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A unified treatment is presented for four types of problems on limit analysis of framed structures and related 
design problems. With the use of the lower bound theorem in plasticity these problems are formulated as standard 
linear programming problems. Two significant improvements are made. The new formulation of the design prob- 
lems reduces the number of equations in the resulting linear program. An improved simplex algorithm for large 
and sparse linear programs is employed. The formulational and algorithmic Improvements provide large capacity 
and high efficiency that are indispensable for computational analysis and design of large and complex structures. 

Introduction 

Engineering design usually involves a trial and error procedure that creates a prototype and re- 
shapes it into a product based on analysis and more often experience. Computers now play an in- 
creasing role in engineering design. Formulation of analysis and design problems from a computa- 
tional point of view falls in the area of mathematical programming. 

Reviews of literature on optimal structural design were presented by Sheu and Prager [ 1 I and 
Niordson and Petersen [ 21. A surge of interest in optimal structural design was stimulated by the 
aerospace industry because weight is the most critical parameter to be minimized for a space 
vehicle. For earth-bound structures optimization is still an academic subject, due to the fact that 
the manufacturing cost of an optimal structure and the cost of design in terms of analysis and 
computation may offset the gain in savings of materials. Future needs for conservation and en- 
vironmental protection will however make optimal structural design more compelling. 

Optimal structural design problems usually assume the form of a nonlinear programming (NP) 
problem. Some can be transformed into or approximated by linear programs (LP) - this has the 
advantage of greater computational capacity and efficiency. 

Optimal plastic design was first considered by Heyman [31, who used the Dines method of re- 
ducing linear inequalities - this is analogous to Gauss elimination for linear equations. Foulkes 
[41 gave the method a geometric interpretation and reduced the effort of searching the optimal 
solution to a partial exploitation of the geometric field representing the inequalities. This is con- 
ceptually parallel to Dantzig’s simplex method [ 51 but analytically less developed. Heyman and 
Prager 161 presented a method of optimal plastic design of frames that is readily programmed for 
a computer and requires less memory than the original simplex method. Applications of mathe- 
matical programming techniques to optimal structural design are discussed by various authors in 
a volume edited by Pope and Schmit [ 71. Continued interest in this area is reflected by a recent 
NATO institute on engineering plasticity by mathematical programming [ 83. 
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Although the possibility of reducing the optimal plastic design to a problem of linear programming 
has been known for some time, it has not been widely used in design practice because the optimal 
design of a complex structure may tax the capacity of even a large computer. 

Improvements in formulation and method of solution are therefore essential. The formulation 
may be improved by omitting unimportant design variables in order to reduce the size of the prob- 
lem. In this paper the size of the problem in terms of the number of equations is further reduced 
by a change of variables. A new algorithm developed by Saunders [9] for a special LP problem 
which involves a sparse matrix is used in this paper to enhance computational efficiency. The ma- 
trices occurring in problems of structural analysis and design are often sparse. 

Four types of problems - limit analysis, optimal design, constrained design and optimal load 
distribution - are brought under a unified treatment. An example is given for each problem. 

1. Formulation 

Prager’s plastic analysis are based on an idealized material behavior known as rigid, perfectly 
plastic. The rigidity condition is actually stronger than necessary for limit analysis solutions. It is 
sufficient to assume that the material is stiff and has an asymptotic stress behavior within a small 
range of strains. Thus the equilibrium equations may be approximated in the undeformed geometry. 
The linear equilibrium equations and a set of inequalities bounding the stresses form the necessary 
and sufficient conditions for the lower bound theorem of the limit analysis [ lo]. The perfectly 
plastic behavior provides bounds on the stresses. The details of the constitutive relations within 
the bounds are irrelevant. 

In the following, four types of problems involving framed structures are formulated as linear 
programming problems: 

(1) The limit analysis problem: Given a structure with known load-carrying capacity of each 
member and a set of proportional loads, find the minimum proportional factor such that the struc- 
ture collapses. 

(2) The optimal design problem: Given the layout of a structure and a fixed set of loads, find 
the distribution of material over the structure that minimizes the mount of material needed to 
carry the loads. 

(3) The constrained design problem: Given the same conditions as in (2), find the optimization 
under technological constraints such as the constraint that all members must be prismatic, or that 
only a few types of member sizes are available. 

