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LETTERS TO THE EDITOR 
A NOTE ON THE DAMPING OF LARGE AMPLITUDE BEAM VIBRATIONS 

The efficacy of viscoelastic layers, in constrained and unconstrained configurations, on 
reducing vibration levels in beam structures has been studied extensively for linear motions. 
However, few inroads have been made for large amplitudes. Such work has been done for 
clamped-clamped compact beams consisting of a viscoelastic core constrained by metallic 
face sheets by Hyer, Anderson and Scott [ 1,2]. Here moderate amplitude forced motions of 
a beam with a symmetric cross-section consisting of a metallic core with symmetrically 
attached top and bottom viscoelastic layers are considered. The following theory is proposed. 
It is assumed that the viscoelastic layers are so thin that they transmit membrane forces 
only. The core is taken to be a Timoshenko beam and non-linearity is introduced through 
the requirement that the beam ends be a fixed distance apart. 

Axes xyz are used, with x along the neutral axis and y and z along the symmetry axes. The 
plane of loading is the xz-plane. Considering an element of the beam, summing forces in the 
x- and z-directions, taking y-axis moments, and neglecting rotatory inertia associated with 
shear, one obtains 

2 [(IV’ + Nb)(# + 0) + NC8 - @] + a(x)q(t) = prAr is,‘+ pbAbiS, + pcACiS,, (2) 

-&w/ax + p = p=z= e + ip’ A’(h, + h2) iio’ - +p”Ab(h, + h2) ii& (3) 

where 

N’(t, b) = j- & b, dz, MC = j za,‘, dz, Q=So:idz (4) 
co. b) e E 

and u. and w. denote mid-layer displacements, the superscripts c, t and b stand for core, top 
and bottom, respectively, 0 and r/~ are slopes due to bending and shear, respectively, so 
that awo/i3x = 4 + 8, p denotes density, A is area and Zc is the moment of inertia about the 
y-axis of a unit length of the core. Further, a dot stands for a time derivative, a(x) and q (t) are 
the spatial and time dependencies of the external load, respectively, h1 is the thickness of the 
core and hz is the thickness of the layers. 

The relevant displacements are taken to be wo(x, t) and 

u==%(x,+z~, (5) 

Uf(b) = u~(x, 2) + p2,e it h,(& + e) x u~(x, t) + +hh, 8. (6) 

The only non-zero strain components are assumed to be 

E,= +(aw/ax- e), E,,= aulax++(aw/axy. (7) 

Green’s non-linear measure is used only in the core, since non-linear membrane effects in the 
face sheets are felt to be negligible. The stresses, and hence stress resultants, in the core can be 
calculated by using Hooke’s law. A further ingredient is that the layer material is adequately 
described by the Kelvin law 

a’,lp’ = E”b’s$” + Ct’b’ et(b) 
xx 9 (8) 
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where Etch) and crcb) are material parameters. Use of this restrictive law is justified when as 
here, the ultimate application is to harmonic time-dependencies. 

Substituting equations (4) through (8) into equations (l), (2) and (3), and injecting Timo- 
shenko’s shear coefficient k, gives 

(9) 

where 

K = k2 bhl G’, m = pc AC + 2~’ A’, 

Z = pc I’ + Q ’ A’ h,(hl + h,), B’ = 2A’E’ + EC A=, 

b is the width of the beam and EC and G” are Young’s modulus and the shear modulus of the 
core material, respectively. In arriving at equation (9), a non-linear term (aw,,/Jx - O)O has 
been taken to be negligible, following Yu [3]. 

Galerkin’s method is now used. It is assumed that 

w, = r(t) (1 - cos 2%X/L), u. = q(t) sin 47tx/L, 4 = T(t) sin Znx/L. (12) 

These trial functions, which have been used by other authors, satisfy the boundary conditions 
which call for vanishing of a,, w. and 8 at the ends of the beam. These modes were chosen 
with a certain amount of trepidation because they have the bad feature that the shear defor- 
mation angle C$ is zero at the boundary. They do appear to be the best obvious choice, how- 
ever, since a switch to w. = f(t) sinzx/L and u. = q(t) sin2rrx/L causes loss of bending 
effects in the core, loss of linear terms in one of the resulting differential equations, and poor 
behavior in the limit as shearing deformation vanishes (the Euler-Bernoulli beam theory is 
not recovered in the limit; see reference [4]). The inaccuracy of the shear deformation at the 
boundary is accepted on the rationale that shear effects in the core are small compared to 
bending effects. The method yields 

where 

A,T2+A,~+Abrj+ASij=0, (13) 

