Inference in Canonical Correlation Analysis

WILLIAM J. GLYNN*

Harvard University

AND

ROBB J. MUIRHEAD†

The University of Michigan

Communicated by P. R. Krishnaiah

The asymptotic behavior, for large sample size, is given for the distribution of the canonical correlation coefficients. The result is used to examine the Bartlett-Lawley test that the residual population canonical correlation coefficients are zero. A marginal likelihood function for the population coefficients is obtained and the maximum marginal likelihood estimates are shown to provide a bias correction.

1. INTRODUCTION

Let r_1, \ldots, r_p be the sample canonical correlation coefficients between variates y_1, \ldots, y_p and x_1, \ldots, x_q ($p \leq q$) calculated from a sample of size $N = n + 1$ observations from a $(p + q)$-variate normal distribution. The exact joint density function of r_1^2, \ldots, r_p^2 is (see Constantine [5], James [9])

$$
\prod_{i=1}^{p} (1 - r_i^2) \frac{1}{n} \frac{P(\alpha)}{(\frac{1}{2} n; \frac{1}{2}; P^2, R^2)} \times k_1 \prod_{i=1}^{p} (r_i^2)^{1(q-p-1)} (1 - r_i^2)^{1(q-p-1)} \prod_{i<j}^{p} (r_i^2 - r_j^2)
$$

(1 > r_1^2 > r_2^2 > \cdots > r_p^2 > 0),

Received November 30, 1976.

Key words and phrases: canonical correlations, asymptotic distributions.

* Research supported in part by the National Science Foundation under Contract MCS75-01493.

† Research supported by the National Science Foundation under Contract MCS76-14876 and MCS78-18583.
where $1 \geq \rho_1 \geq \rho_2 \geq \cdots \geq \rho_p \geq 0$ are the population canonical correlation coefficients, $R = \text{diag}(r_1, \ldots, r_p)$, $P = \text{diag}(\rho_1, \ldots, \rho_p)$,

$$k_1 = \Gamma_p(\frac{1}{2}n)^{1/2} \frac{1}{[\Gamma_p(\frac{1}{2}(n - q)) \Gamma_p(\frac{1}{2}q) \Gamma_p(\frac{1}{2}p)]},$$

and $_2F_1^{(p)}$ is a hypergeometric function with the matrices P^2 and R^2 as arguments. The distribution of r_1^2, \ldots, r_p^2 depends only on ρ_1, \ldots, ρ_p and hence that part of the distribution involving ρ_1, \ldots, ρ_p can be regarded as a marginal likelihood. From (1.1) we see that the marginal likelihood function is

$$\prod_{i=1}^{n} (1 - \rho_i^2)^{1/n} _2F_1^{(p)}(\frac{1}{2}n, \frac{1}{2}n; \frac{1}{2}q; P^2, R^2).$$

In Section 2 we derive an asymptotic representation for the $_2F_1^{(p)}$ function, and hence for the distribution (1.1) and marginal likelihood (1.3), for large sample size n. This is done by expressing $_2F_1^{(p)}$ as a complicated multiple integral and using a multivariate extension of Laplace's method for integrals to obtain its asymptotic behavior. In Section 3 the asymptotic distribution is used to examine the Bartlett-Lawley test of the null hypothesis that the last $p - k$ population canonical correlation coefficients are zero. Maximum marginal likelihood estimates of certain transformed population coefficients are also obtained and are shown to provide a bias correction.

2. ASYMPTOTIC DISTRIBUTIONS

Before deriving the asymptotic behavior of the $_2F_1^{(p)}$ function in (1.1) we first note Hsu's extension [8] of Laplace's method for obtaining the asymptotic behavior of integrals. If the function $f(x) = f(x_1, \ldots, x_m)$ has an absolute maximum at an interior point ξ of a domain \mathcal{S} in real m-dimensional space, then under suitable conditions, as $n \to \infty$

$$\int_{\mathcal{S}} f(x)^n \varphi(x) \, dx \sim (2\pi/n)^{1/2} f(\xi)^n \varphi(\xi) \Delta(\xi)^{-1},$$

where $a \sim b$ means that $\lim_{n \to \infty} a/b = 1$ and $\Delta(x) = \det(-\partial^2 \log f/\partial x_i \partial x_j)$. We begin by looking at the $_2F_1$ function with one $k \times k$ matrix T^2 as argument (see [9]). Without loss of generality T can be assumed diagonal, $T = \text{diag}(t_1, \ldots, t_k)$, and we will assume that the roots are distinct with $1 > t_1 > t_2 > \cdots > t_k > 0$. The integrals involved in the subsequent development can be found in James [9] and Herz [7].
Theorem 1. As \(n \to \infty \)

\[
_2F_1\left(\frac{1}{2}n, \frac{1}{2}n; \frac{1}{2}; T^2\right) \sim c_1 \prod_{i=1}^{k} t_i^{(k-q)(1 - t_i)^{-1}} \prod_{i < j}^{k} (t_i + t_j)^{-\frac{1}{2}},
\]