(4) The optimal load distribution problem: Given a structure, find the optimal load distribution 
on the structure such that the total load is maximized. The loads can be partially fixed such as 
dead load, and only the remaining loads are subjected to optimal distribution. 

We shall assume that all loads are in the form of concentrated forces. If distributed loads are 
present on a member, a discretization method may be used to replace the distributed loads by an 
equivalent set of concentrated loads such that the equilibrium condition is not altered beyond the 
member. Such a replacement will either render the collapse load lower than that for the distributed 
load or make the design more conservative [ 101. If the discretization is refined, the solution for 
the replacement load approaches that for the distributed load. 

Assume that the bending strength is the weakest link of the load-carting capacity of the struc- 
tural members. A member can carry the axial, shear and torsional loads automatically as long as 
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the bending moments in the member are within its limit. This assumption is of course not always 
valid. However, such a simplified problem will help to present clearly the theme of this thesis, 
which will certainly be applicable when axial, shear and torsional effects are included. 

The moment distribution curve for a straight member under concentrated loads is polygonal. 
The vertices of the polygon are at the locations where loads are applied and at the end points of 
the member that is connected to other parts of the structure. We shall call these points in the 
structure the point set of the domain. The set of values of moments defined on the domain in the 
form of a vector 

M = [M, , M,, . . . M,]* 

represents the moment distribution in the structure, where n is the dimension of the domain set 
(or the total number of loads and connections). The maximum and minimum values of the mo- 
ments in the structure are contained in the moment vector. 

These moments Mi must satisfy equations of equilibrium for any free-body taken from the struc- 
ture. However, a free-body approach introduces other static qualities such as axial and shear forces. 
An alternative method of deriving the equations of equilibrium is the principle of virtual work [ 101. 
Applying the principle to the framed structures, only moments enter the equations of equilibrium. 
The number of independent equations is 

m=n-r, 

where Y is the degree of redundancy of the structure. 
The equations of equilibrium can be written in the matrix form 

AM=F 

(2) 

(3) 

where F = [F, , F,, . . . F, ] t is a force vector containing information of the applied loads, and A is 
an m X n matrix whose constant coefficients contain information of the dimensions and layout of 
the structure. 

Each component Mi of the vector M is bounded by limits 

-L,<M$ Ui, i = 1, 2, . . . n , (4) 

where Li and Uj are positive constants known as fully plastic moments which depend on the mate- 
rial property and the cross-section of the member. We shall call these constants material limits. In 
the case of a member with homogeneous material and symmetrical cross-section, Li and U,. are 
equal. 

A solution satisfying equation (3) and the inequalities (4) is a lower bound solution for which 
the load is safe on the given structure or the structure is safe under the given load. 

An inequality can be changed to an equation by the use of a surplus or slack variable [ 111. 
After such changes are made, both (3) and (4) are equations and can be combined to form a linear 
system whose number of unknowns is always greater than the number of equations. Thus the sys- 
tem admits infinitely many solutions which form a convex set - a hyperpolyhedron - in the 
Euclidean space of the variables. Among these solutions any one that optimizes an objective func- 
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tion is called the optimal solution. The optimal solution may not be unique, but the optimal value 
of the objective function is always unique. An objective function is derived from each of the four 
problems mentioned. 

1.1. Limit analysis problem 

The limit analysis of a framed structure under a proportional load F = faF , where fis a scalar 
variable and aF is a constant m-vector, has long been recognized as a standard LP problem: 

max C’ Ml -a,1 = 0, > -L<M<U, (5) 

whereC’=[oj,,l],L=[L,,L, ,... L,lt,U=[U,,U, ,... U,]’ are the given constant vectors, 
and A is an m X y1 matrix. 

1.2. Optimal design problem 

For an optimal design problem the load is specified. Hence F is a constant vector. However, the 
material limits will now be made variables to allow an optimal material distribution that minimizes 
the total material needed for the structure to support the given load. 

