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CRISCAT is a computer program for the analysis of grouped survival data with competing risks via weighted least squares 
methods. Competing risks adjustments are obtained from general matrix operations using many of the strategies employed in a 
previously developed program (GENCAT) for multivariate categorical data. CRISCAT computes survival rates at several time 
points for multiple causes of failure, where each rate is adjusted for other causes in the sense that failure due to these other causes 
has been eliminated as a risk. The program can generate functions of the adjusted survival rates, to which asymptotic regression 
models may be fit. CRISCAT yields test statistics for hypotheses involving either these functions or estimated model parameters.. 
Thus, this computational algorithm links competing risks theory to linear models methods for contingency table analysis and 
provides a unified approach to estimation and hypothesis testing of functions involving competing risks adjusted rates. 

Competing r i sks  Categorical data Weighted least squares 
Multivariate analysis Survival analysis 

Linear models Computer program 

1. Introduction 

Methods for the analysis of  survival data have chal- 
lenged those involved in the statistical interpretation 
of  research data for many years. One class of  prob- 
lems which has received considerable attention per- 
tains to the analysis of  survival in the presence of  
competing risks. The competing risks situation arises 
when units under study are at risk of  failure due to 
any of  several causes but only one is observable since 
failure from a specific cause ends the unit's life. The 
researcher is frequently interested in characterizing 
the survival profile corresponding to a particular 
cause when it is the only risk of  failure, but from a 
practical point of  view he can only observe data in a 
competing risks environment. In this connection, the 
unadjusted or crude probabilities of  survival are 
adjusted for competing risks to yield net probabili- 
ties. 

Competing risks arise in the study of  length of  life 
of  human beings and other biological systems, ma- 
chines and their component parts, consumer prod- 
ucts, and elsewhere. When survival times are classified 
into categories, the methods described in [1,2] are 

appropriate under certain assumptions for analyzing 
competing risks survival data. Until recently, how- 
ever, there has not been a convenient formulation for 
carrying out the analysis of  competing risks adjusted 
data in terms of  a general approach to model fitting, 
estimation, and hypothesis testing. This paper 
describes a computer program called CRISCAT which 
performs the analysis of  competing risks categorical 
survival data via weighted least squares methods for 
contingency table analysis and provides a unified 
analysis in the spirit o f  traditional analysis of  vari- 
ance. 

Section 2 contains a brief summary of  the theoret- 
ical results which form the basis of  the methodology 
employed by CRISCAT. A discussion of  the theory 
is given in [4]. Section 3 describes the general struc- 
ture of  survival data in terms of  contingency tables. 

Section 4 develops the estimation procedure and 
computational algorithm. Basically, the competing 
risks adjustments are obtained from general matrix 
operations such as those used in the program 
GENCAT [5] for the analysis of  multivariate cate- 
gorical data. In addition to using the linear, logarith- 
mic and exponential transformations of  GENCAT, 
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CRISCAT also uses: 
1. Operators which transform part of the vector to 

logarithmic or exponential functions and leave the 
rest of the vector unchanged; 

2. A permutation operator which allows the user 
to rearrange elements in a vector so as to restrict 
the size of input matrices required in intermediate 
calculations. 
Section 5 gives a characterization of asymptotic 

regression methodology, which is discussed exten- 
sively in [10] and applied to a varied array of pro- 
blems in [5-7] .  Also given are various functions of 
the adjusted survival rates which facilitate the fitting 
of certain probabilistic models. 

Section 6 contains the operating instructions for 
CRISCAT which, together with [5], enable the user 
to employ a wide range of options resulting in a gen- 
eral methodology for the analysis of competing risks 
survival data. Section 7 contains example problems 
and the corresponding input to CRISCAT. 

2. Adjusted survival probabilities 

In the following definitions suppose that fail- 
ures may occur due to any one o f k  = 1,2 .... , c 
causes and let M denote a unit that is operative at 
time t = 0. 

(i) Crude probabilities: 

~k(t) = ~k = Pr ( M  will fail in the interval (0, t) ] 
due to the k-th cause when there~ 

| i s  risk of failure due to any one [ 
\ o f  c causes } 

(ii) Net probabilities: 

q ~ t )  = qk = Pr ( M  will fail in the interval (0, t) 
when there is risk of failure due~ 
to only the k-th cause ) 

pk(t) =Pk = (1 - qk) =Pr Mwill survive the 
{ interval (0,/) when } 

there is risk of fail- 
ure due to only the 
k-th cause 

(iii) Total probabilities: 

c 

of failure due to any one / 
\ of c causes ] 

~o(t) = ~0 = 1 - q = P r [ M  will survive the inter- ] 
~val (0, t) when there is 
|risk of failure due to any|  
I, of c causes: } 

If the risks act independently, then: 

t 

~o = S(t) = exp{-  fx(x)dx} (2.1) 
0 

where 

c 

a(x) = ~ x~(~) 
k=l  

is the total hazard function and ?~k(X) is the hazard 
due to.the k-th cause. Following Chiang [ 1,2], we 
assume that: 

~k(x) 
X(x) 

- ffk for all x in (0, t) (2.2) 

Under these conditions, the following relationship 
can be established: 

pk(t) = {~o(t) } {~k(t)/q(t) } = (~o(t) } ¢ k (2.3) 

Thus, this fundamental equation expresses the net 
survival probabilities in terms of the crude failure 
probabilities, the total failure probability and the 
total survival probability. 