(2.2)

where

\[
c_1 = \left(\frac{n}{2}\right)^{\frac{1}{2}(k-1)} \Gamma_k(\frac{1}{2}) \prod_{i=1}^{k} \frac{\Gamma_i(\frac{1}{2})}{\Gamma_i(\frac{1}{2}) - i} (1 + O(n^{-1})).
\]

Proof. The idea here is to express \(_2F_1 \) as a multiple integral to which Hsu’s result (2.1) can be applied. We can write

\[
_2F_1\left(\frac{1}{2}n, \frac{1}{2}n; \frac{1}{2}; T^2\right) = c_2 \int_{O(k)} \int_{D_U} \int_{O(k)} \int_{D_V} \exp\{-\frac{1}{2}n \text{tr}(U^2 + V^2)\}
\]

\[
\times UV \exp\{n \text{tr}([TH_1U'H_2H_2'VH_2': O]Q_1)\}
\]

\[
\times \prod_{i < j}^{k} (u_i^2 - u_j^2)(v_i^2 - v_j^2)(dQ_1)(dV)(dH_2)(dU)(dH_1),
\]

(2.3)

where

\[
c_2 = \left(\frac{n}{2}\right)^{k/2} \frac{1}{\pi^{k/2}} \frac{1}{\Gamma_k(1/2) \Gamma_{k-k}(1/2 - k)}.
\]

\(O(k) \) is the group of \(k \times k \) orthogonal matrices, \((dH_i) \) \((i = 1, 2) \) is the unnormalized measure on \(O(k) \), so that the volume of \(O(k) \) is \(2^{k/2} \pi^{k^2/4} \Gamma_k(1/2) \), \(U = \text{diag}(u_1, ..., u_k) \), \(V = \text{diag}(v_1, ..., v_k) \), \(D_u = \{(u_1, ..., u_k); u_1 > u_2 > ... > u_k > 0\} \), and \(V(k, q) \) is the Stiefel manifold consisting of all \(q \times k \) matrices \(Q_1 \) with orthonormal columns. The integral (2.3) is of the form \(c_2 \int_{\mathcal{S}} f^k_\phi \), where

\[
f = \exp\{-\frac{1}{2} \text{tr}(U^2 + V^2) + \text{tr}([TH_1U'H_2H_2'VH_2': O]Q_1)\} \quad |UV|
\]

and

\[
\varphi = |UV|^{-k} \prod_{i < j}^{k} (u_i^2 - u_j^2)(v_i^2 - v_j^2).
\]

It can be shown that \(f \) achieves its maximum value at the \(2^{2k} \) points in \(\mathcal{S} \) of the form
U = V = \text{diag}((1 - t_1)^{-1}, \ldots, (1 - t_k)^{-1})

\begin{equation}
U = V = \text{diag}((1 - t_1)^{-1}, \ldots, (1 - t_k)^{-1})
\end{equation}

and the maximum value of \(f \) is

\begin{equation}
f^* = e^{-k} \prod_{i=1}^{k} (1 - t_i)^{-1}.
\end{equation}

At these maxima \(\phi \) has the value

\begin{equation}
\phi^* = \prod_{i=1}^{k} (1 - t_i)^{2-k} \prod_{i<j} (t_i - t_j)^2
\end{equation}

and it can be shown that the Hessian is

\begin{equation}
\Delta = 2(2-k) \prod_{i=1}^{k} (1 - t_i)^{2-k} \prod_{i<j} (t_i - t_j)^2(t_i + t_j).
\end{equation}

The number of variables \(m \) in Hsu's result being integrated is \(\frac{1}{2}k(k + 2q + 1) \). Substitution of (2.4), (2.5), and (2.6) in (2.1), together with an obvious simplification of \(\epsilon_2 \), yields the theorem. As a check on some very tedious algebra it can be noted that when \(k = 1 \), (2.2) agrees with the known asymptotic behavior of the classical hypergeometric function (see Luke [13, Sect. 7.2]).