Since each Mj cannot assume both positive and negative values at the same time, the statement 
-L, < Mi < Ui with variable limits is equivalent to 

lM,l G Bi , B,> 0, i = 1, 2, . . . n , (6) 

where B, is a variable material limit at the point i. This quantity Bi depends on the yielding stress 
uY and the cross-section of the structural members in the form Bi = c#nY Af12, where @ is the dimen- 
sionless shape vector, and Ai is the cross-sectional area at point i. If $ and uY are fixed, the total 
volume of the structural material is then a constant multiple of the integral 

9 = j-B (s)~/~ ds , (7) 

where s is a linear variable running through the length of all members, 1 is the total linear length 
of all members, and B(s) is a piecewise linear function with its vertex values defined by the set 
{B,li= 1,2,... II}. 

To stay in LP formulation, an alternative optimal design is considered here. A pseudo-volume 
defined by 

I/= j-B(s) ds 
1 

(8) 

is minimized instead. If some dimensions of the member cross-section is fixed such that Bi a Ai, 
then minimal pseudo-volume design is the same as minimal volume design. 
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The inequality sign in (6) should be removed for the optimal design problem since each B, will 
be minimized to just large enough to carry the moment Mi, that is Bi = lM,I. We can thus replace 
equation (8) by 

v= JIM(s)1 ds = ci’ IM(s)l ds ) (9) 
1 si 

where M(s) is the moment function for the structure, si and si are two adjacent points in a member, 
and the summation collects the integrals between all such pairs in the structure. Since the moment 
distribution is polygonal, M(s) is a linear function between si and si, and the integral over the inter- 
val can be replaced by 

where 2, is the length of the member between si and si. If M(s) vanishes between si and si, one ad- 
ditional point is needed where M(s) = 0. This point is not known in advance but can be located 
iteratively. 

Substituting (10) into (9), we obtain 

V=C’M+, (11) 

where C is an ~-d~ensional vector whose ith element is a weighted length associated with point i, 
and the vector M+ is 

M+ = W,l, I&I, .** IM,lY . (12) 

Now the optimal design problem can be rewritten in the form 

min PM+, AM=F, (13) 

where the objective function 

C’M+ = k Ci IMJ 
i=l 

is not a linear function in its present form. By a change of variables 

Ml = Y, - Zi 

I 

i=l,2,...n, 
lM,l = Yi+ Zj 

(14) 

(15) 
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where Yi and Zj are nonnegative variables, the LP system (13) reduces to 

mWC’, C’l I:], M-A] [:l.F. (16) 

Note that the number of equations in the above LP system is only the number of the equilibrium 
equations. This is better than any formulation of its kind in the literature. The reduction of the 
number of equations is at the expense of increasing the number of variables. But a net gain is ob- 
tained since the reduced dimension of the basis of the LP system results in much less computation. 

Although the objective function (which is being minimized) is the pseudo-volume rather than 
the true volume of the structural material, the solution which minimizes the pseudo-volume is 
usually close to the solution for the minimum volume design, The former can always be used as 
an initial trial solution in the NP formulation for the true minimum volume design. 

We shall consider a structure with given layout and loads. in addition, we require all members 
to be prismatic between joints that connect the members. The joints are assumed always to be 
stronger than the members. Members performing a similar function are required to be identical. 
The problem is to determine the material limits for a few groups of members such that the total 
cost or volume of the structural material is minimized. We further assume L = U = B, where the 
elements of B are positive but not all distinct. Let the distinct elements of B be b, , h,, . . . bi, 

where i is the number of different types of members to be used in the structure. We can write 

B=Jb, (17) 

where J is an y1 X 1 matrix whose elements are either 0 or 1. An entry of 1 in J equates a material 
limit at a point to the limit of the member containing the point. A specific J is given in the next 
section. 

The constrained design problem can be expressed in the form 

min CiB, AM=F, M+GB, (18) 

where C, is a constant vector of dimension i that weights the cost or volume of different types of 
members used in the structure. 

Using (I S), ( 16) and (17), the LP system ( 18) can be manipulated into the standard form 

(1% 

where 0 is an m X 1 null matrix, and I is an rz X IZ identity matrix. The variables Y, 2, b are non- 
negative. The moment is given by M = Y - 2. 
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1.4. Optimal load distribution problem 

Consider a completely specified structure such as that in the limit analysis problem. Some fixed 
loads and a family of undirectional loads are applied on the structure. We seek the optimal distribu- 
tion of the family on the structure such that the sum of all loads in the family is maximized. 