3. Data structure 

Let i = 1,2 ..... s index a set of categories which 
correspond to distinct sub-populations as defined in 
terms of pertinent independent variables. Similarly, 
let ] = 1, 2 ..... t index a set of time intervals during 
which survival status is observed and k = 1,2 ..... c 
index a set of causes from which each study unit is 
subject to failure. Then let nok denote the number of 
units in the i-th sub-population that fail during the 
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j-th time interval due to the k-th cause, and let: 

j ¢ 

rli] 0 = (hi." -- ~ ~ r l i l k )  
l=1 k=l 

denote the respective number of units in the i-th sub- 
population who have survived through the end of the 
/-th exposure period. With this notation, a typical col- 
lection of grouped survival data with competing risks 
of failure can be summarized in the life table format 
shown in table I. Koch, Johnson, and Tolley [8] have 
shown that such data from follow-up studies can be 
investigated equivalently from the point of view of 
a strict contingency table format. Similarly, Johnson 
and Koch [4] demonstrated that competing risks data 
can be analyzed in terms of matrix operations on both 
the strict contingency table and the life table format. 
However, implementation of the contingency table 
format may not be feasible computationally when t 
and c are both moderately large (e.g., t ~> 10, c ~> 3) 
because of the size and cumbersome manipulations 
required for various matrices. Although this source 
of difficulty is inherent in the analysis of competing 
risks, its impact can be reduced considerably by per- 
forming calculations on the basis of the life table 
format. 

4. Estimation of net probabilities 

Based on the data structure in table 1, an estimate 
of the net probability that a unit in the i-th subpopu- 
lation survives the k-th cause of failure through the 
j-th time interval, given that failure does not occur 
before that time due to some other cause, is given by: 

t c 

? i l k  = 1 {nilk/XCk':l nilk' ) 

[nito + 2  ~nit'l~' ) (4.1) 
l'=l k'=l 

The functions {Fi/k} can be generated efficiently 
from a computer programming point of view by 
identifying an appropriate matrix formulation. In 
this context, the computations are applied to the 
concatenated vector [ of life table conditional rates: 

~iik = (ni/k nijk, ) for k = 1,2 .... , c, 0 i 
(4.2) 

in the row-wise order displayed in table 1 ; i.e.: 

^ t  ^f " t  ~t ~f 
~ '=  (~', ,, {,2, (4.3) . . . .  ~ 1 ,  . . . . .  ~ s l , ~ s 2  . . . . .  ~,~t) 

whe re: 

Table 1 
Life table format for eompeting risks survival data 

Sub- Time Cause of failure Alive 
population interval at end 

C 1 C 2 ... C c of in- 
terval 

1 1 n l l  1 n i l  2 ... n i l e  nl lO 
1 2 n121 n122 ... n12 c n120 
. . . . . . . . . . . . . . . . . . . . .  

1 t n i t  1 n i t  2 ... n i t  c n i t  0 
2 1 n211 n212 ... n21 c n210 
2 2 n221 n222 ... n22 c n22 O 

2 t n2 t  I n2 t  2 ... n2 t  c n2 t  0 

s 1 ns l  I ns l  2 ... ns l  c ns l  0 
s 2 ns21 ns22 ... ns2 c ns20 

s t nst  1 nst 2 ... nst  c ns t  0 

~.i] = (~i]l, ~i]2 . . . . .  ~Qc, ~i]O) (4.4) 

The (~ijk} represent estimates of probabilities for 
subjects from the i-th subpopulation during the j-th 
time interval, conditional on surviving the first (j - 1) 
intervals. For k = 1,2, ..., c, the statistics estimate the 
conditional probability of failure due to the k-th 
cause; the {~ijo) estimate the conditional probability 
of surviving all causes. Within the scope of the strict 
contingency table framework, the vectors (~ij} are 
asymptotically uncorrelated. Thus, a consistent esti- 
mator :for the covariance matrix of ~ is the block 
diagonal matrix~'~ for which the blocks on the main 
diagonal are: 

~"~i] = [D~i j  - ~ij~i'j]/ni, j - 1 , 0  (4.5) 

The overall estimator/~(~) for the net survival prob- 
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abilities is formulated as the compound vector: 

r,a, ] 
i f= ff(~) : e x p ( - ~  exp [/~,,/~21 loge[k[loge(~2~)lJ__ ~ 

(4.6) 
for which: 

][1 Ll'cO 3 Q I s t ' ~ 2  = [Oc' l ] ® I s t  

L, = [Ic,-1c] ®Is , ,  £~ = l~®is t  (4.7) 

f = ( I c ® T l , t ) ® I s ,  K , = - I s t  

where I c is a c-dimensional identity matrix, 0 c is a 
(c × 1) vector of 0's, 1 c is a (c × 1) vector of l's, 
Tl,t is a t-dimensional lower triangular matrix of l's, 
and ® denotes Kronecker product. A a ~ yields the 
estimates (~ijk) in (4.4) for k ~  0,-~2 ~ yields the 
estimates of {~i/o } in (4.4), L1 and [z  generate the 
{Pig(/)) in (2.3) on the log(-log) scale, which are 
then exponentiated, and -Jgenerates the log sur- 
vival probability estimates which, in turn, are 
exponentiated for F. The function vector/~ is 
arranged according to cause within time within 
subpopulation. For purposes of model fitting it is 
usually convenient to rearrange the vector elements 
according to time within cause within subpopula- 
tion. This rearrangement can be obtained by per- 
muting the elements o f F  to obtain the vector F 
shown in (4.8). 

The calculations implied by (4.6) are straight- 
forward and can proceed in the same sequential 
manner which has been described previously for 
GENCAT. However, from a program user point of 
view, their implementation can be somewhat cum- 
bersome. CRISCAT provides further advantages 
with respect to savings in user time and effort by 
efficient use of Kronecker products for specifying 
matrices with common component blocks which 
arise in competing risks analysis, and by use of a 
permutation (perm) operator, a split-log (slog) oper- 
ator, and a split-exponential (sexp) operator. The 
condensed formulation of the vector of estimated 
survival probabilities adjusted for competing risks is 
given by: 

F = e x p A ,  perm exp-A3 logeA: slog AI ~ (4.8) 

for which: 

r: 
= 1 c 0 ® l s t  (4.9) ~1 ~o'~ 1 

slog = slog (c + 2, 1) takes the natural log of the last 
element of each segment of the function vec- 
tor, which is divided into segments of equal 
length (c + 2). That is, slog forms the log of 
the total survival probability in each (sub- 
population, time period) combination: 

~2 = [~C~c~l 1 Oc+l"] -1  J®/s, (4.10) 

A3 : [ I c , - l c ,  l c l Q I s t  (4.11) 

perm = perm (Cl, c2 ..... cu) permutes elements of 
the function vector, which is divided into 
segments of equal length u. The constants 
cl, c2 ..... Cu, are specified by the program 
user so as to rearrange elements of the func- 
tion vector according to time within cause 
within subpopulation: 

ha = - T 1  ,t (~ lsc (4.12) 

where T1, t is a t-dimensional lower triangular matrix 
of l's. 

