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A New Axiomatization of Portfolio Theory 

JAN P. H. VAN SANTEN 

Department of Psychology, The University of Michigan, Ann Arbor, Michigan 48109 

An axiomatization proposed by Coombs (1974) is shown to be insufficient for the 
representation of gambles in a risk x expected value space as described by Portfolio 
Theory. A new axiom system is given which is necessary and sufficient for this representa- 
tion, and which implies the old axiomatization. 

INTRODUCTION 

Portfolio Theory (PT) is a theory specifying how risk and expected value affect prefer- 
ence in the domain of gambles. Since its first appearance (Coombs, 1969), several 
formulations have been given, both formal (e.g., Coombs, 1974) and informal (e.g., 
Coombs & Huang, 1970). 

The crux of the theory is the structure in Fig. 1, which states that indz&ymce curves 

(i.e., connected sets of points (x, y) where x is the expected value and y some risk measure 
of a gamble) are increasing above a line called I, the ideal crest, decreasing below I, and 
are nonintersecting. It is the representability of a preference ordering by this structure 
that has been tested empirically and for which axioms have been constructed. The 
reason for constructing a new axiom system is that, as will be shown below, no existing 
axiomatization states sufficient conditions for the representability of a preference ordering 

by the structure in Fig. 1. 

EXPECTED VALUE 

FIG. 1. Indifference curves ( f ,  f  ‘, and f”) and ideal crest (I) according to the Portfolio Theory. 
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THE REPRESENTATION PROBLEM 

Definition 1 formalizes the structure in Fig. 1. 

DEFINITION 1. ,,F, Z} is a Folded Trade-08 Structure (FTS) iff 

(1) Z is a continuous real-valued function on a closed interval [s, t] of Re, the set 
of real numbers. 

(2) F is a nonempty set of binary relations on Re, such that for all f, f’ E F: 

(a) Iff#f’ thenfnf’ = ~7. 

(b) f n Z contains exactly one element, denoted (u, , 6,). 

(c) Let f* be the converse of relation f (i.e., f* = {(y, X) / (x, y) of]), and let 
L, and U, be real numbers such that Lf < b, < U, . Then f * is strictly decreasing on 
[L, , b,], strictly increasing on (b, , U,], and continuous on [L, , U,]. 

The graph of any f in F is an indifference curve in expected value x risk coordinates; 
f*(y) = x iff x is the unique expected value at which risk y, combined with X, is on the 
indifference curve; and f * attains its minimum, af, at risk = b, , the point (Us, ZQ) 
being on the ideal crest. 

DEFINITION 2. Let </F, Z) be a FTS, let x, y E UreFf, and let f be the (unique) 
curve on which x lies, and f’ the (unique) curve on which y lies. Then define x >r y 
iff af > a,, . 

DEFINITION 3. A set G with three relations 3,. , +ev , and 3, is FTS-represent&e 

iff there exist real-valued functions R and E on G, and a FTS iF, I) such that for all 
a, bEG: 

(1) (E(4 R(4) E US.Ff. 
(2) a >, b ifi Wh R(4) aF (E(b), R(b)). 

(3) a +,, b iff E(u) > E(b), and a +7 b iff R(u) >, R(b). 

The three relations on G are to be interpreted as a risk, expected value, and preference 
ordering. In words, Definition 3 states that these relations are FTS-representable if 
we can represent the elements of G as points in an expected value x risk space, and can 
draw curves through these points such that the resulting structure is a FTS with indiffer- 
ence curves representing more attractive gambles when going to the right. In what 
follows, we will denote the symmetric, respectively asymmetric, parts of 3,. by N?, 
respectively >, . Similarly for >,, , $, , and aF. 

Given these definitions, it is easy to see why the axioms proposed by Coombs (1974) 
are insufficient. These axioms are the following: 

The structure (G , yr , $,> is a Portfolio structure iff there exists for each > 
expectation level t a scale (bt (interpreted as a risk preference scale) such that: 

480/17/1-2 
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1. If E(A) = E(B) = t then A +:, B iff $,(A) > &(B), where E is the 
expectation operator. 

