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The analysis of a highly symmetric type of exactly lumpable, closed system of coupled, first-order rate equations shows
that complete information about the equilibrium solution and all modes of relaxation is calculable from matrices with dimen-

sions less than the number of states in the system.

1. Introduction

Systems of coupled first-order chemical reactions,
often referred to as monomolecular reaction systems,
are of considerable interest. For example, some real
chemical systems are of this type, and the Kinetics of
many morc can be approximated by first-order rate
equations, a technique referred to as linearization [1].
In the limit of small perturbations from thermody-
namic cquilibrium, the relaxation back to equilibrium
of all reversible, closed chemical systems obeys first-
order kinetics [2—5] . Biologists often model the flow
of tracers from compartment to compartment of multi-
compartment systems using first-order kinetics {6,7] -
In addition, these reaction schemes are mathematically
simple, at least compared to systems of reactions in-
volving higher-order kinetics, and clegant methods
have been developed for treating them. Much has been
proven about the solutions of the coupled differential
equations which represent these systems.

The formalism concerned with the existence,
uniquencss, and stability of stcady-state and periodic
solutions of sets of coupled differcntial equations is
often referred to as dynamical systems theory [8].
Closed, monomolecular reaction systems are represent-
ed by the simplest of such sets of equations, those con-
sisting of homogencous, first-order linear diffcrential
equations with constant cocfficients. A system is said
to be closed if there are neither sources nor sinks for

any species. In thesc sets of differential equations the
concentration of each species is represented by a con-
tinuous variable whose time evolution is fully deter-
mined by the rate constants and the initial conditions.
This is in contrast to a stochastic model in which con-
tinuous concehtration variables are replaced by dis-
crete random variables and ratc constants by transition
probabilities [9—11] . It has been shown that n closed
linear systems the means of the discrete random con-
centration variables obey the deterministic differential
equations for the continuous concentrations {11].
Thus, the results we derive in the present work are of
relevance also to closed linear systems to which a
stochastic model is applicable.

In section 2 we review the matrix formulation of
sets of linear, first-order differential equations [3-7,
12—14] and the lumping of ind:vidual states into sets
of states {15,16]. In scction 3 we analyze a specific
highly symmetric type of exactly lumpable [15] sys-
tem and show that by using symmetry considerations
complete information about any mode of relaxation of
the system is calculable without having to calculate the
complete solution. We also employ group theory in
classifying the modes of relaxation for certain cases.

2. Matrix formulation and lumping
The matrix formulation of sets of coupled, homoge-
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neous, linear, first-order differential equations with
constant coefficients [3—7,12--14] is well known. The
reader is referred to Wei and Prater [14] for further
details and numerous examples, although our notation
differs somewhat from theirs. We consider a closed
system consisting of n states labeled 1,..., n. Let x;(¢)
be the fractional concentration (mole fraction) of
specics in state { at time ¢, and let wj, be the time
independent first-order rate constant for the transition
from state # to state 7. The time evolution of each x;(f)
can then be represcnted by a master equation,

() = ;} [ (e) — wyx;(0)] - [§))

The set of n such equations can be placed into matrix
form,

X(t)=AX(n), )

where X (#) and X(¢) are n-dimensional column vectors
whose clements are X;(z) and x;(#) respectively and A
is an n X n matrix whose elements are

= w;; fori#j,

2; = — 2 Wik - 3)

If A can be diagonalized, the solution of (1) correspond-
ing to the jth eigenvalue A; of Ais

x(e) = v exp(; ) , 4)

where v,g ) is the ith clement of the eigenvector corre-
sponding to the jth eigenvalue. The general solutions
of (1) are linear combinations of the x!(’ OF

x(6) = ?b,-x}i)(t), (5)

