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Relativistic corrections to order (u/(:)2 are applied to the helium excited states 2 1,3p,3 1'3D,..., 8 1:3K. Simple correlat-
ed open-shell wavefunctions are employed and the Breit operators Hy through Hy treated as perturbations. Account is also
taken of mass polarization and lowest-order one electron Lamb shift. The energies thus calculated agree with experiment to

within 2.2 cm™! or better.

1. Introduction

The importance of relativistic and radiative correc-
tions in atomic and molecular systems has been empha-
sized by several authors {1,2]. The usual point of de-
parture has been the Breit equation [3], a generaliza-
tion of the Dirac equation representing two relativistic
particles in an external field. This theory is believed to
be correct to terms of crder (u/c)2.

In this paper we propose to calculate relativistic cor-
rections for a series of excited states in helium. This
work is motivated in part by the high precision to
which these energy levels are now known — approach-
ing one part in ten million. The sequence of excited
states 1s2p2 1-3P, 1s3d3 13D, 1s4f4 13F, . is attrac-
tive from a theoretical point of view in that these repre-
sent the lowest states of their respective symmetry
types. Thus the simplest form of the variational prin-
ciple is applicable. Moreover, the non-relativistic elec-
tron correlation problem is expected to be minimal,
particularly for the higher states in the sequence.

2. Method and results
2.1. Determination of wavefunction

The use of Breit’s equation, together with the Pauli
approximation (low Z) means that the relativistic cor-

rections to be calculated can be accurate only to with-
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in a few percent. As sufficiently accurate non-relativ-
istic wavefunctions for this purpose, we shall employ
correlated open-shell functions of the type

u(ry,ry) = [Is(Dnl2) £ 1sQRynl(D] (A + 9ry5), (1)

Is=e~®, ni=rle-0rY;, (0.9),

in which a, 8, and 7y are optimized variational param-
eters. Table 1 lists the optimum non-relativistic
energies obtained with (1) with and without the corre-
lation parameter 7y. Comparison with the more ac-
curate non-relativistic energies for the 2P and 3D
states listed in table 2 indicates that the wavefunction
(1) gives energies accurate to within a few tenths of
a percent for the 2P states, and better for higher

Table 1
Non-relativistic eneigies for open-shell wavefunction [eq. (1)]
with and without correlation parameter (in hartree)

—-E@x=0) —E (optimum v)
21ip 2.122390092 2.122449327
23p 2.130691334 2.130821427
31p 2.055546095 2.055549141
33p 2.055571814 2.055574820
41F 2.031249981 2031250256
43f 2 031250030 2.031250308
513G 2.020000000 2.020000039
6 13H 2.013888890 2.013888900
71:3g 2.010204081 2.010204083
813K 2.007812500 2.007812500
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Table 2
Expectation values for helium (in hartree)
—Hg —(H, +Hj,) H> €2
21p 2.12384292) 0.000104931 —0.00000964 0.000004953
23p 2.13316412) 0.000097505 0.000001943 -0.000007937
3!p 2.055614b) 0.000104021 0.000000037 —0.000000025
33p 2.055630b) 0.000104008 0.000000048 —0.000000025
4 13F 2.03125¢3 0.000104987 0.000000013 —0.000000004
513G 2.020000,4 0.000105497 0.000000005 —0.000000001
6 131 2.0138889( 0.000105791 0.000000002 0.000000000
7 13j 2.01020498 0.000105974 0.000000001 0.000000000
g 13K 2.00781250 0.000106149 0.000000000 0.000000000
Hs H, 5 H. 3 Hs
21p 1] 0.000000773 33D, 0.000000034 --0.000000066
23p, —0.000001276 0.000000229 33D, 0.000000135 0.000000066
23p, 0.000000638 —~0.000001145 43F, —0.000000020 0.000060003
23p, 0.000001914 0.000002290 43F, 0.000000005 —0.000000010
3'D 0 0.000000002 43F, 0.000000025 0.000000008
33D3 —0.600000101 0.000000019

a) Non-relativistic 2P energies, ref. [4]. b) Non-relativistic 3D energics, ref. [s1.

states. One must be careful not to conclude that

(1) will determine relativistic corrections to the same
accuracy as the non-relativistic energy, because the
relativistic operators may be, and generally are more
sensitive to correlation effects than the non-relativistic
hamiltonian. In effect, then, results obtained using (1)
will have variable precision with respect to better wave-
functions, but should maintain the requisite accuracy
of a few percent.

A detailed comparison of our 2P and 3D non-rela-
tivistic energies with the more elaborate calculations
[4,5] listed in table 2 indicates that the correlation
parameter 7y picks up only about 5% of the correlation
energy. This being the case, the 4F energy in table 1 can
be trusted to no more than 6 digits, the 5G energy to 7
digits, etc.

