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The anlllyns of a Iri~ldy symmetric type of cvactly hnnpdbk, closed syQcm of coupled. first-order rate CqUatiOIIS Shows 

that complete information ahout the equilibrium solution and all modes of relaxation is cal~ulahle from matrices with dimcn- 
siuns less than the number of statc~ in the system. 

I_ Introduction 

Systems of coupled first-order chemical reactions, 
often referred to as monomolecular reaction systems, 
arc of considerable interest. For example, some real 
chemical systems are of this type, and the kinetics of 
many more can be approximated by first-order rate 
equations, a technique referred to as linearization [I] . 
In the limit of small perturbations from thermody- 
namic equilibrium, the relaxation back to equilibrium 
of all reversible, closed chemical systems obeys first- 
order kinetics [2-S]. Biologists often model the flow 
of tracers from compartment to compartment of multi- 
compartment systems using first-order kinetics [6,7]. 
In addition, these reaction schemes are mathematically 
simple, at least compared to systems of reactions in- 
volving higher-order kinetics, and elegant methods 
have been developed for treating them. Much has been 
proven about _the solutions of the coupled differential 
equations which represent these systems. 

The formalism concerned with the cxistencc, 
uniqueness, and stability of steady-state and periodic 
solutions of sets of coupled differential equations is 
often rcfcrrcd to as dynamical systems theory [8]. 

Closed, monomolecular reaction systems are rcprcsent- 
ed by the simplest of such sets of equations, those con- 
sisting of homogeneous, first-order linear diffcrcntial 
equations with constant coefficients. A system is said 

to bc closed if there are neither sources nor sinks for 

any species. In these sets of differential equations the 
concentration of each species is represented by a con- 
tinuous variable whose time evolution is fully dctcr- 
mined by the rate constants and the initial conditions. 
This is in contrast to a stochastic model in which con- 
tinuous concehtration variables are replaced by dis- 
cretc random variables and rate constants by transition 
probabilities [9-l I ] . It has been shown that III closed 

linear systems the means of the discrete random con- 
centration variables obey the deterministic differential 
equations for the continuous concentrations [ 111 _ 
Thus, the results we derive in the present work are of 

relevance also to closed hnear systems to which a 
stochastic model is applicable. 

In section 2 we review the matrix formulation of 
sets of linear, first-order differential equations [3-7, 
12-141 and the lumping of individual states into sets 
of states [15,16]. In section 3 we anaiyLc a specific 
highly syrnrnctric type of exactly lurnpablc [ 151 sys- 
tem and show that by using symmetry considerations 
complete information about any rpodc of relaxation of 
the system is calculable without having to calculate the 
complete solution. We also employ group theory in 
classifying the modes of relaxation for certain cases. 

2. Matrix formulation and lumping 

The matrix formulation of sets of coupled, homoge- 
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neous, linear, first-order differential equations with 
constant coefficients [3-7,12--141 is well known. The 
reader is referred to Wci and Pratcr [ 141 for further 
details and numerous examples, although our notation 
differs somewhat from theirs. We consider a closed 
system consisting of n states labeled I,..., n. Let Xi(f) 

be the fractional concentration (mole fraction) of 
species in state i at time t, and let w0 be the time 

independent first-order rate constant for the transition 
from state i to state j. The time evolution of each xi(t) 
can then be represented by a master equation, 

;i(t) = c [rviixj(r) - W,jX&)] . 
i 

(1) 

The set of n such equations can be placed into matrix 

form, 

R(t) = AX(T), (2) 

where J?(f) and X(t) are n-dimensional column vectors 
whose elements arc pi and Xi(r) respectively and A 
is an n X N matrix whose elements are 

atJ 
= w.. 

J’ 
for i #j, 

(3) 

If A can be diagonalized, the solution of (1) correspond- 
ing to the jlh eigenvalue Xi of A is 

x?(t) = 7.~:~) exp($ r) , (4) 

where uin is the ith element of the eigenvector corre- 
sponding to thejth eigcnvalue. The general solutions 
of (I) arc linear combinations of the x?‘(r) , 

(5) 

where the bj are determined by the initial conditions. 

