format 
repeatedly. However, when there are missing data, 
this option is not allowable, because the program 
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expects to receive all of a subject's numeric values, 

followed by all of his character values. Thus, if the 
data set has several records per subject, it is necessary 

in the missing data case to create a new input data set 

with only one record per subject. 

4. Example 

As an illustration of the methodology and the use 

of MISCAT, an analysis is presented of data (see 
table l)  arising from a multi-center clinical trial for 
testing the efficacy and safety of a new drug for skin 
conditions. Patients were randomly assigned to drug 
or placebo in each of 6 clinics, and were evaluated 

prior to treatment to determine the initial severity of 
the skin condition. Finally, at 3 follow-up visits, 
patients were evaluated on a 5-point ordinal response 
scale representing extent of improvement. Thus, the 
response data lend themselves to analysis via multi- 

variate mean scores. 
Primary analyses of the data [6] show a signifi- 

cant treatment difference after adjustment for 
possible investigator effects. To illustrate the use of 
MISCAT, it is convenient to study response varia- 

bility with respect to concomitant variables. For this 
purpose, the pooled sample of patients from all 6 
clinics is used to analyze the data. The 3 time points 

are analyzed simultaneously in a multivariate setting 
in order to investigate the pattern of response over 

time. Similarly, it is of interest to examine the rela- 
tionship between the initial stage of the disease and 
the subsequent evaluations of improvement. Because 

of the small number of patients whose initial disease 
stage was exacerbation, stages 4 and 5 were com- 

bined, reducing the number of initial disease stages 
under consideration to 2. These stages have been rela- 
beled as moderate and severe. Finally, the quantita- 

tive responses associated with the response categories 

are the equal-increment scores shown in table 1. 
The analysis involves 4 subpopulations, 2 treat- 

ments for each of 2 initial disease stages, and 3 means 
corresponding to the 3 follow-up visits. The 12 result- 
ing functions in R and their estimated covariance 
matrix were computed by the methodology given in 
section 2. Shown in table 2 are the initial ratio esti- 
mates of the mean scores and corresponding standard 
errors. Analysis of R is undertaken with asymptotic 
regression models of the form (2.8). 

A preliminary model of interest is the model 
which eliminates parameters corresponding to the 
effects of initial disease stage. This model is shown 
in table 3, together with parameter estimates and test 
results. The goodness of fit statistic indicates that the 
model is an adequate (ct = 0.25) representation of 
response variability. The design matrix X is con- 
structed so as to have 1 module for each treatment. 
Within each of the 2 modules, indexed by k = 1,2,  

there is 1 intercept (Pk) and 1 parameter for each 
increment: from times 1 to 2 (t~k), and from times 

Table 1 
Data from clinical trial 

INV TRT Stage R1 R2 R3 INV TRT Stage R1 R2 R3 INV TRT Stage R1 R,2 R3 

5 1 3 3 3 6 2 4 2 2 2 10 1 3 1 1 1 
5 1 3 3 2 3 6 2 3 3 3 10 1 3 1 1 1 
5 1 4 3 2 2 6 2 4 4 4 10 1 3 3 3 3 
5 1 3 2 2 1 6 2 4 4 3 3 10 1 3 1 1 1 
5 1 3 3 2 2 6 2 4 5 10 1 3 2 2 2 
5 1 4 2 1 3 6 2 3 1 1 10 1 3 2 2 1 
5 1 4 1 1 1 6 2 3 4 2 4 10 2 3 3 3 3 
5 1 4 1 1 1 6 2 4 5 10 2 3 4 4 4 
5 1 5 5 6 2 5 4 5 10 2 3 1 1 i 
5 1 3 1 1 1 6 2 4 4 4 3 10 2 3 2 2 
5 1 4 4 4 4 6 2 5 3 4 4 10 2 3 2 2 2 
5 1 4 3 1 1 6 2 4 4 3 3 10 2 3 4 4 
5 1 4 1 1 1 8 1 4 4 4 10 2 3 1 1 2 
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Table 1 (continued) 