The matrix A 1 yields estimates of the crude failure 
probability for each cause and the total failure and 
total survival probabilities within each (subpopula- 
tion, time period) combination. The split-log transfor- 
mation and A2 transform the estimate of each total 
survival probability to its negative logarithm and 
leave the other functions unchanged. Application of 
the log transformation, matrix a3, and the exponen- 
tial transformation yields estimates of the negative 
logarithms of the conditional net survival probabili- 
ties. Following permutation of the vector elements, 
matrix A4 yields, for each (subpopulation × cause × 

t ime period) combination, an estimate of the log- 
arithm of the net survival probability adjusted for 
competing risks. Finally, the vector is exponentiated 
to obtain estimates on the probability scale. 

The principal reason for expressing F in such a 
matrix framework is that it facilitates the construc- 
tion of the consistent estimator VF for the covariance 
matrix o f f  which is based on the first order linear 
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Taylor series (i.e., the 6-method). In other words, by 
applying matrix differentiation methods similar to 
those used in [3,6], it follows that the matrix H of 
first partial derivatives of the functions F evaluated at 
~can be written as: 

H =  [ dx Ix=~) =DFA-~eDY321~Dfl~A~D;'~A~(4.13) 

where the vector y~ contains elements of the vector 
AI ~ in the positions corresponding to functions which 
are log-transformed, and l's elsewhere: 

Y2 =A2[slog(.4,~)], Y3 = expA3 logy2 (4.14) 

Dy is a diagonal matrix with elements o fy  on the 
main diagonal, and P is the matrix for which 
perm 0'3) = 0'3 (P is an identity matrix with simi- 
larly permuted rows and columns). It follows that: 

V F = HV~H'  (4.15) 

is a consistent estimator of the covariance matrix of 
the vector of adjusted survival rates. 

where t' = (tl, t2 ..... tt) represents the vector of 
right-hand endpoints of the t time intervals. As a 
result, the parameter vector represents the hazard 
rates for the various causes within each of the sub- 
populations. Similarly, the function vector R is of 
interest for fitting Weibull probability models with 
common shape parameter via: 

X = { [1 t @ Ic], [loge(t) @ lc] } @I s (5.5) 

Somewhat more general formulations of the design 
matrix can be used to fit piecewise exponential, 
piecewise Weibull, and certain other special types of 
probability models. For each design matrix specified, 
CRISCAT prints a goodness of fit statistic for the 
model, estimated model parameters, predicted values, 
and residuals. In addition, the user may test any num- 
ber of hypotheses of the form CII = 0 by specifying 
the C-matrices of interest. Input format for the X- 
and C-matrices is flexible, as with GENCAT. 

6. Use of CRISCAT 

5. Modeling and testing 

The function vector F is a consistent estimator of 
F(~). Hence, the variation among the elements of 
F(~) can be investigated by fitting linear regression 
models by the method of weighted least squares. This 
phase of the analysis can be characterized by writing: 

E A {F} = E A {g(~)} = f (~)  = 21t (5.1) 

where X is a pre-specified (u × v) design (or indepen- 
dent variable) matrix of known coefficients with full 
rank v ~< u, p is an unknown (v × 1) vector of param- 
eters, and 'E,4' means 'asymptotic expectation'. , 
Alternatively, the transformed functions: 

G = Ioge F (5.2) 

or 

R : Ioge {-loge F)  (5.3) 

can be investigated. In particular, the function vector 
G is of interest for fitting exponential probability 
models via the design matrix: 

X = - t ~ l s c  (5.4) 

Because CRISCAT is an extension of GENCAT, 
and the use of the latter program has been thoroughly 
described elsewhere [5], this section is directed at 
details regarding the extended features of CRISCAT. 
The extensions which facilitate the generalized anal- 
ysis of competing risks data are contained in the 
FUNCTION FORMULATION CARDS. CRISCAT 
allows three additional transformations which 
GENCAT does not use: 

(i) Permutation of elements in the function vector 
(ii) Split-logarithmic transformations 

(iii) Split-exponential transformations 

The split-log and split-exponential transformations 
are designed for the following framework. Suppose 
that the function vector may be divided into seg- 
ments of equal length u, and within each segment 
one wishes to transform u~ functions to their natu- 
ral logs (or antilogs), and leave the remaining u - ul 
functions unchanged. Furthermore, suppose that the 
u~ functions to be changed in each segment are the 
last u i functions of the segment. The split-log 
[slog = slog(u, ul)] and split-exponential [sexp = 
sexp(u, ul)] transformations perform this function. 
The variable values o fu  and ul are specified by the 
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user. Note that the length of a segment may equal 
the length of the function vector, so that it is permis- 
sible to apply the transformation to the full (unseg- 
mented) function vector. 

The purpose of the permutation transformation is 
to provide for rearrangement of the elements of the 
function vector. This is useful because it allows: 
(1) The efficient use of Kronecker products in 

matrix manipulations; 
(2) Application of the split-log and split-exponential 

transformations to any elements of the function 
vector. 

Again, suppose that the function vector may be 
divided into segments of equal length u, and one 
wishes to permute the elements of each segment in 
the same way. The permutation transformation 
(perm = perm(c~, c2 . . . . .  cu)) provides this capability. 
The constants Cl, c2 . . . . .  cu specify the desired per- 
muted order of the elements and are supplied by the 
user. For example, if a segment of length u = 5 were 
represented by (xl, x2, xa, x4, xs), application of the 
transformation perm (1, 3, 2, 4, 5) would yield the 
segment (xl, x3, x2, x4, Xs). As before, the assump- 
tion of a segmented function vector involves no loss 
in generality, since the length of a segment may equal 
the length of the entire vector. 