An equilibrium solution (4) of (1) is one for which 
hi = 0. Zero is always an eigenvalue of A, and if A is an 
irreducible matrix, it is a simple cigenvalue [6]. In the 
present work we assume that the A matrices for sys- 
tems of interest are irreducible, so that we are considcr- 
ing only systems having unique equilibrium solutions. 

In general, the eigenvalues of A are complex, but the 
real part of each eigenvalue must be non-positive [ 13 ] . 
However, the requirement ofdetailed bdancc imposes 
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[6,13] relationships among the SV~ such that all eigcn- 
values are real. We consider only systems which have 
solutions of the form (5) and only one eigenvalue 
(labeled X,) of zero. The initial conditions can be 
thought of as a displacement from equilibrium in which 
each coefficient bi (j > 1) is a measure of the displace- 
ment in the jth mode of the system. As time progresses 
the system approaches its unique equilibrium as the dis- 
placement from equilibrium in the jth mode decays as 

exf?(XJr)- 

It is often convenient to group individual states into 
sets of states and consider the kinetic equations only 
for such sets rather than for the individual states with- 
in each set. For first-order systems such groupings are 
most useful when the concentration of each set, which 
is the sum of the concentrations of its component 
states, itself fotlows first-order kinetics. Wei and Kuo 
have called this grouping “lumping” and have presented 
a formalism for it [15,16]. 

We consider groupings of n states in to 17 sets where 
each state is contained in exactly one set; Wei and Kuo 
have temed such groupings ‘proper lumpings”. We dc- 
tine the identity lumping as that which places each 
state in its own set; for this lumping n = 2, while for all 
others n > fi. Greek letters will be used as dummy in- 
dices for sets of states; thus, let 2,Jt) be the fractional 
concentration in set ~2 at time t, 

(6) 

where the sum is over all states in set CL The .2&f) may 
be viewed as the elements of an ii-dimensional column 
vector k(t) and the transformation of X(t) into 2(t) 
may be accomplished by means of an ri X n lumping 
matrix M [15J, 

k(r) = MX(f) . (7) 
The elements mQj of M are 1 ifj E Q and 0 otherwise. 
The lumping defined by M is exact if and only if there 
exists an ii X ii matrix A such that 

d(t) = Iv!!(t) = U(t) (8) 

describes the kinetic b_ehavior of the lumped systam 
[15]. We may define A as 

i=.A&I-l, 8) 

where M-l is a right inverse of M; M-l is an n X ii 
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matrix whose elements miil may be chosen as 1 In, if 
j E a and 0 otherwise, where na is the number of 
states in set (Y. A necessary and sufficient condition 
[IS] for i to satisfy (8) is 

MA=ti. (10) 

Eq. (10) does not necessarily follow from (9) since 
M-l is a left inverse of M only for the identity lump- 
ing. For (8) and (10) to hold, there must exist a set of 
kep for all cy, p with CY # p, such that [ 151 

(11) 

3. Symmetry considerations 

3.1. Equivalent interset transitions 

WC now consider a highly symmetric, specific type 
of exactly lurnpablc system. We assume that there 
exists a set of waD for all a, fl with OL # /3, such that 

Wij = ~UQP ifiEcrand jGp_ (12) 

These rate constants trivially satisfy (11) with kaa = 
npwpp_ For convenience we arrange the n state labels 
so that the srates in set 1 are numbered 1, . . . . nt ; 
those in set 2, n1 + 1, . . . . nl + “2; etc. The states in 
set 01 are alternatively designated I,, 2,, _.., n,. 

We can write M in partitioned form where each 
Map is a 1 X nar matrix whose elements are 1 if Q = f3 
and 0 otherwise. Similarly, MwL can be written in 
partitioned form where each M,$ is an ncr X 1 matrix 
whose elements are l/no if Q = $ and 0 otherwise. The 
matrix A can be partitioned also. The diagonal blocks 
are rza X PZ~ matrices, Aaa, whose elements are 

aii = Wi,ia ifi+j, 

(13) 

where 
kEQ 

(14) 

Ifn, = I, then AQQ is the scalar element -K,_ The off- 

diagonal blocks of A arc II, X np matrices,AQp, whose 
elements are all wPQ. The lumped matrix A is defined 

by (9) and its elements may be written in terms of the 
partitions of M, A, and M-l, 

iQP = M,,AQ$‘@ , (1% 

which leads to 

&, = k&Y ifrrffl, 

&a =-K,_ (16) 