“variation of mass with velocity™:

H, = —(1/8c*)(p} +p3) : @)
Breit retardation term:

Hy =—(ri7[2¢ D[Py Py +1i7 Crorip1 2l ;. (@)
spin—orbit coupling:

Hy = (12" {IEy Xpy + 213> (ry2 X 2)] sy

t [Ey XPpy +2"i_.7.3(’21 Xpl-s,}, (5)

where E; = Zr,/r} — ry,/ ri”z;

Darwin term (Zitterbewegung):

Hy = (i/4c®)(py"Ey +P3°Ey); ©)
o spin—spin interaction:

2.2. Relativistic calculations Hy =(fe 2)0 845, -5,83(r )

Table 2 lists the results obtained with (1). The oper-
ators involved, in the Pauli approximation, are [3], in
atomic units, and with, p = —iV : non-relativistic hamil-
tonian:

+r{3°51°8) — 3r[3°(1 T12)62712)] 5,, >0} - (D)

In addition, table 3 includes the lowest order Lamb
shift for the s electron, given by [3]:

(4Z*[3nc3) 2 log(c/Z) —og(2K /2 %) +12
=0.00001610 hartree , ®)

Hy=3p2 +3p3 —Zfr; —Zr, + 1/ryy; )
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with K taken as 19.77 Z 2/2 hartree. Table 2 also in-
cludes the mass polarization and electron exchange cor-
rection, given by [3]:

€y = —(m/M)Vl 'V2 > (9)

which is a correction for nuclear motion in addition to
the correction incorporated in the *He Rydberg con-
stant, taken here as [6] 219444.551 cm—! hartree—!.
The speed of light was taken as [6] 137.035973 au.
Table 2 reports the expectation value of H; + Hy be-
cause the sum is more easily calculated than the indivi-
dual vaiues.

For states in this sequence with I 2> 6 the energy is
adequately approximated by Hy + H; + Hy + Lamb
shift. With n = + 1 the principal quantum number of
the exciteg electron, the asymptotic forms for these
expectation values are:

Hy=—Z%2 —(Zz — 1)*/2n?,
H, +Hy =—(1/8¢%){z% + [(z — )*/n?]

X [1/n® —4+4/n(n -]},
with the Lamb shift given by (8).

(10)

3. Discussion

Computed energies are compared with experiment
in table 3. In all cases, agreement to within 2.2 cm—1,
approximately 5 parts per million, is attained. A clear
trend toward decreasing error with increasing / is indi-
cated. How much of this trend is due to inaccuracy in
the wavefunction, and how much is due to higher order
corrections to the Breit operators, further radiative cor-
rections, etc., remains unanswered here. Perkeris [8]
calculated the energy of the ground state of helium us-
ing a much more elaborate wavefunction, and obtain-
ed agreement with experiment to within 0.2 cm—1. He
ignored H,, which is small, and employed a two-particle
Lamb shift contribution {9], as opposed to our equa-
tion (8), which gives the one-particle s-electron contri-
bution. For the ground state, the difference between
these two estimates is 1.2 cm—1, so that generally speak-

166

CHEMICAL PHYSICS LETTERS

15 May 1978

Table 3
Total energies for helium excited states (in cm™!)

Ecalc. Eexp.a) Error

21p 466084.20 466084 65 045
23p, 468130.65 468132.79 2.14
23p, 468130.53 468132.71 2.18
23pg 468129.49 468131.72 2.22
3'D 45111255 451114.58 20
33p; 451116.1, 451118.01 1.9
33D, 451116.09 451118.01 1.9
33p, 451116.04 45111796 19
41F 445766.3; 445767.67 1.3
43F,b) 445766.3, 445767.66 1.3
513G 443297.79 443297.92 0.2,
6131 441956.63 441956.76 0.13
71:3 441148.06 441148.13 0.07
gl-3K 440623.26

a) Ref. [7] ; experimental error +0.05 cm™1.
b) J not specified for experimental value.

ing it would be necessary to improve our estimate of
the Lamb shift before calculations with a more accurate
wavefunction could be considered relevant.

The reported errors for the 4F and 5G states are
somewhat difficult to interpret, because as much as
half of these values can be ascribed to the errors in the
non-relativistic energy. Nevertheless, taking this into
account does not appreciably alter the trend toward de-
creasing error. We may conclude that the (v/c)? ap-
proximation works very well when the average interelec-
tron distance is large. This is easy to rationalize, because
field strengths, and therefore velocities, are largest when
the particles are close together; thus higher order rela-
tivistic corrections for two widely separated electrons

should be small.
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