The LP formulation for optimal load distribution is achieved by first assigning a set of points 
on the structure where the family of loads shall be applied. At each point i the load has an un- 
known magnitude Gj. The vector G = [G,, G,, . . . G, ] t then represents the load distribution, 
where k is the number of loads in the family. In addition to these k points the domain set has a 
total number of n points including the points of action of the fixed loads and the connection 
points of the structural members. The equilibrium equation takes the form 

AM=EG+F, (20) 

where A and E are known matrices of dimensions m X n and m X k, respectively, and F is a fixed 
force vector of dimension m. 

Combining (20) with the material limits and lower bounds on the loads, we have a linear 
programming system for the optimal load distribution 

max[oj,,e:] [A -El =F, 

-Li d Mi < Ui, i = 1, 2, . . . n , (21) 

G,20, i=l,2,...k, 

whereek = [l, 1, . . . 11 is the vector of dimension k with all elements equal to unity. 

2. Examples 

Consider a two-story frame (fig. 1) with dimensions and loads as shown. This is an example 
problem used in [ 101. There are 14 points in the domain set shown. The degree of redundancy of 
the structure is 6, so that there are 14 - 6 = 8 independent equations of equilibrium. 

Example I. First consider the limit analysis of the frame structure in fig. 1. Let the material 
limits of the lower columns and beam be 3M,, upper columns M, and upper beam 2M,, where 
M, is a constant material limit having the dimension of a moment. 

Introducing the dimensionless moments and force, 

mi = M,/M, , i= 1, 2, . . . 14, f=WM,, (22) 

where L is the length and F is the force given in fig. 1, the problem is to determine the maximum 
value off before the structure collapses. 

The convention is used that counter-clockwise moments are positive. Eight different virtual dis- 
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Fig. 1. A two-story frame. 

placements are assigned in the forms of two panel, two beam and four joint motions; this leads to 
eight independent equations of equilibrium. The matrix A and the vector aF are thus constructed as 

I- 111100 0000000 0’ 
000000 
000012- 
000000 

A=i00 10 10 
~000100 

L 

000000 
000000 

and 

aF = [lo 4 8 1 0 0 

0111100 0 
-1000000 0 
0 0 0 0 0 I 2 -1 
0100000 0 
;010000 0 
0001010 0 
0000100 1. 

0 Olf , 

(23) 

(24) 

where the dimensionless length of each members is equal to 2. The dimensionless material limits 
are 
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-3 G mi < 3 , i= 1, 2, . . . 7, 

-lGm,<l, i = 8,9, IO, 11 ) cm 

-20rm,<2, i= 12,13,14. 

With C? = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 f f the linear programming formulation 
of the problem is now complete. The LP algorithm provided in [9] is used on a IBM 370/91 com- 
puter to give the solution 

max f= 0.9090909 , 

which agrees with that in [ 101. 

(26) 

Example 2. Now we shall obtain the optimal design for the same example structure. At a fixed 
value off= 0.9090909 the force vector on the riot-hand side of equation (16) is now 

F= 

9.09090909 
3.63636364 
7.27272727 
0.9090909 1 
0.0 
0.0 
0.0 
0.0 

(27) 

The vector C constructed by the trapasoidal rule is 

C=[l 1 1 1 Y2 I Y2 1 1 1 1 Y2 1 Y#, (28) 

where the elements are the weighted dimensionless lengths of the members at all points. The op- 
timal solution is given by 

M+ = 

5.45454545 
0.0 
0.0 
3.63636364 
0.0 
0.0 
7.27272727 
0.0 
3.63636364 
0.0 
0.0 
0.0 
0.45454545 

-0.0 _ 

(29) 
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Fig. 2. Optimal design of the two-story frame. 

which indicates the magnitude of the moments as well as the material limits at every point in the 
domain set. Since the moment distribution is linear between two adjacent points, the structure 
can be illustrated with tapered members between points as shown in fig. 2. 