We now examine the relationship between the eigen- 
values and cigcnvectors of A and those of A. The eigen- 
vector of A corresponding to the eigenvalue hi can be 
written in partitioned form, 

@I 
81 

where Y(l) is an n-dimensional column vector whose 

e1ementsqJre V{c, VP V(l) f(i) is defined by _LyI ---t n,- 

p(l) = M fl j) , (18) 

and thus the elements of c(j) are 

Wei and Kuo [15] and Ozawa [17] have shown that 
?(I3 is either an eigenvector of A with eigenvalue Xi 
or a vector with all zero elements. In the former case, 
V(n is the equilibrium solution or one of the modes 
of interest relaxation, and in the latter case, V(j) is 
one of the modes of intraset relaxation. 

The eigenvalucs of i arc also the cigenvahles for the 
equilibrium solution and the interset modes of A, and 
the elements of the eigenvectors of A are the sums of 
groups of elements of the corresponding cigcnvectors 
of A. We now consider the individual elements of an 
equilibrium or interset cigenvector of A. Let V(i) be 
such an eigenvector with ~j as its eigenvalue. The par- 
titions of 0 obey the equations, 

xAapVjj) = $VAJ), for allar. (20) 
P 
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For a particular partition, for example that correspond- 
ing to set 01, we can separate V,$j) from the other Vf), 

(21) 

Making USC of the fact that the Aop on the rhs of (21) 
are matrices whose elements are all \uPar and of (19) 
and using the symbol I for the unit matrix and I for a 
vector whose elements are all ones, we can obtain from 

(21). 

(22) 

We thus have ncr simultaneous_linear equations in II, 
unknowns, the elements a V$). One additional equa- 
tion, (19), could be used to climmatc one unknown. 

WC now consider the intraset modes of relaxation. 
There are n - ri of these modes, n, - 1 for each set 01. 
If Y(l) corresponds to relaxation within set CY, then it 

for a set ar we need only diagonalizc A,,. Such a dia- 
gonalization yields Q eigenvalucs (not all necessarily 
distinct) and PZ~ eigenvectors corresponding to the 
equilibrium solution and the “a - 1 modes of intraset 
relaxation. These intraset modes involve transitions 
between states in set ar and states in other sets, but 
only in such a way that the concentration of species in 
any state not within set (Y remains constant. The only 
effect that the states outside of set CK have on the intra- 
set relaxation is the lowering of the intraset eigenvlllucs 

by K,- 

3.2. Equivaknt intraset trunsitims and permutational 

symmetry 

So far we have made no assumptions about the 
intraset transition probabilities in the systems WC have 
considered. We now examine the special case in which 
(12) is assumed to extend to intra as well as interstate 
rate constants. That is, we assume that for one .A more 
sets, set ar for exampIe, there exists a w,, such that 

WV = wacr if i,jEcr. (23) 

Oli’ - Was if i +j, 

Qii = -[Ka + (“(y - l)Waa] - (24) 

Diagonalizing A,, is trivial and leads to an cigcnvalue 
of 0 and n, - 1 degenerate eigenvalues of -(K, + k,,) 
which correspond to intlaset modes of relaxation. The 
degeneracy in the eigenvalues gives us considerable 
flexibility in choosing the corresponding eigcnvectors. 

A convenient choice is the set of the PI, - 1, n,-dimen- 
sional vectors, 

1 0 0 

_- I 1 

'i 

0 

0 , --1 , .-. 0 _ 

II 1: -: 

Consistent with our definition of the karp we define 

kaa as npw,,. 
For the equilibrium and interset modes, ti!e restric- 

tion (23) leads to each of the elements of Vi’) being 
equal to tig)/n o. The restriction (23) greatly simplifies 
the mtraset modes as well. The elements of A,, bc- 
come 

The restriction (23) on the intraset rate constants 
for set 01 makes all of the states in set ar equivalent, that 
is, the system must be invariant to all permutations of 
state labels of the states within set CL These n,! pcrmu- 
tations form the group Silo, the symmetric group. The 
reader is referred to Hamermesh [ 181, whose notation 
we use, for a thorough dlscussion of this group and its 
representations. Each permutation in Sn, may bc clas- 
sified by its cycle structure which is designated 
( Ia2f13r...) where ar is the number of 1 -cycles, fl the 
number of 2cycles, etc. A 2cyclc is a transposition, 3- 
cycles may be written as a product of 2 transpositions, 
and a11 n-cycle as a product of rr - 1 transpositions_ 
Each class of &I(2 is labeled by the cycle structure of 
its members and the irreducible representations of Sn, 
are labeled in a somewhat similar notation. 