The permutation transformation is equivalent to 
a linear transformation in which the linear operator 
is an identity matrix with rows permuted in the same 
manner as columns. For example, the permutation 
given in the preceding paragraph is equivalent to a 
linear transformation in which the basic block of the 
block diagonal linear operator is: 

0 1 0  
A *= 1 0 0  

0 0 1  
0 0 0  

Most of the additional input required to use these 
transformations is specified on the transformation 
card ([5] p. 206). However, for the permutation 
transformation, the user supplies an additional card 
following the transformation card which specifies 
the permutation order (c l ,  c2 . . . . .  cu). The descrip- 
tions of these cards are as follows: 

TRANSFORMATION CARD 

Columns Information Contained 

5 

10 

11-15 

16-20 

25 
(optional) 

30 
(optional) 

Type of transformation 
0 = Permutation 
1 = Linear 
2 = Logarithmic, or split- 

logarithmic 
3 = Exponential, or split- 

exponential 
4 = Addition of a vector of con- 

stants 

For linear operator matrix: 
1 = Entire matrix will be read in by 

r o w s  

2 = Basic block of a block diagonal 
matrix (with identical blocks) 
will be read in by rows 

3 = Main diagonal of a diagonal 
matrix will be read in as a 
vector 

For permutation, split-logarithmic, and 
split-exponential transformations: 

Number of functions u in each segment 

For linear operator matrix: 
Number of rows of the linear 
operator matrix (including all blocks 
if column 10 = 2) 

For split-log or split-exponential: 
Number of functions ul in each 
segment which will be transformed 
to their logarithms (or antilogs) 

For block diagonal linear operator 
matrix: 

Number of rows in the basic block 
of the block diagonal matrix 

Print options: 
0 (or blank) = Print resulting 
covariance matrix 
1 = Suppress printing of resulting 
covariance matrix 

Save options: 
0 (or blank) = Do not save resulting 

vector and its covariance 
matrix 
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Columns Information Contained 

33-80 
(optional) 

1 = Save resulting vector and its 
covariance matrix for sub- 
sequent analysis in the same run 

2 = Write resulting vector and its 
covariance matrix to unit 2 
(typically punched cards) 

For: 
(1) 

(2) 

(3) 

(4) 

Each row of the linear operator 
matrix, or 
The vector of diagonal elements 
of the linear operator, or 
The vector of constants to be 
added, or 
The vector of constants defining 
permutation order 

Format by which vector(s) will be read 
[default = (16F5.1)]. 

PERMUTATION CARD 

This card is input only if the transformation card 
specifies a permutation (column 5 = 0). This card con- 
tains the vectors of constants Cl, c2, ..., Cu, that indi- 
cate the order in which the elements of a segment are 
to be permuted (see related text for example). The 
vector is entered according to the format specified 
either by default or in columns 33-80 of the transfor- 
matiou card. 

7. Examples and sample input cards 

(1) Vagotomy and drainage; 
(2) Vagotomy and antrectomy; 
(3) Vagotomy and hemigastrectomy; 
(4) Gastric resection. 
Antrectomy involved removal of 20-30% of the 
distal stomach, hemigastrectomy involved removal of 
~50% of the stomach, and gastrectomy without 
vagotomy involved resection of 66-75% of the 
stomach. Patients were observed at 6, 24, and 60 
months subsequent to operation. Results in terms of 
failure due to (recurrence or death) versus (reopera- 
tion or lost to follow-up) are given in table 2. 

In this example, death was confirmed in most 
cases by death certificate; however, recurrence was 
diagnosed only during hospital visit. Hence, exact 
time of failure is unknown for patients lost to follow- 
up or with recurrences. There is interest only in the 
survival curve with respect to recurrence or death 
after making a competing risk adjustment for reopera- 
tion or lost to follow-up. Analyses are undertaken in 
terms of the corresponding subset of elements of the 
estimated log net survival probability vector G = 
logeF. 

Since G was not known a priori to be characterized 
by any specific type of model, preliminary analysis 
focused on tests for hypotheses pertaining to com- 
parisons of the respective operations. For this pur- 
pose, the identity model X = I~2 was used so that the 
parameters: 

333, ~41,342,343] 

In this section two examples of the use of CRISCAT 
are presented with primary attention directed at the 
preparation of required control cards. Certain parts of 
the description of these examples and the results of 
analysis have been reproduced from [4], where fur- 
ther details concerning the choice of appropriate 
functions and relevant hypotheses to be tested can 
be found. 

7.1 An  example using ulcer data 

This example is based oll a 5 year follow-up study 
of patients receiving 1 of 4 operations for duodenal 
ulcer [9]. The operations selected on a random basis 
for treatment of duodenal ulcer were: 

correspond to the vector of natural logarithms of the 
cumulative net survival probabilities for the i-th oper- 
ation at the end of the ]-th time interval with risk of 
failure due only to death or recurrence. The corre- 
sponding observed survival rates F and their estimated 
standard errors are obtained via F = exp(G) and are 
given in table 3 together with statistical tests for 
hypotheses concerning operation comparisons. These 
tests suggest that differences among the results of the 
four operations become progressively larger over time, 
with statistical significance attained only after the 5 
year follow-up. If a stochastic model can be found for 
describing these trends, then the variation of the ele- 
ments comprising the vector G can be described in 
terms of a reduced model with fewer parameters. 
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Table 2 
Observed life table for ulcer data 

¢ CRISCA T) 215 

Subpopulation Interval of Cause of failure 
(operation) failure 

(months) Death or Reoperation 
recurrence or lost 

Patient status satisfactory 
at end of interval 

Vagotomy and drainage 6 10 10 317 
24 13 16 288 
60 26 36 226 

Vagotomy and antrectomy 6 9 9 313 
(25% Resection) 24 16 7 290 

60 18 36 236 

Vagotomy and 6 9 5 329 
hemigastrectomy 24 5 17 307 
(50% Resection) 60 l0 24 273 

(7Y£~ Resection) 6 9 8 329 
24 15 11 303 
60 24 37 242 

For this purpose, one potentially appropriate 
model is the suppressed exponential as described in 
[8]. The results of  fitting this intermediate model are 
given in table 3. The residual lack of  fit test indicates 
that the reduced model is appropriate for the ulcer 
data. However, the results given for tests of  signifi- 
cance involving the intercept parameters (kio) sug- 
gest that further model simplification through 
the specification of  a common intercept is warranted. 
While the significance tests also indicate differences 
among the hazard parameters (ki l)  for the 4 opera- 
tions, inspection of  the parameter estimates suggests a 
common hazard parameter is appropriate for the first, 
second, and fourth operation. The results of  fitting 
this final model are given at the bot tom of table 3. 
The residual lack of  fit is non-significant (a = 0.25). 
Moreover, the test of  the hypothesis Ho: kl~ = ~3x 
is significant (a = 0.01) and, hence, the final model 
and its estimated parameters represent a concise 
characterization of  the time until failure process for 
the 4 operations. 