INV TRT Stage R1 R2 R3 1NV T R T  Stage R1 R2 R3 INV TRT Stage R1 R2 R3 

5 1 4 3 3 3 8 1 4 3 2 1 10 2 3 2 3 3 
5 1 4 1 1 1 8 1 5 1 1 10 2 3 4 3 3 
5 1 3 1 1 8 t 4 1 1 1 10 2 3 3 3 3 
5 1 3 4 4 4 8 1 3 2 1 10 2 4 3 3 4 
5 1 3 3 8 1 4 2 1 1 10 2 3 3 3 4 
5 1 4 1 8 1 3 1 1 1 10 2 3 3 3 3 
5 2 3 4 3 3 8 1 4 2 2 2 10 2 3 5 
5 2 3 4 4 4 8 1 3 1 1 1 10 2 3 2 2 1 
5 2 4 4 5 4 8 1 4 3 3 4 10 2 3 4 4 4 
5 2 3 4 4 5 8 1 3 2 2 1 10 2 3 4 3 3 
5 2 3 4 4 4 8 1 3 2 1 1 11 1 4 2 1 1 
5 2 4 4 4 4 8 1 4 2 1 1 11 1 3 4 3 3 
5 2 4 4 8 1 4 2 2 2 11 1 5 3 
5 2 3 4 4 8 1 4 3 2 1 11 1 3 2 1 1 
5 2 3 2 2 8 1 4 2 1 1 11 1 4 3 2 
5 2 5 3 3 4 8 1 4 2 2 1 11 1 4 3 
5 2 3 4 4 4 8 2 3 1 1 2 11 1 4 2 2 2 
5 2 3 4 4 8 2 4 2 2 3 11 1 4 2 2 2 
5 2 4 4 4 8 2 3 2 2 3 11 1 4 2 2 1 
5 2 4 4 5 8 2 3 3 5 5 11 1 5 2 1 1 
5 2 4 4 4 8 2 3 2 2 2 11 1 3 1 1 
5 2 3 4 8 2 4 3 3 3 11 1 3 2 i 1 
5 2 4 1 1 8 2 3 3 3 3 11 1 3 3 2 2 
5 2 3 4 4 4 8 2 5 4 3 3 11 1 5 2 2 1 
6 1 3 3 3 3 8 2 4 4 4 5 11 1 5 1 1 1 
6 1 4 2 2 2 8 2 5 4 11 1 4 2 1 1 
6 1 4 3 2 2 8 2 3 3 5 11 2 4 2 2 1 
6 1 4 4 8 2 5 4 3 4 11 2 4 4 4 4 
6 1 4 2 2 2 8 2 3 2 3 3 11 2 4 4 4 4 
6 1 4 2 2 1 9 1 5 2 2 1 11 2 4 4 3 4 
6 1 4 3 3 3 9 2 4 3 3 3 11 2 3 4 4 
6 l 3 1 1 1 9 2 4 3 3 3 11 2 4 4 3 3 
6 1 4 3 1 1 9 2 5 4 3 3 11 2 4 2 2 2 
6 1 4 2 2 1 10 1 3 1 1 1 11 2 3 4 4 
6 1 3 2 1 10 1 3 1 1 1 11 2 5 4 3 3 
6 1 3 3 4 4 10 1 3 2 2 1 11 2 4 4 3 3 
6 1 5 2 2 2 10 1 3 2 2 1 11 2 4 3 3 3 
6 1 4 2 1 1 10 1 3 1 1 1 11 2 4 2 2 1 
6 1 4 3 4 4 10 1 3 3 2 1 11 2 3 4 3 3 
6 1 4 1 1 1 10 1 3 2 2 2 11 2 4 4 4 4 
6 1 4 1 1 1 10 1 3 1 1 1 11 2 3 4 4 3 
6 2 4 3 3 3 10 1 3 3 1 1 11 2 4 4 3 3 
6 2 4 4 4 4 10 1 3 2 2 2 11 2 3 4 3 3 
6 2 4 2 2 2 10 1 3 3 2 2 
6 2 4 4 4 10 1 3 3 3 2 