We now determine the irreducible representations to 
which the cigenvectors of the system belong. Since the 
cigcnvcctors corresponding to the equilibrium solution 
and the interset modes of relaxation have simply the 
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values V$)/PZ, as their entries in the rows correspond- 
ing to states in set (Y, these eigenvcctors are invarihnt to 
all of the permutations in Sn, and thus belong to the 
totally symmetric reprcscntation of Sn,_ This reprcsen- 
tation is labeled (n,). The n - ii - PZ~ + 1 eigenvectors 
corresponding to intraset modes of relaxation for sets 
other than CY have zeros in the rows corresponding to 
states in set 01, and thus these eigenvcctors also belong 
to the totally symmetric representation (n,). We now 
consider the IZ~ - 1 eigenvectors corresponding to in- 

traset modes for set (Y. The relevant rows of these eigen- 
vectors arc given by (25). By inspection, it can be seen 
that the character of the representation to which these 
eigenvectors belong is simply Q - 1 for the class with 
cylce structure (1”2fi37...). But o! - 1 is also the char- 
acter for the representation ()I, - 1, 1). I hus, the 

% - 1 eigenvectors for the intraset modes for state 01 
belong to the representation (n, -1, I), while the re- 
maining 12 - N, + 1 cigcnvcctors of the system belong 
to the totally symmetric representation (n,). 

WC now consider the case in which the intraset rate 
constants follow (23) for more than one set, say sets 

a, P, ---, r_ In this case, the system is invariant to the 
permutations of the direct product group 

G = &, X S,,@ X .-_ X sn7 , 

in which the permutations in each component group 

act only on the state labels within its set. The II eigcn- 
vectors for the equilibrium solution and interset modes 
belong to the totally symmetric representation of G 
which is given by the direct product of the totally sym- 
metric representation of its component groups, (n,) X 
(Q) X _._ X (n,). Similarly, the n - 1 eigcnvectors for 
the intraset modes for set ar belong to the representa- 
tion (nQ - 1 ,l) X (Q) X .__ X (n,), those for the intra- 
set modes for set j3 to the representation (n,) X 

(np - 1, 1) x . . . X @,), etc 

4. Summary 

Complete information about the equilibrium solu- 
tion or any intraset or interset relaxation mode for the 
specific highly symmetric type of exactly lumpable 
kinetic system characterized by equivalent interset 
rate constants is shown to be calculable without solv- 
ing for the complete solution. By contrast the analysis 
by Wci and Kuo [ 14,151 of more general lumpabla sys- 

terns does net include intraset relaxation modes or re- 
veal the contributions of individual states to the equi- 
librium solution or interset modes. For systems invar- 
iant to permu.ations of state labels within sets in addi- 
tion to possessing equivalent interset rate constants, 
the relaxation modes are particularly simple and can be 
classified using group theory. 

The question then arises as to when one might ex- 
pect to encounter systems even approximately having 
these characteristics_ While the states 1, . . . . n may rcfcr 
to distinct chemical species in the usual sense, they may 
instead refer to individual quantum states of a system. 
For example the sets 01 and fl may be sets of vibrational 
(or rotational-vibrational) states associated with clcc- 
tronic states 01 and fl respectively, with the wji = IVES 
for i E CY and i E fl heing internal conversion (or inter- 
system crossing) rate constants. The intraset relaxations 

in such an ex.tmpie refer to vibrational relaxations rvifh- 
in a given clc&ronic state. Alternatively the sets (Y and 
p may be sets of spin components for different elec- 
tronic or nuclear spin states. We have recently used the 
preceding analysis in describing the kinetics of the 
equilibration Between planar diamagnetic and tetrahe- 
dral pardmagnetic Ni(II) complexes [19,20]. 
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