The quantity e x p ( - k , o )  = 0.984 represents the 
estimator for the probability of  being alive without 
recurrence shortly after treatment regardless of  type 
of operation; exp(-~,l l ) = 0.998 represents the esti- 
mator for the rate at which the probability of  sur- 
vival or non-recurrence decreases for each additional 

month of  risk subsequent to receiving the first, 
second, and fourth operations; and exp(-k31} = 0.999 
represents the estimator for the rate at which the 
probability of  survival or non-recurrence decreases for 
each additional month of  risk subsequent to receiving 
the third operation (vagotomy and hemigastrectomy). 

The input cards necessary for applying CRISCAT 
to produce these estimates and test results are shown 
in fig. 1 -5  and described briefly in the following para- 
graphs. For detailed descriptions of  card preparation, 
~ee [5]. Data input (fig. 1): 

This phase of  the program is the same as GENCAT. 
There are r = 3 response profiles within each of  the 
s = 12 subpopulations, so that r*s = 36 ~< 80 which 
allows the data to be entered as case 1 frequency data. 
The 12 data cards containing the observed frequencies 
are entered immediately after the Parameter Card for 
Frequency Data. Transformations (fig. 2): 

The sequence of  transformations needed to generate 
the observed log survival rates and observed survival 
rates is shown in fig. 2. The sequence for computing 
F is that given in eq. (4.8), except that the permuta- 
tion transformation is not included. The reason for 
this is that adjusted survival probabilities were com- 
puted for one cause only, and thus, there is no differ- 
ence between the nesting sequence (cause within time 
within operation) and the sequence (time within cause 
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Table 3 
Summary of results from competing risks analysis of ulcer data 

Subpopulation Interval 
(operation) of failure 

(months) 

Observed estimates Final model predicted estimates 

Survival Estimated (loge) Estimated (loge) Estimated Survival Estimated 
rate standard Survival standard Survival standard rate standard 

error rate error rate error error 

Vagotomy 6 0.9699 0.0094 -0.0306 0.0097 -0.0302 0.0046 0.9702 
and 24 0.9290 0.0143 -0.0736 0.0154 -0.0737 0.0065 0.9290 
drainage 60 0.8392 0.0211 -0.1753 0.0252 -0.1606 0.0136 0.8516 

Vagotomy 6 0.9724 0.0091 -0.0280 0.0093 -0.0302 0.0046 0.9702 
and 24 0.9222 0.0150 -0.0811 0.0162 -0.0737 0.0065 0.9290 
antrectomy 60 0.8609 0.0197 -0.1497 0.0229 -0.1606 0.0136 0.8516 

(25% resection) 

Vagotomy 6 0.9736 0.0087 -0.0268 0.0089 -0.0214 0.0048 0.9788 
and hemi- 24 0.9584 0.0109 -0.0425 0.0114 -0.0385 0.0071 0.9622 
gastrectomy 60 0.9259 0.0146 -0.0770 0.0158 -0.0727 0.0146 0.9298 

(50% resection) 

(75% resection) 6 0.9737 0.0087 -0.0267 0.0089 -0.0302 0.0046 0.9702 
24 0.9285 0.0141 -0.0742 0.0151 -0.0737 0.0065 0.9290 
60 0.8499 0.0200 -0.1626 0.0236 -0.1606 0.0136 0.8516 

0.0045 
0.0060 
0.0116 

0.0045 
0.0060 
0.0116 

0.0047 
0.0068 
0.0136 

0.0045 
0.0060 
0.0116 

Preliminary model Hypothesis d. f  Q 

X = 112 # 1 1  = # 2 1  = # 3 1  = # 4 1 ,  # 1 2  = # 2 2  = # 3 2  = # 4 2 ,  # 1 3  = # 2 3  = # 3 3  = #43 
#I 1 = #21 = #31 = #41( n° difference due to operations, time interval 1) 
#12 = #22 = #32 = #42 (n° difference due to operations, time interval 2) 
#13 = #23 = #33 = #43( no difference due to operations, time interval 3) 

22.97 
0.11 
5.50 

16.95 

Intermediate model Param- Estimated Estimated Hypothesis 
eters parameters standard 

error 

d.f. a 

X = 

-1 - 6  
-1 -24  
- 1  - 6 0  

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

-1  - 6  0 0 
-1  - 2 4  0 0 
-1  -60  0 0 

0 0 -1  - 6  
0 0 -1  -24  
0 0 -1  -60  
0 ' 0  0 0 
0 0 0 0 
0 0 0 0 

0 
0 
0 
0 
0 
0 0 
0 0 
0 0 
0 0 

-1  - 6  
-1  -24  
-1  -60  

0 hlO 
0 Xll 
0 h20 
0 h2l 
0 

h30 
h31 
h40 
h41 

0.0147 0.0100 hlO = h20 = k30 = ~'40 
0.0026 0.0004 (intercepts equal) 
0.0148 0.0096 
0.0022 0.0004 hll =h2l =h31 =h41 

(hazard rates equal) 

0.0212 0.0090 
0.0009 0.0002 ~I0 = h20 = h30 = h40 
0.0115 0.0092 All = h21 = h31 = h41 
0.0025 0.0004 

Residual lack of fit 

0.59 

21.10 

21.21 

1.78 
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Final model Parameters Estimated Estimated Hypothesis 
parameter standard 

e l~ ro r  

d.f. Q 

X = 

-1  - 6  0 
-1  -24  0 
-1  -60  0 
--1 0 - 6  
-1  0 - 2 4  
-1  0 - 6 0  
-1  - 6  0 
-1  -24  0 
- I  -60  0 
-1  - 6  0 
-1  -24  0 
-1  -60  0 

h,o 0.01574 0.00472 

h l l  0.00241 0.00023 

h31 0.00095 0.00024 

hi I = h31 1 19.92 

Residual lack of fit 9 3.07 

17 3 
I0 10 
13 16 
~6 36 

9 9 

18 ~6 
9 5 
5 17 

10 24 
9 8 

15 11 
2~ 37 

Fig. 1. Data input. 