INV, Investigator identification number  (5, 6, 8, 9, 10, 11); TRT,  Trea tment  (1 = test drug, 2 = placebo); Stage, Initial stage of  
disease (3 = fair, 4 = poor,  5 = exacerbation);  R1, Response at Time 1; R2, Response at Time 2; R3, Response at Time 3; 1 = 
Rapidly Improving, 2 = Slowly Improving, 3 = Stable, 4 = Slowly Worsening, 5 = Rapidly Worsening, Blank = Missing Data. 
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Table 2 
Observed and predicted mean scores for overall-evaluation and the corresponding estimated standard errors 

Treatment Initial Time Preliminary ratio Multivariate ratio 
disease estimates analysis 
stage 

Modified ratio analysis 
procedure 

Mean  Estimated Predicted Estimated Predicted Estimated 
score  standard mean standard mean standard 

error score error score error 

Drug Moderate 1 2 .075 0.1431 2.151 0.0957 2.152 0.0971 
Drug Moderate 2 1 .730 0.1412 1.784 0.0943 1.814 0.1019 
Drug Moderate 3 1.611 0.1484 1.629 0.0989 1.690 1.1060 
Drug Severe 1 2.222 0.1329 2.151 0.0957 2.152 0.0971 
Drug Severe 2 1.791 0.1338 1.784 0.0943 1.814 0.1019 
Drug Severe 3 1.651 0.1467 1.629 0.0989 1.690 0.1060 
Placebo Moderate 1 3.146 0.1674 3.347 0.0984 3.391 0.0993 
Placebo Moderate 2 3.054 0.1619 3.192 0.0974 3.267 0.1000 
Placebo Moderate 3 3 .129 0.1922 3.192 0.0974 3.267 0.1000 
Placebo Severe 1 3.512 0.1331 3.347 0.0984 3.391 0.0993 
Placebo Severe 2 3.256 0.1438 3.192 0.0974 3.267 0.1000 
Placebo Severe 3 3 .188 0.1559 3.192 0.0974 3.267 0.1000 

2 to 3 (ilk). The test results suggest that 2 of these 

increments (ill, tx2) are equal while a third (f12) is zero 
(Q = 0.42, d.f. = 2), and hence the final model incor- 
porates these constraints into the design matrix. 

Shown in table 3 is the final model, together with 
parameter estimates and test results which indicate 

the following conclusions with respect to the 

response variable, extent of improvement. 

1. The goodness of fit test (Q = 4.83, d.f. = 8) sug- 

gests that the model is an adequate representation 
of the data. 

2. There are 2 distinct levels of improvement at the 
first time point, 1 for patients on drug and 1 for 
patients on placebo. These 2 levels are represented 
by the first and last columns of the design matrix. 

The result/a 1 :/: ~2 indicates a level of improve- 
ment significantly better for patients on drug. 

3. Drug is significantly better than placebo at each 
time as well as for all 3 time points considered 
jointly.  

4. During the time intervals subsequent to time one, 
there are three distinct levels of the extent of addi- 
tional improvement, as follows: 

Treatment Time Extent of 
group interval additional 

improvement 

Drug 1- 2 a 1 
Drug 2 - 3 /31 
Placebo 1-2 31 
Placebo 2- 3 0 

The result a I :~ fll indicates 2 conclusions: 
(i) Patients on drug improve more during time interval 1-2 

than during 2-3. This is not surprising, since at time 2, 
many patients may be nearly cured, in which case there 
would be little room for further improvement. 

(ii) Patients on drug improve more in time interval 1-2 than 
placebo patients during any time interval. 

It should be remembered that the improvement 
scores are subjective ratings by the investigators, and 
thus, the conclusions are conditional on 'the reliability 
and validity of the data. No analysis of these issues is 
undertaken here. 