The asymptotic behavior of the two-matrix \(_2F_1 \) function follows from Theorem 1. Let

\begin{equation}
R = \text{diag}(r_1, \ldots, r_p), \text{ where } 1 > r_1 > \cdots > r_p > 0
\end{equation}

and let \(P \) be a \(p \times p \) diagonal matrix of the form

\begin{equation}
P = \begin{bmatrix} P_1 & 0 \\ 0 & 0 \end{bmatrix},
\end{equation}

where \(P_1 = \text{diag}(\rho_1, \ldots, \rho_k) \) with \(1 > \rho_1 > \cdots > \rho_k > 0 \). Then we have
Theorem 2. As $n \to \infty$,

\begin{equation}
\mathcal{I}_n \sim c_3 \prod_{i=1}^{k} \prod_{j=1}^{p} C_{ij}^{-\frac{1}{2}},
\end{equation}

where

\begin{equation}
c_3 = (\frac{1}{2}n)^{-\frac{3}{2}} \pi^{-\frac{1}{2}} \Gamma_k(\frac{1}{2}p) \Gamma_k(\frac{1}{2}q) 2^{-\frac{1}{4}} [1 + O(n^{-1})]
\end{equation}

and

\begin{equation}
C_{ij} = (r_i^2 - r_j^2)(\rho_i^2 - \rho_j^2) \quad i = 1, \ldots, k; \quad j = 1, \ldots, p.
\end{equation}

Proof. This follows from (2.1), (2.2), and the fact that

\begin{equation}
\mathcal{I}_n \sim c_4 \prod_{i=1}^{k} \prod_{j=1}^{p} (\delta_i^\frac{1}{2}(1 - \delta_i)^{-n+\frac{1}{4}}) \prod_{i<j}^{k} (\delta_i + \delta_j)^{-\frac{1}{4}} (dH_1),
\end{equation}

where $c_4 = c_1 \Gamma_k(\frac{1}{2}p) \pi^{-\frac{1}{2}} \rho_k$ and $\delta_1 > \cdots > \delta_k$ are the positive square roots of the latent roots of $P_1H_1R^2H_1P_1$. This integral is of the form $c_4 \int_{V(k, p)} f^n \phi$, where

\begin{equation}
f = \prod_{i=1}^{k} (1 - \delta_i)^{-\frac{1}{2}}
\end{equation}

and

\begin{equation}
\phi = \prod_{i=1}^{k} \delta_i^\frac{1}{2}(1 - \delta_i)^{\frac{1}{4}} \prod_{i<j}^{k} (\delta_i + \delta_j)^{-\frac{1}{4}}.
\end{equation}

It can be shown that f has 2^k maxima which are obtained when H_1 has the form

\begin{equation}
H_1 = \begin{bmatrix}
\pm \frac{1}{2} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \pm \frac{1}{2} & 0 \\
k & p - k
\end{bmatrix} k.
\end{equation}
At these values for $H_1, \delta_i = r_i\rho_i$ for $i = 1, \ldots, k$, and the maximum value of f is

$$f = \prod_{i=1}^{k} (1 - r_i\rho_i)^{-1}.$$

The value of φ at these maxima is

$$\varphi = \prod_{i=1}^{k} (r_i\rho_i)^{1/(k-q)}(1 - r_i\rho_i)^{1/q} \prod_{i<j}^{k} (r_i\rho_i + r_j\rho_j)^{-1},$$

and it can be shown that the Hessian is

$$\Delta = \prod_{i=1}^{k} (r_i\rho_i)^{k-p}(1 - r_i\rho_i)^{p} \prod_{i<j}^{k} \frac{(r_i^2 - r_j^2)(\rho_i^2 - \rho_j^2)}{(r_i\rho_i + r_j\rho_j)} \prod_{i=1}^{k} \prod_{j=k+1}^{p} [\rho_i^2(r_i^2 - r_j^2)].$$

The theorem now follows from a straightforward application of (2.1).

Substitution of (2.7) in (1.1) gives an asymptotic representation for the distribution of r_1^2, \ldots, r_p^2 under the assumption that the population canonical correlation coefficients satisfy

$$1 > \rho_1 > \cdots > \rho_k > \rho_{k+1} = \cdots = \rho_p = 0.$$

This is summarized in the following

Theorem 3. The asymptotic density function of r_1^2, \ldots, r_p^2 for large n, when the population coefficients satisfy (2.9), is

$$k_2 \prod_{i=1}^{k} (1 - r_i\rho_i)^{-n+1/(p+q-1)}(r_i^2)^{1/(q-p)-1}(1 - r_i^2)^{1/(n-p-q-1)} \prod_{i<j}^{k} \left(\frac{r_i^2 - r_j^2}{\rho_i^2 - \rho_j^2} \right)^{1/2}$$