where the bj are determined by the initial conditions.
An equilibrium solution (4) of (1) is one for which
A; = 0. Zero is always an eigenvalue of A, and if Ais an
irreducible matrix, it is a simple cigenvalue [6]. In the
present work we assume that the A matrices for sys-
tems of interest are irreducible, so that we are consider-
ing only systems having unique equilibrium solutions.
In general, the eigenvalues of A are complex, but the
real part of each eigenvalue must be non-positive [13].
However, the requircment of detailed balance imposes
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[6,13] relationships among the wy; such that all eigen-
values are real. We consider only systems which have
solutions of the form (5) and only one eigenvalue
(labeled ;) of zero. The initial conditions can be
thought of as a displacement from equilibrium in which
each coefficient b; (f > 1) is a measure of the displace-
ment in the jth mode of the system. As time progresses
the system approaches its unique equilibrium as the dis-
placement from equilibrium in the jth modc decays as
exp(A,1).

It is often convenient to group individual states into
sets of states and consider the kinetic equations only
for such sets rather than for the individual states with-
in each set. For first-order systems such groupings are
most useful when the concentration of each set, which
is the sum of the concentrations of its component
states, itself follows first-order kinetics. Wei and Kuo
have called this grouping “lumping”™ and have presented
a formalism for it [15,16].

We consider groupings of » states into 7 sets where
each state is contained in exactly one set; Wei and Kuo
have termed such groupings ““proper lumpings™. We de-
fine the identity lumping as that which places cach
state in its own set; for this lumping n = 7, while for all
others n > 7. Greek letters will be used as dummy in-
dices for sets of states; thus, let x,(¢) be the fractional
concentration in set « at time £,

(0= .éi x;(6), )

where the sum is over all states in set «. The X, (¢) may
be viewed as the elements of an n-dimensional column
vector Jf(t) and the transformation of X(r) into X(#)
may be accomplished by means of an n X n lumping
matrix M [15],

X0 =MX(). )
The clements m,; of M are 1 if j € @ and O otherwise.

The lumping defined by M is exact if and only if there
exists an n X nmatrix A such that

X(0) =ME() = AX(r) )

describes the kinetic behavior of the lumped system
[15]. We may define A as

A=Mam!, )

where M ! is a right inverse of M; Mlisannxn
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matrix whose elements ml-;! may be chosen as 1/n,, if
j € a and 0 otherwise, where n,, is the number of
states in set . A necessary and sufficient condition
[15] for A to satisfy (8) is

MA = AM. o)

Eq. (10) does not necessarily follow from (9) since
M-1 is a left inverse of M only for the identity lump-
ing. For (8) and (10) to hold, there must exist a set of
ka‘3 for all «, 8 with a # (3, such that [15]

3 sy =g

jes

foralli € c.

an

3. Symmetry considerations
3.1. Equivalent interset transitions

We now consider a highly symmetric, specific type
of exactly lumpable system. We assume that there
exists a set of Wag for all o, 8 with a 3 3, such that

ifi€EaxandjEP. {12)

These rate constants trivially satisfy (11) with &, 5 =
ngw, . For convenience we arrange the n state labels
so that the states in set 1 are numbered 1, ..., ny;
those in set 2, ny + 1, ..., ny +15; etc. The states in
set ¢ are alternatively designated 1,2, ..., 7,.

We can write M in partitioned form where each
M,z isa 1 X n, matrix whose elements are 1l ifa=p
and O otherwise. Similarly, m-! (,an be written in
partitioned form where each Ma isan n, X 1 matrix
whose elements are 1/n, if « =8 and O otherwise. The
matrix A can be partitioned also. The diagonal blocks
are n, X n, matrices, A, , whose clements are

Wi_f = “’aﬁ

a,-,- = wjaia ifi #]-,
[K £ w ] , (13)
k#iy
k€x
where
K,= 22k 14)
gFa of -
ifn, = 1, then A, is the scalar element —K ;. The off-
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diagonal blocks of A are n, X ng matrices, A x> whose
elements are all w,, . The lumped matrix A is defined
by (9) and its elements may be written in terms of the
partitions of M, A, and M-,

A MaaAcr MBB > (15)
whlch leads to

Agg=kg, ifa#B,

Aye = Ky (16)