The beam between points 5 and 6 and the column between points 8 and 10 have zero cross- 
section. This is because the two members do not carry any bending moment and are therefore 
not needed in the model problem. But the column 8-10 is subjected to an axial compression 
which is not considered in the formulation. Obviously, the inclusion of axial forces in the formu- 
lation is needed in this case. The example here still serves the purpose of demonstrating the meth- 
od of solution. 

The ratio of the pseudo-volume of the optimal structure to that of the original structure is 

v,,,/ votig = 0.646853 15 , (30) 

which makes a 35.3% material saving for the optimal structure. 
Example 3. The third example is the constrained design of the same structure with a fixed 

f = 0.9090909. We require all members to be prismatic, and only four types of members are to be 
used. These are lower columns, lower beam, upper columns and upper beam whose respective mate- 
rial limits B, , b2, b3, A4 are to be determined. 

The matrix J in its transposed form is 
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I 

111100000000001 
00001110000000 

J’=ooooooollllooo * 

1 

(31) 

00000000000111 

The vector C, = [4 2 4 21 is obtained from the dimensionless lengths of the members. Sub- 
stituting A, J and C, into equation (19), the LP problem gives the results 

I 

2.42424242 
^ 2.33333333 1 

B = 0.90909091 ’ 

1 

(32) 

0.9090909 1 

which contains the material limits of the four types of members required. The ratio of the pseudo- 
volumes between the constrained design and that of the original structure, 

‘c/cons/ ‘orig = 0.83916084, (33) 

suggests a 16.1% saving from the original structure. 
~x~~~le 4. Consider a framed structure with a family of 24 vertical loads and 4 horizontal 

loads acting at the points as shown in fig. 3. The horizontal loads are proportional with a load fac- 
tor $ Tables 1 and 2 show the optimal vertical load distribution for maximum total vertical load 
at two fixed values of J The arrays of numbers represent the dimensionless vertical loads at the 
corresponding locations on the structure. The optimal loads on the top floor is given by the num- 
bers from left to right in the first line of each table. The loads on the lower floors follow. We have 
assumed that all beam-column members of the structure have the same length and that only four 
types of members are used, one type for each floor. The strength of the members is arranged in in- 
creasing order from the top floor down - the material limit of the top floor members is M, = const; 
the limits for the lower floors are 2&Z,, 3M, and 4Me. The value f = 6.8 corresponds to the collapse 
under the horizontal loads alone. The tables for intermediate values of fare omitted here. The total 
vertical ioad at different values offare shown in fig. 4. This is similar to the yield polygon for a 
two-parameter proportional loading situation. 

Table 1 Table 2 
Vertical load distribution for f = 0. Vertical load distribution for f = 6.8. 

6.0 6.0 6.0 6.0 6.0 6.0 0.0 6.0 3.0 6.0 3.0 6.0 
12.0 12.0 12.0 12.0 12.0 12.0 0.0 12.0 3.0 12.0 3.0 12.0 
18.0 18.0 18.0 18.0 18.0 18.0 0.0 18.0 3.0 18.0 3.0 18.0 
24.0 24.0 24.0 24.0 24.0 24.0 0.0 24.0 3.0 24.0 3.0 24.0 

3. Conclusion 

Although this paper deals with a well-studied problem of limit analysis and design of framed 
structures, it presents a unified formulation for a class of structural optimization problems for 
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Fig. 3. Load distribution problem on a frame structure. Fig. 4. Total vertical load of optimal distributions at various 
side loads. 

which the optimal design and the optimal load distribution problems have not been previously 
formulated in the same manner. The new formulation in some cases requires a smaller number of 
equations and variables than the existing formulation, Optimal design of structures from a mechanics 
viewpoint alone may be regarded as being academic since labor and manufacturing costs today ex- 
ceed material cost. However, the constrained design and the optimal load distribution problems 
presented in this paper can find ready applications in conventional structural design practices and 
in planning the loading of an existing structure. 

With the implementation of a recently developed LP algorithm the new formulation proves to 
be efficient and less restrictive in terms of the size of the problems that can be handled. The 
Saunders algorithm using updated Cholesky factors can efficiently solve LP systems up to 4000 
equations with a virtually unlimited number of variables. The new algorithm, however, remains 
to be time-tested for various structural optimization problems. The formulation presented in this 
paper is readily adoptable to the standard LP routines in most computational facilities. 
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