$$\times \prod_{i=1}^{k} \prod_{j=k+1}^{p} (r_i^2 - r_j^2)^{1/2}$$

$$\times \prod_{i=k+1}^{p} (r_i^2)^{1/(q-p-1)}(1 - r_i^2)^{1/(n-q-p-1)} \prod_{i<j}^{k+1} (r_i^2 - r_j^2),$$

where

$$k_2 = k_1(\frac{3}{2}n)^{-1/4(k+p-q-k-1)}n^{-1/2(k+1)}\Gamma(k/4) \Gamma(k/4)p2^{-k}$$

$$\times \prod_{i=1}^{k} (1 - \rho_i^2)^{1/2} \rho_i^{k-4/(p+q)}[1 + O(n^{-1})]$$

and k_1 is given by (1.2).
An alternative asymptotic result has been given by Chattopadhyay and Pillai [3] and Chattopadhyay, Pillai, and Li [4]; however the asymptotic behavior given by these authors involves a $2F_1$ function with the matrix P_2R_2 as argument and appears to be incorrect. From Theorem 3 it is easy to obtain the following:

Corollary. The asymptotic conditional density function of the $p - k$ smallest sample coefficients $r_{k+1}^2, ..., r_p^2$ given the first k coefficient $r_1^2, ..., r_k^2$ is proportional to

$$\prod_{i=1}^{k} \prod_{j=k+1}^{p} (r_i^2 - r_j^2) \prod_{i=k+1}^{p} (r_i^2)^{(q-p-1)} \prod_{i=1}^{p} (r_i^2)^{(q-p)(n-q-p-1)} \prod_{i<j} (r_i^2 - r_j^2). \tag{2.11}$$

From this we see that the largest k sample coefficients $r_1^2, ..., r_k^2$ are asymptotically sufficient for $\rho_1^2, ..., \rho_k^2$. This suggests the use of (2.11) as a basis for testing the null hypothesis that the smallest $p - k$ population coefficients are all zero; this approach will be followed in the next section.

3. Testing and Estimation

We first investigate the Bartlett-Lawley test of the null hypothesis $H_0: \rho_k^2 \geq \cdots \geq \rho_p^2 = 0$ against $H: \rho_k^2 \geq \cdots \geq \rho_p^2 \geq \rho_1^2 \geq \cdots \geq \rho_p^2 > 0$ and $\rho_k^2 > 0$ using the distribution (2.11) of $r_{k+1}^2, ..., r_p^2$ given $r_1^2, ..., r_k^2$ which does not depend on the nuisance parameters $\rho_1, ..., \rho_k$. The approach given here is similar to that used by James [10] in another context.

The likelihood ratio statistic is

$$T_k = -\log \prod_{j=k+1}^{p} (1 - r_j^2)$$

and under H_0 Bartlett [1, 2] showed that $\{n - \frac{1}{2}(p + q + 1)\} T_k$ has an asymptotic χ^2 distribution with $(p - k)(q - k)$ degrees-of-freedom. Lawley [12] obtained a correction to Bartlett's multiplying factor which makes the moments equal to those of the asymptotic χ^2 distribution, apart from errors of order n^{-2}. Fujikoshi [6] has obtained an expansion for the asymptotic distribution of Lawley's statistic. This statistic involves the k largest population coefficients and since these will usually be unknown, Lawley suggested, somewhat tentatively, that they be replaced by the k largest sample coefficients. Here we attempt to provide some information about the accuracy of the approximation when this is done.

The appropriate multiplier of T_k can be obtained by finding its expected value. For notational convenience let E_n denote expectation taken with respect to the conditional distribution (2.11) of $r_{k+1}^2, ..., r_p^2$ given $r_1^2, ..., r_k^2$ and let E_N
denote expectation with respect to the null distribution obtained by ignoring the linkage factor

\[
\prod_{i=1}^{k} \prod_{j=k+1}^{p} (r_{ij}^2 - r_j^2)^{1/2}
\]

in (2.11). In order to obtain \(E_\varepsilon(T_k)\) we first find \(E_\varepsilon(e^{-HT_k})\). This can obviously be done by finding

\[
E_N \left[\prod_{i=1}^{k} \prod_{j=k+1}^{p} \left(1 - \frac{r_{ij}^2}{r_j^2} \right)^{1/2} e^{-HT_k} \right].
\]

(3.1)

Writing

\[
\prod_{i=1}^{k} \prod_{j=k+1}^{p} \left(1 - \frac{r_{ij}^2}{r_j^2} \right)^{1/2} = 1 - \frac{\alpha}{2} \sum_{j=k+1}^{p} r_j^2 + O(n^{-2}),
\]

where

\[
\alpha = \sum_{i=1}^{k} r_i^2,
\]

and substituting this in (3.1) it is seen that we need the following:

Lemma.

\[
E_N \left(e^{-HT_k} \sum_{j=k+1}^{p} r_j^2 \right) = \frac{(p - k)(q - k)}{n - 2k + 2h} E_\theta(h),
\]

(3.2)

where \(E_\theta(h) = E_N(e^{-HT_k})\).