We now examine the relationship between the cigen-
values and eigenvectors of A and those of A. The eigen-
vector of A corresponding to the eigenvalue A; can be
written in partitioned form,

V(i)

yn - V‘” (17

)
Vﬁ

where V(’ } is an n-dimensional column vector whose
elements are V(’) Vs’) V(” V{9 s defined by

yn=myt), (18)
and thus the elements of v are
VD =My VD = 25 v 9)

(=]

Wei and Kuo [15] and Ozawa [17] have shown that
V() is either an eigenvector of A with eigenvalue ;
or a vector with all zero elements. In the former case,
V() is the equilibrium solution or one of the modes
of interest relaxation, and in the latter case, V(9 is
one of the modes of intraset relaxation.

The eigeavalues of A are also the cigenvalues for the
equilibrium solution and the interset modes of A, and
the elements of the eigenvectors of A are the sums of
groups of elements of the corresponding eigenvectors
of A. We now consider the individual elements of an
cquilibrium or interset cigenvector of A. Let v be
such an eigenvector with A; as its eigenvalue. The par-
titions of ¥{/) abey the equatlons

Za v =nvl), foralla. (20)
g
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For a particular partition, for example that correspond-
ing to set &, we can separate V(’ ) from the other V(’ )

Age VD AV = 25 A viD . @n

B+a

Making use of the fact that the A,g on the rhs of (23]
are matrices whose clements are all wg, and of (19)
and using the symbol 1 for the unit matrix and I fora
vector whose clements are all ones, we can obtain from

(21).
(Agq — AWV = _[g) Wee r?,;f)]l. (22)
Fa

We thus have n,, simultaneous linear equations in n,,
unknowns, the e!ements al, (). One additional equa-
tion, (19), could be used to chmmatc one unknown.

We now consider the intraset modes of relaxation.
There are n — n of these modes, n, - 1 for each set a.
if vy corresponds to relaxation within set ¢, then it
may be written in partitioned notation with V(') =0
for 8 # «. The non-zero part, V, ’), 1s simply an eigen-
vector of the n, X n_, matrix A, with cigenvalue A
Therefore, io obtain the intraset modes of relaxation
for a set @ we need only diagonalize A, . Such a dia-
gonalization yields ,, eigenvalucs (not all necessarily
distinct) and n, eigenvectors corresponding to the
equilibrium solution and the 7, — 1 modes of intraset
relaxation. These intraset modes involve transitions
between states in set « and states in other sets, bui
only in such a way that the concentration of species in
any state not within set o remains constant. The only
effect that the states outside of set « have on the intra-
set relaxation is the lowerning of the intraset eigenvalues
by K, .

3.2. Equivalent intraset transitions and permutational
symmetry

So far we have made no assumptions about the
intraset transition probabilitics in the systems we have
considered. We now examine the special case in which
(12) is assumed to extend to intra as well as interstate
rate constants. That is, we assume that for one . more
sets, set & for example, there exists a w,, such that

Wi =Wae Ifi,jEa. (23)
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Consistent with our definition of the kaﬁ we define
Kyo 85N Woq

For the equilibrium and interset modes, the restric-
tion (23) leads to each of the elements of V(’ ) being
equal to V /n . The restriction (23) gre.ntly simplifies
the mtmset modes as well. The elements of A, be-
come
a;:=w ifi#j,

ij aa

;= —[Kqy + (g — Dwyg] - (24)

Diagonalizing A, is trivial and leads to an cigenvalue
of 0 and n, — 1 degenerate cigenvalues of —(K, +k,,)
which correspond to intiaset modes of relaxation. The
degeneracy in the eigenvalues gives us considerable

flexibility in choosing the corresponding eigenvectors.