KnT+F,rjT+Fgk-+FJ3+FJtj+F,q(t)+F,i:+F,Tf2=0, (14) 

B,T+B,i;+B,r+B,i;=O, (15) 

L2 A2 = 2E’A= x3 LA3 = -8ti BE, 

B, = +L(K - 4n= kc Zc,L2), 

LA, = -16ti c A’, 2A5 = -mL, 

Bz = -xl, L2 Bj = 4x3 B’ I= 9 2B,=IL, 

LF, = -2n2 EC A=, L2 F3 = d(2E’A’ + EC A=), 2L3 F, = -36 EC A=, 

L2 F5 = -27~’ r A’, F,=L, 2F, = -3mL, 2L2 FB = 3x3 EC AC. 

In arriving at F6, a(x) has been set qua1 to 1. 
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The external force is taken to be 
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q(t) = Hcosot + Gsinot, (16) 

where Hand G are constants. Assuming that no sub- or superharmonics arise (see references 
[l, 21 for a discussion of the frequency ranges for which this is reasonable), one takes 

r(t) = W(0) cos or. (17) 
Substituting equation (17) into equations (13) and (15) gives linear ordinary differential 
equations for q and T, the steady-state solutions of which are 

q = AZ cos (2wt - az) - (A,/2A,) W2, T = y1 Wcos cot, (18) 
where 

A=(A, - 4d A# + ~40’ A:, a2 = tan-’ [oA,/(A, - 4d AS)], 

YI = (& d - &)l(& - & 02). 

Inserting expressions (la), (17) and (18) into equation (14) yields the frequency-amplitude 
relation, on using the harmonic balance technique, 

where 
c,w6+c~w*+c~wz+c1=o, (19) 

C, = -F; Fz , F= w, C, = (xKy, - F, ~IP)~, 

CS = ~[(Fz YI + Fd (Bz ~0s a2 - AZ/A,) + 3(F4 + y1 W/2 + 2aF5 /I2 sin alI, 
B2 = [@A2 A4)2 + A$(A, - 4c02 A,)2]“2/A, 

C, = 9(F4 + FB Y~)~/I~ + (F4 FB yl) N(FJ + F2 yl) V2 ~0s a2 - A2/Ad 

+ 3. FS o/32 sin a21 + (4 Y 1 + &I2 + Wi - 3(4/4 82 ms a2 + AW@I 
- (A,/A,) (F2 yl + FJ) 04, F5 sin a2 + co2 F: Pt. 

Some specific numerical explorations will now be given; the numbers correspond to an 
experiment that was performed. The core material is steel, with E = 2.07 x 10” Pa, G = 
6.89 x 10” Pa and p = 7.82 x lo3 kg/m”. Other items are the beam length L = 30.48 x 10m2 
m and width 2.54 x 10m2 m and the force level F= O-45 N. The viscoelastic material was 
taken to be ISPD 111. Shown in Figure 1 is the frequency-amplitude response curve for a 

25- 

Figure 1. Damped response. h, = 8.89 x 10e4 m; b = 2.54 x lo-* m; L = 30.48 x 
10m4 m. F= 0.45 N. 

1O-2 m; hl = 2.03 x 
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beam of thickness h, = 8.89 x 10e4 m to which is attached single viscoelastic layers. Rather 
strong non-linear effects are present. Numerical results for the undamped case are so close 
to those for the damped beam as to be almost indistinguishable on the scale of Figure 1. (An 
experiment confirmed this observation., The points on Figure 1 refer to that experiment.) 
More detailed information is given in Figure 2, which shows amplitudes at 70 Hz (the damp- 
ing coefficient of ISPD 111 is a maximum at this frequency) as a function of tape thickness, 
for beams with thicknesses h, = 4.57 x 10m4 m, 5.58 x 10M4 m and 8.89 x 10e4 m. 
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Figure 2. Amplitudes as functions of ISPD-111 viscoelastic layer thickness. F= O-45 N at 70 Hz. 

To achieve a reduction of 5 %, layers of at least the beam thickness must be applied! Thus 
the evidence points towards the inefficiency of unconstrained damping layers for control of 
moderate amplitude vibrations. This is due in part to the unconstrained nature of the damping 
layer but is also due to the dominance of the elastic forces on limiting amplitudes in this type 
of hardening, non-linear system. 
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