Shown in table 2 under the heading, Multivariate 
ratio analysis, are the predicted mean scores based on 
the final model, together with their estimated stan- 
dard errors which are uniformly smaller than the 
corresponding preliminary estimates. In addition, 

it is clear that the mean scores predicted from the 
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Preliminary model Parameters Estimates Standard Hypotheses d.f. Q statistics 
errors 

X = 

[i °° 1 0  
1 1 

1 0 0  
1 1 0  

1 1 1  
1 0 0  
1 1 0  
1 1 1 
1 0 0  
1 1 0  
1 1 1  

/el 2.150 0.096 /31 =/32 = 0 2 4.55 

o(1 -0 .373  0.078 e I = (x2 = 0 2 29.05 c 

/31 -0 .130  0.061 (~l = (X2, /31 = /32 2 5.36 a 

/~2 3.366 0.104 e ]  =/31, e2 = 132 2 6.88 b 

e2 -0 .195 0.080 /31 = a2,/32 = 0 2 0.42 

f12 0.008 0.101 No lack of  fit 6 4.41 

Final model Parameters Estimates Standard Hypotheses d.f. Q statistics 

errors 

u l  2.151 0.096 1 4,77 b 

X = 

Vi ° 1 
1 

1 0  
1 1 
1 1 

0 
0 
1 
0 
0 
1 
0 1 
1 1 
1 1 
0 1 
1 1 
1 1 

Equal increments 

( e l  =/31)  

~1 -0 .367  0.077 No treatment effect 1 76.31 c 
time 1 (ul = u2) 

fll -0.155 0.048 

~2 3.347 0.098 

No treatment effect 1 104.16 c 
time 2 (ul + e l  = 

No treatment effect 1 136.87 c 
time 3 (~1 + a l  = 

No treatment effect 3 148.03 c 
(also total variation) 

( u l  = ~2,  cq = f l l  = 0 )  

No lack of  fit 8 4.83 

a Denotes significance at ~ = 0.10. 
b Denotes significance at a = 0.05. 
c Denotes significance at e = 0.01. 

COLUMN 1 2 3 4 5 6 7 8 
1234567890123456789012  34 .5678901234567890123456789012  3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0  

5 4 7 
2 4 3 

S (1 )=G(3 ,1 )  
S ( 2 ) = G ( 4 j 1 )  + G ( 5 , 1 )  
S ( 3 ) = G ( 3 , 2 )  
S ( 4 ) = G ( , . 4 , 2 ) + G ( % 2 )  
F (1 )=MEAN(1 )  
F(2 )= MEAN (2) 
F(3)=MEAN (3) 
MISSING DATA 
ORDER = (',I , D, D, D, I ) 

DATA FROM CLINICAL TRIAL 
( 5 X , 4  (3X, F2 .0  ) ~54X~F1.0~ T 1j 5 X , 4  (3X~ A2)  ~54X,A1)  

Fig. 1. 
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COLUMN 1 2 3 4 5 6 7 8 
1 2 3 4 5 6 7 8 9 0 1 2 3 4  5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4  5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4  5 6 7 8 9 0  

7 1 6 
1 1" 1 1 1 1 
0 1 1 0 1 1 
0 0 1 0 0 1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

8 1 2 
O 0 1 0 0 0 
0 0 0 0 0 1 

8 1 2 
0 1 0 0 0 0 
0 0 0 0 1 O 

8 1 2 
0 1 0 0 -1 0 
O 0 1 0 0 -1 

8 1 2 
0 1 -1 0 0 0 
0 0 0 0 I - I  

8 I 2 
0 0 I 0 - I  0 
0 0 0 0 0 I 

Fig. 2. 