A convenient choice is the set of the n, — 1, n_-dimen-
sional vectors,
1 o 0
—1 1 o
03 |11, 0 (25)
o \ 0 1
o/ \O -1

The restriction (23) on the intraset rate constants
for set « makes all of the states in set & equivalent, that
is, the systern must be invariant to all permutations of
state labels of the states within set a. These ! permu-
tations form the group S,, , the symmetric group. The
reader is referred to Hamermesh [18], whose notation
we use, for a thorough discussion of this group and its
representations. Each permutation in S, . Tay be clas-
sified by its cycle structure which is de51gnatcd
(122837 ..) where « is the number of 1-cycles, 8 the
number of 2-cycles, etc. A 2-cycle is a transpositicn, 3-
cycles may be written as a product of 2 transpositions,
and am n-cycle as a product of # — 1 transpositions.
Each class of Sn,, is labeled by the cycle structure of
its members and the irreducible representations of S
are labeled in a somewhat similar notation.

We now dctermine the irreducible representations to
which the eigenvectors of the system belong. Since the
cigenvectors corresponding to the equilibrium solution
and the interset modes of relaxation have simply the
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values Vé’ )/na as their entries in the rows correspond-
ing to states in set g, these cigenvectors are invariaat to
all of the permutations in S,,, and thus belong to the
totally symmetric representation of Sna. This represen-
tation is labeled (n,). The n — n — n, + 1 cigenvectors
corresponding to intraset modes of relaxation for sets
other than « have zeros in the rows corresponding to
states in set &, and thus these eigenvectors also belong
to the totally symmetric representation (1, ). We now
consider the n, — 1 eigenvectors corresponding to in-
traset modes for set a. The relevant rows of these eigen-
vectors are given by (25). By inspection, it can be scen
that the character of the representation to which these
eigenvectors belong is simply & — 1 for the class with
cylce structurc (1%2637...). But @ — 1 is also the char-
acter for the representation (n, — 1, 1). Thus, the

n, — 1 eigenvectors for the intraset modes for state e
belong to the representation (1, —1, 1), while the re-
maining 2 — n_, + 1 eigenvectors of the system belong
to the totally symmetric representation (n,).

We now consider the case in which the intraset rate
constants follow (23) for more than one set, say sets
a, B3, -.., - In this case, the system is invariant to the
permutations of the direct product group

G=Sne X SugX . X Sn_,

in which the permutations in each component group
act only on the state labels within its set. The n eigen-
vectors for the equilibrium solution and interset modes
belong to the totally symmetric representation of G
which is given by the direct product of the totally sym-
metric representation of its component groups, (n,) X
(ng) X ... X (n,)). Similarly, the n — 1 eigenvectors for
the intraset modes for set & belong to the representa-
tion (1, — 1,1) X (5) X ... X (n.), those for the intra-
set modes for set § to the representation (n,) X
(ng—1,1)X ... X (n,), etc

4. Summary

Complete information about the equilibrium solu-
tion or any intraset or interset relaxation mode for the
specific highly symmetric type of exactly lumpable
kinetic system characterized by equivalent interset
rate constants is shown to be calculable without solv-
ing for the complete solution. By contrast the analysis
by Wei and Kuo [14,15] of more general iumpable sys-
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tems does nct include intraset relaxation modes or re-
veal the contributions of individual states to the equi-
librium solution or interset modes. For systems invar-
iant to permu.ations of state labels within sets in addi-
tion to possessing equivalent interset rate constants,
the rclaxation modes are particularly simple and can be
classified using group theory.

The question then arises as to when one might ex-
pect to encounter systems even approximately having
these characteristics. While the states 1, ..., n may refer
to distinct chemical species in the usual sense, they may
instead refer to individual quantum states of a system.
For example the sets « and 8 may be sets of vibrational
(or rotational —vibrational) states associated with elec-
tronic states a and f respectively, with the w;; = wyg
for i € « and 7 € f being internal conversion (or inter-
system crossing) rate constants. The intraset relaxations
in such an ex.mple refer to vibrational relaxations wit/-
in a given clectronic state. Alternatively the sets & and
B8 may be sets of spin components for different elec-
tronic or nuclear spin states. We have recently used the
preceding analysis in describing the kinetics of the
equilibration hetween planar diamagnetic and tetrahe-
dral paramagnetic Ni(IT) complexes [19,20].
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