The proof of this follows easily from the fact that

\[
\sum_{j=k+1}^{p} r_j^0 = \text{tr}(I - U),
\]

where \(U\) is a \((p - k) \times (p - k)\) matrix having a multivariate Beta\(\left(\frac{1}{2} (n - q - k), \frac{1}{2} (q - k) \right)\) distribution (see Kshirsagar [11, Chap. 8]). Using the lemma we can then show, from (3.1), that

\[
E_\varepsilon(e^{-HT_k}) = \theta(h)/\theta(0),
\]
where \(\theta(h) = E_0(h) f(h) \) with \(f(h) = 1 - \alpha(p - k)(q - k)/(2(n - 2k + 2h)) \).

Now

\[
E_c(T_k) = -\frac{d}{dh} \left\{ \frac{\theta(h)}{\theta(0)} \right\}_{h=0}
= -E'_0(0) - \frac{\alpha(p - k)(q - k)}{(n - 2k)^2} + O(n^{-3}).
\]

But \(-E'_0(0) = E_N(T_k)\) and when \(H_0 \) is true we know that

\[
[n - k - \frac{1}{2}(p + q + 1)]T_k
\]

has an asymptotic \(\chi^2 \) distribution with \((p - k)(q - k) \) degrees-of-freedom and
the means agree to \(O(n^{-2}) \) so that

\[
-E'_0(0) = (p - k)(q - k)[n - k - \frac{1}{2}(p + q + 1)] + O(n^{-3}).
\]

Hence it follows that

\[
E_c(T_k) = (p - k)(q - k)/[(n - k - \frac{1}{2}(p + q + 1) + \alpha] + O(n^{-1}).
\]

Thus the appropriate multiplier of \(T_k \) is \(n - k - \frac{1}{2}(p + q + 1) + \alpha \). Summarizing this, together with Lawley's result [12] we have the following theorem.

Theorem 4. The statistic

\[
L_k = \left(n - k - \frac{1}{2}(p + q + 1) + \frac{1}{2} \sum \limits_{i=1}^{k} T_i^2 \right) T_k
\]

has an asymptotic \(\chi^2 \) distribution with \((p - k)(q - k) \) degrees-of-freedom and
\(E_c(L_k) = (p - k)(q - k) + O(n^{-2}) \).

We now turn to the problem of estimating the parameters \(\xi_1, \ldots, \xi_p \) defined via
the familiar transformation

\[
\xi_i = \tanh^{-1} \rho_i - \frac{1}{2} \log \frac{1 + \rho_i}{1 - \rho_i}.
\]

Let \(z_i = \tanh^{-1} r_i \) \((i = 1, \ldots, p)\), the usual maximum likelihood estimate of \(\xi_i \),
which has a bias term of order \(n^{-1} \). We will show that the maximum marginal likelihood estimate of \(\xi_i \) provides a bias correction.
From (1.3) and (2.7) with \(k = p \) we see that the asymptotic marginal log likelihood function is

\[
\log L = \frac{1}{2} n \sum_{i=1}^{p} \log(1 - \rho_i^2) + \left\{ \frac{1}{2}(p + q - 1) - n \right\} \sum_{i=1}^{p} \log(1 - r_i \rho_i) \\
+ \frac{1}{2}(p - q) \sum_{i=1}^{p} \log \rho_i - \frac{1}{2} \sum_{i<j}^{p} \log(\rho_i^2 - \rho_j^2)
\]

from which it follows easily that the maximum marginal likelihood estimate of \(\xi \) is

\[
\hat{\xi}_i = z_i - \frac{1}{2nr_i} \left\{ p + q - 2 + r_i^2 + 2(1 - r_i^2) \sum_{j \neq i} \frac{r_j^2}{r_i^2 - r_j^2} \right\} + O(n^{-2}).
\]

Using expressions for the mean and variance of \(r_i \) given by Lawley [12] it can readily be verified

\[
E(\hat{\xi}_i) = \xi_i + O(n^{-2})
\]

and

\[
\text{Var}(\hat{\xi}_i) = 1/n + O(n^{-2})
\]

so that these estimates stabilize the variance to order \(n^{-1} \) and also provide a correction for bias.

Acknowledgment

The authors would like to thank a referee for his useful comments.

References

683/8/3-10