COLUP4N 1 

COLUMN 1 2 ~ ~ 5 6 7 8 
~ 2 3 q 5 6 7 ~ 2 3 ~ 5 ~ 8 ? ~ ] 2 3 4 5 6 7 8 q l ~ 3 ~ 5 6 7 ~ 9 ~ 2 3 ~ 6 7 8 9 ~ 2 3 ~ 5 ~ 7 8 ~ 2 ~ 5 6 7 - 8 ~ 1 2 3 q 5 6 7 8 9 ~  

5 1 1 RESULTS OF SURGERY FOR DUODENAL ULCER 
( 3 F S , 0 I  

317 
288  
226 
313 
290 

329 
307 
~73 
329 
303 
2~2 

9 3 q. 5 6 7 8 
! 2 3 q ' 5 6 7 8 q O  123q =~(--,7P,90123q 5 6 7 8 q 0 1  ?3q 567.P,. 9__0 ! 23q-56..78..90:~ 2 3 q S 6 7 8 9 0 1 2 3 q . 5 6 7 8 9 0 1 2 3 q . 5 6 7 8 9 0  

1 2 36 3 I 3 F 2 , , 0 )  
1 
1 1 

1 
2 3 1 
l 2 3A ~ ( 3 F 2 . 0 )  

1 
-1  
2 
1 

1 - 1  1 
3 
1 

- 1  
- 1 - 1  
- 1 - 1 - 1  

3 
? 

2 12 1 ( 3 F 9 . 0 )  

2 12 3 1 3 F 2 , O )  

Fig. 2. Transformations. 
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COLUMN 1 2 ~ 4 5 6 7 8 
~ 2 3 4 5 ~ 7 8 ~ 1 2 3 4 5 ~ 7 ~ 9 ~ 2 3 4 5 ~ 8 q n ] 2 3 4 5 6 ~ 9 ~ 2 3 4 5 6 7 8 9 ~ 1 2 3 4 5 ~ 8 9 ~ 1 ~ 3 4 5 6 7 8 9 ~ 1 2 3 4 5 ~ 7 8 9 ~  

7 4 12 
8 1 3 ( 1 2 F 2 , 0 )  

-1  
-1  

-1  
8 1 3 

1 -1  
1 -1  
1 

1 3 
1 - 1  
1 - 1  
1 

8 1 9 
-1  

-1 

1 -1 
1 -1 
1 

1 -1 
1 -1 
1 

Fig. 3. Preliminary model. 

-1 

-1 

-1 

-1 

-1 

(12F2,0) 

(12F2,0) 

( 1 2 F 2 , 0 )  

PRELIMINARY MODEL 
NO TRTMNI DIF, TIME INTERVAL 1 

NO TRTMNI DIF, TIME INTERVAL 2 

NO TRTMNI DIF, TIME INTERVAL 3 

NO TRTMNI CIF, JOINT 

COLUMN 1 2 ~ 4 5 6 7 8 
~23456789~1234567~9~12345678Qf~3W567P9~123~567~9~12~456789~123456789~1~2345~789~  

7 2 8 2 (3F3,0) INTERMEDIATE MODEL 
1 I 1 
6 24 60 

R 1 3 | 8 F 2 , 0 )  SLOPES EQUAL 
1 - 1  
1 -1 
I - I  
8 I 3 
- I  

-1 
1 
1 
1 " !  

1 6 
1 - I  
1 - 1  
1 - 1  

1 - 1  
1 - 1  
1 - 1  

Fig. 4. Intermediate model. 

(8F2,0) INTERCEPIS EQUAL 

( 8 F 2 ° 0 )  SLOPES AND INTERCEPTS EQUAL 

COLUMN 1 2 I 4 5 6 7 8 
1 2 ~ 4 5 ~ 7 8 q ~ 2 3 4 ~ 6 7 8 9 q 1 2 3 4 5 ~ 7 8 ~ q ] ~ 4 5 6 ~ 8 ~ 2 3 4 5 ~ 7 8 9 ~ 2 3 4 5 ~ F 9 ~ 3 4 5 & ~ 8 9 ~ 2 ~ 4 5 6 7 8 9 ~  

7 1 3 
1 ~ 1 1 1 1 
6 24 60 6 ?~ 60 

1 o l  

Fig. 5. Final model. 

I I i 
I12F3,0) FINAL MOOEL 

I I 1 
74 60 

( 3 F 2 , 0 )  
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within operation). The linear operators used in this 
example to compute adjusted survival probabilities for 
a single cause are simply the appropriate submatrices 
of  those defined in eq. (4.9) through eq. (4.t2).  The 
split-log transformation card specifies slog(3,1), which 
means that the function vector is divided into seg- 
ments of  3 elements, and that the last function of  
each segment (the total survival probability) is to be 
transformed to its natural log. The last transformation 
in the entire sequence is a log transformation which 
yields G = loge(F). Preliminary model (fig. 3): 

The design matrix parameter card indicates that 
the program is to generate an identity matrix of  order 
12 as the design matrix. The contrast matrix cards are 
for the 4 hypothesis tests shown in table 3. 

The intermediate model is shown in fig. 4; the final 
one, in fig. 5. The contrast matrix cards are for testing 
the corresponding hypotheses shown in table 3. 