( 1 2 F 3 . 0  ) 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
1 1 1 1 1 1 
0 1 1 0 1 1 
0 0 1 0 0 1 

( 6 F 3 . 0 )  

( 6 F 3 . 0 )  

( 6 F  3 .0 )  

( 6 F  3.O) 

(BF 3.0 ) 

P R E L I M I N A R Y  MODEL 

BETA1 = B E T A 2  = 0 

ALPHA1 = A L P H A 2  = 0 

ALPHA1 = ALPHA2~ BETA1 = B E T A 2  

ALPHA1 = BETA1 ,  A L P H A 2  = BETA2 

BETA1 = A L P H A 2 t  BETA2 = 0 

multivariate ratio analysis provide a good fit to the 
original ratio estimates. 

The parameter cards for MISCAT which produce 
the estimates and test results given in the tables are 
shown in fig. 1 -3 ,  and are described in the following 
paragraphs. Refer to the GENCAT paper [5] for 
detailed explanations of the parameter cards. The 
basic parameter card (see fig. 1) indicates that the 
type of input is raw data, which is read from unit 
7 (disk in this case). The next card specifies the 
extended format of the input data, the number of 
subpopulations (4) and functions (3) to be formed, 
and the number of dependent (3) and independent 
(2) variables to be input. 

These cards are followed by subpopulation defini- 
tion cards, which indicate how the 4 subpopulations 
are to be formed on the basis of the 2 independent 
variables, and function definition cards, which are the 
mean specifications corresponding to (3.1). The miss- 
ing data card is next, and the last parameter card 
describing the input data is a card which specifies the 
order of the dependent and independent variables on 
the input record. 

The first card necessary to fit the preliminary 
asymptotic regression model to the ratio estimates is 
a design matrix parameter card (see fig. 2) indicating 
the number (6) of columns in the X matrix of (2.8). 
This is followed by a set of 6 cards corresponding to 

COLUMN 1 2 3 4 5 6 7 8 
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2  3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0  

7 1 4 (12F 3 .0 )  
I 1 1 1 1 1 
0 1 1 0 1 1 
0 0 1 O 0 1 0 1 1 0 1 1 

1 1 1 1 1 1 
B 1 1 ( 4 F 3 . O )  

0 1 -1 0 
8 1 1 ( 4 F 3 . O )  

1 0 0 -1  
8 1 1 (4F 3.O) 

1 1 - 1  - 1  
8 1 1 ( 4 F 3 . 0 )  

1 1 0 -1 
8 1 3 (4F 3.O) 

1 0 0 -1  
0 1 0 0 
O 0 1 0 

F INAL MODEL 

EQUAL i N C R E M E N T S  

NO TREATMENT EFFECT, T I M E  1 

NO TREATMENT EFFECT t T I M E  2 

NO TREATMENT EFFECT, T I M E  3 

NO TREATMENT EFFECT 

Fig. 3. 
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the columns of  the matrix, and containing the matrix 
values. Finally, there are sets of  contrast matrix cards 
which test the hypotheses in table 3 corresponding to 
the preliminary model. The first card of  each set spec- 
ifies the number of  rows of  the matrix C, where the 
hypothesis is C[I = 0, and II is the vector of  model 
parameters. The last cards of  each set contain the 
values of  the C-matrix. 

The cards shown in fig. 3 specify the final model 
and the corresponding hypothesis tests. Their format 
and arrangement are similar to that of  the cards 
shown in fig. 2. These cards may follow those of  
fig. 2 in the same computer run, or they may replace 
the cards of  fig. 2 in a subsequent run. 

5. Hardware specifications 

MISCAT is written in double precision in IBM 
System 360/370 FORTRAN IV which incorporates 
a few extensions to American National Standard 
(ANS) FORTRAN. As a result, minor modifications 
of  the source code may be required to use the pro- 
gram on other machines. 

receive information concerning updating and further 
modifications of  the program. 

7. Disclaimer 

Although MISCAT has been tested extensively, no 
warranty, expressed or implied, is made to the accu- 
racy and functioning of  the program. No responsi- 
bility is assumed by the authors. However, if specific 
problems or questions do arise, contact Dr J. Richard 
Landis at the Department of  Biostatistics, School of  
Public Health, University of  Michigan, Ann Arbor, MI 
48109, USA. 
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