7.2 Weibull model synthetic data 

Table 4 
Observed life table for synthetic data generated from Weibull 
model with three independent causes of failure 

Interval of  Cause o f  failure 
failure 
(months)  C 1 C 2 C 3 

Alive at end 
of interval 

1 14 13 7 366 
2 12 9 5 340 
3 8 6 1 325 
4 10 8 4 303 
5 5 8 4 286 
6 5 10 2 269 
9 16 16 9 228 

12 16 10 6 196 
18 17 20 8 151 
24 9 11 10 121 
36 18 18 7 78 
48 11 8 7 52 
60 7 7 2 36 
96 6 16 1 13 

The data in table 4 are from a hypothetical experi- 
ment in which survival times have been synthetically 
generated as the minimum values for successive sets of  
independent random variables from Weibull distribu- 
tions with the same shape parameter. These distribu- 
tions were constructed so that the median survival 
times q~(k °'s°) for the 3 causes and the first quartile 
~o.25) for cause 1 were approximately as follows: 

4~ °'2s) = 12 months 

$~o.so) = 34.5 months 
(7.1) 

4~ (°'s°) = 36 months 

q~0.s0) = 96 months 

The specifications in (7.1) are equivalent to the fol- 
lowing scale 0tk) and shape (6) parameters for Weibull 
models: 

loge )tl = -3 .35 ,  loge )t2 = -3 .39 ,  loge )t3 = -4 .21 ,  

6 = 0.843 (7.2) 

Since the data are arranged according to the life 
table format, the compound functions (4.8) and (5.3) 
can be used to obtain R, the vector of  competing risks 
adjusted probabilities on the log(-log) scale. The 
resulting estimators are shown in table 5 together with 
their estimated standard errors. 

The equal shape parameter model has the following 
form: 

EA('R ) = Xp = [X1 (~ 13, (log X2) (~) 13 ] Floge ~q'] 
Iloge)t2 :j 

(7.3) 
where XI = 114, and X2 = [1,2,3,4,5,6,9,12,18,24, 

36,48,60,96] ' 

The weighted least squares estimators b for p in (7.3) 
and their estimated standard errors are given in table 6, 
together with the estimators for the proportional 
hazard rates ffk which are obtained b y  transforma- 
tion as: 

~k  = ~kk/(~kl + )t2 + )t3). (7.4) 

The input cards necessary to procedure the previ- 
ous results are shown in fig. 6 - 9 .  Figure 6 contains 
the data for the example. Figure 7 contains the cards 
which specify the transformations of  eq. (4.8) and 
eq. (5.3). In this case, matrix A 4  is the negative of  
that given in (4.12), and the last transformation is 
log instead of  exp in order to obtain probability 
estimates on the log(-log) scale. Figure 8 contains 
the cards which specify the design matrix in (7.3). 
The cards of  fig. 9 transform the estimates of  II in 
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Table 5 
Observed and predicted estimates of log-log survival rates and their standard errors from competing risks of synthetic Weibull 
data 

Interval of failure Observed estimates Model predicted estimates 
(months) 

Cause 1 Cause 2 Cause 3 Cause 1' Cause 2 Cause 3 

I -3.31 -3.38 -4.00 -3. I I -3.06 -3.85 
(0.27) (0.28) (0.38) (0.14) (0.14) (0.16) 

2 -2.65 -2.82 -3.43 -2.59 -2.55 -3.33 
(0.20) (0.2 I) (0.29) (0.12 ) (0.12) (0.15) 

3 -2.36 -2.56 -3.34 -2.29 -2.25 -3.03 
(0.17) (0.19) (0.28) (0.11) (0.11) (0.14) 

4 -2.07 -2.27 -3.03 -2.08 -2.03 -2.82 
(0.15) (0.17) (0.24) (0.10) (0.10) (0.13) 

5 -1.94 -2.04 -2.78 -1.91 -1.87 -2.65 
(0.14) (0.15) (0.22) (0.I0) (0.I0) (0.I 3) 

6 -1.82 -1.79 -2.67 -1.77 -1.73 -2.51 
(0.14) (0.14) (0.21) (0.10) (0.10) (0.13) 

9 -1 .49 -1.47 -2.25 -1.47 -1.43 -2.21 
(0.12) (0.12) (0.18) (0.09) (0.09) (0.12) 

12 -1.20 -1.28 -2.01 -1.26 -1.22 -2.00 
(0.11) (0.1 l) (0.17) (0.09) (0.09) (0.12) 

18 -0.92 -0.93 -1.71 -0.96 -0.91 -1.70 
(0.1 O) (0.10) (0.15) (0.08) (0.08) (0.12) 

24 -0.76 -0.74 -1.37 -0.74 -0.70 -1.48 
(0.I0) (0.I0) (0.14) (0.08) (0.08) (0.12) 

36 -0.4 3 -0.42 - I. 12 -0.44 -0.40 - I. 18 
(0.10) (0.10) (0.14) (0.08) (0.08) (0.12) 

48 -0.20 -0.24 -0.83 -0.23 -0.19 -0.97 
(0.10) (0.10) (0.14) (0.08) (0.08) (0.12) 

60 -0.02 -0.06 -0.73 -0.06 -0.02 -0.80 
(0.10) (0.10) (0.14) (0.08) (0.08) (0.12) 

96 0.22 0.50 -0.64 0.29 0.33 -0.45 
(0.12) (0.I 3) (0.16) (0.09) (0.09) (0.12) 

COLUMN 1 ~ ~ 4 5 6 7 8 
1 2 3 4 5 6 7 8 9 ~ 1 2 3 # f i ~ 7 8 9 ~ ? 3 ~ 5 ~ 8 = n ~ ? 3 ~ 5 6 ~ 8 9 ~ 1 2 3 q 5 6 7 8 9 ~ 2 3 # 5 6 ~ 8 9 ~ 2 3 ~ 5 6 7 8 9 ~ 1 2 3 ; 5 6 ~ 8 9 0  

5 1 1 
14 4 
IW 13 7 366 
12 9 5 3WO 
8 6 1 325 

10 8 ~ 303 
5 8 W 286 
5 I0 2 269 

16 l& 9 22B 
16 10 6 196 
17 ~0 8 151 
9 11 10 121 

18 18 7 78 
I I  8 7 52 

7 7 2 36 
6 16 1 13 

F~.6. 

(WF5,O) 
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COLUMN 1 2 x a. 5 6 7 8 
1 2 . ' ~ 4 5 6 7 8 9 0 1 2 3 4 5 6 7 t a 9 0 1 2 3 4 5 6 7 8 O n l  P 3 4 5 6 7 8 9 0 1 2 3 4 . 5 6 7 8 9 0 1 2 ~ q . 5 6 7 8 9 0 1 2 3 4 . 5 6 7 8 9 0 1 2 3 4 ' 5 6 7 8 9 0  

1 2 70 5 1 ( t~F2 ,O)  
1 

1 
1 

1 1 1  
1 

2 5 1 1 
1 2 70 5 1 15F2 , ,0 )  

1 
1 

1 
1 

- 1  
2 1 
1 2 42 3 1 

1 - 1  1 
1 - 1  1 

1 - 1  1 
3 
0 

1 4 
38 41 

1 
1 
1 1 
1 1 1  
1 1 1 1  
1 1 1 1 1  
1 1 1 1 1 1  
1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1  

2 1 

( 5 F 2 , 0 )  

1 
42 1 ( 2 6 F 3 , 0 1  
7 10 13 16 l q  22 25 2p B1 34 37 40 2 5 
3 6 9 12 15 18 21 ?~ 27 30 33 36 39 42 

2 42 14 1 ( 1 4 F 2 . 0 }  

Fig. 7. 

(7.3) to the proportional hazard rates of  (7.4) ,while 

preserving the estimate of  6. 

8. Hardware specifications 

CRI$CAT is written in double precision in IBM 

System 360/370 FORTRAN IV, which incorporates 

a few extensions to American National Standard (ANS) 

FORTRAN. As a result, minor modifications of  the 

source Code may be required to use the program on 

other machines. 

8 11 l q  17 PO 23  26 29  32 35 

Table 6 
Estimated parameters and corresponding estimated standard 
errors from equal shape parameter model for WeibuU syn- 
thetic data 

Parameter True value Fitted Weibull 

Estimate Estimated 
standard error 

log e hi -3.35 -3.11 0.14 
log e h2 -3.39 -3.06 0.14 
log e h 3 -4.21 -3.85 0.16 

6 0.843 0.744 0.033 
¢ 1 0.419 0.397 0.025 
qJ 2 0.404 0.414 0.025 
Ca 0.177 0.189 0.020 

Residual lack of fit: Q = 35.61, d.f. = 38. 
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COLUMN 1 P ~ 4 5 6 7 8 
~ 2 3 4 5 ~ 9 ~ 1 2 3 ~ 4 5 6 ~ e 9 ~ 2 3 4 5 ~ 9 ~ 2 3 4 5 6 7 ~ 9 ~ 2 3 4 ~ 6 ~ 8 9 ~ 1 2 3 4 5 ~ 9 ~ 2 3 4 ~ 6 ~ 8 9 ~ 1 2 ~ 4 5 ~ 9 ~  

7 1 4 1 ( 8 F 1 0 , 0 )  
1 1 1 l 1 1 1 1 
1 1 1 1 1 1 

(5 blank cards) 

1 1 1 1 1 1 
1 1 1 1 

(5 blank cards) 

1 1 
1 1 

1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 
0 .6931 1 .0986  1 . 3 8 6 3  1 . 6 0 9 4  1 . 7 9 1 8  2 . 1 9 7 2  2 . 4 8 4 9  

2 ,8904  3 .1780  3 ,583  ~ 3 , 8 7 1 2  4 . 0 9 4 3  4 . 5 6 4 3  0 ,6931 
1 .09P6 1 . 3 8 6 3  1 ,609u  1 , 7 9 1 8  2 , 1 9 7 2  2 . 4 8 4 9  2 , 8 9 0 4  3 .1780  
3 .5835  3 . 8 7 1 2  4 ,094=  4 . 5 6 4 3  0 .6931  1 .0986  1 ,3863  
1 ,6094  1 , 7 9 1 a  2 .197~  2 ,4P49  2°8904  3 . 1 7 8 0  3°5835 3 . 8 7 1 2  
~ ,0943  4 , 5 6 4 3  

Fig. 8. 

COLUMN 1 2 ~ q 5 6 7 8 
~ 2 3 4 5 6 ~ 8 9 ~ 2 3 ~ 6 ~ 8 9 ~ 2 3 4 5 6 ~ 8 q n 1 ~ 3 4 5 6 ~ P 9 ~ 2 3 4 5 6 7 8 9 ~ 2 3 4 5 6 ~ 8 9 ~ 1 2 3 4 5 6 7 8 9 ~ 1 2 3 4 5 6 ~ 8 9 ~  

6 
0 4 

4 1 2 3  
3 4 
1 1 

1 
1 

1 
1 1 1  

2 
1 1 

1 - 1  
1 - 1  

1-1 

Fig. 9. 

(~F2°'O) 

3 
5 1 [4F2 ,01  

4 1 (SF2 ,0 )  

9. Program availability 

A listing and card deck for the source program 
CRISCAT may be obtained for a nominal cost from 
the Department of Biostatistics, School of Public 
Health, University of Michigan, Ann Arbor, M148109, 

The documentation and operating instructions are 
included with the initial purchase of the program. 
Purchasers may place their names on an active mailing 
list to receive information concerning updating and 
further modifications of the program. 
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10. Disclaimer References 

Although CRISCAT has been tested extensively, 
no warranty,  expressed or implied, is made to the 
accuracy and functioning of  the program. No respon- 
sibility is assumed by the authors. However, if  spe- 
cific problems or questions do arise, contact  Dr. J. 
Richard Landis at the Department of  Biostatistics, 
School of  Public Health, University of  Michigan, Ann 
Arbor,  M148109, USA. 
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