2. If E(C) = E(B) = E(A) = t and C +,. B 3, A then either $,(B) 3 +,(A) 

or MB) 2 h(C). 
3. If E(A) 2 E(B) and +&A) 3 &(B), where a = E(A) and b = E(B), 

then A +:9 B. Moreover, if either inequality is strict, then A >9 B. 
(Coombs, 1974, p. 26). 

Consider the following counterexample. Let G be a nonempty finite set of gambles 
chosen such that there exists a transitive and connected ordering +r on G such that for 
some a, , b, E G, us -,. s , b and E(uJ = l/E(b,,) > 1. By finiteness of G, and because 3, 
is a weak ordering, there exists a real-valued function R on G such that for all 4, b E G, 
a +r 6 iff R(u) > R(b), and R(a,) = R(b,) = 0. Define for any real t for which the set Gt , 
containing all gambles having an expected value of t, is nonempty, the function 
dt: G, -+ Re as follows: &(a) = l/(t + 1 R(u)I). Finally, let a 3, b iff E(u) + &J(U) > 
E(b) +&(,)(b). Clearly, this structure satisfies axioms 1, 2, and 3. However, it is not 
FTS-representable, because us -,, b,, , a, -,. b, , and u0 >cV b,, . 

The reason why this set is not FTS-representable is that the functions #t are defined 
such that they decrease with expected value if one holds risk constant. All previous 
axiomatizations and informal presentations of PT have the same weakness in that they 
do not sufficiently restrict 3, on gambles differing in expected value. 

As a concluding remark, it should be pointed out that FTS-representability implies 
single-peakedness of 3, with respect to +,. at a fixed expected value level, i.e., iff 

a -tw b -ey c and a >, b >, c then b >?, a or b >B c. This follows from the fact that 
a vertical line through a FTS intersects the indifference curves such that under I the 
intersections increase with respect to >r and decrease above I. 

A NEW AXIOMATIZATION 

We have restricted ourselves to the case where G is finite. Not only does this con- 
siderably simplify matters, there also do not seem to exist theoretical or practical reasons 
for treating the infinite case. 

Let G be a finite set with three binary relations >r , $e,, , and 3, . 

AX&W (9. h, +,, , and >2, are weak orders (i.e., transitive and connected). 

Let G/weu = {Gr ,..., G,}, and define Gir = {u 1 a E Gi and if c E Gi then a $, c}. 
Thus, Gil contains the elements maximally preferred in the set Gi of all elements having 
a particular expected value. 

Axiom (ii). For all i = I,..., m if a, b E Gi’ then there is no c E G# such that 
a>,c>,borb>,c>,a. 

Note that Axiom (ii) implies that there exist at most two risk levels within Gt. The 
axiom will be used to define two subsets of G, G+ and G-, and it guarantees that all 
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gambles belong to either G+ or G- with the exception of the gambles belonging to sets 

Gil having only one risk level. We will use Gl for the union of all sets Gil. Let Gf --_ 

{a ] if a E Gi then there is c E G,J such that a >, c}. And G- = (a 1 if Q E Gi then there is 
c E G,I such that c >, a}. Note that G+ n G- = 0, but not necessarily G = G+ u G-. 
G+ or G- may have elements in common with Q. Finally, G -= G+ u G- u GI. To 
make this particular choice of defining G+ and G- understandable the role of ideal 
gambles in the present axiomatization should be pointed out. Because G is finite, we can 
never be certain if there do not exist gambles outside G which, if included in the experi- 
ment, would be preferred over the maximally preferred gambles in their respective 

expected value equivalence classes. In other words, being maximally preferred in Gi 
does not mean being ideal in the absolute sense. Now, what we are interested in is 
obtaining a representation of G that leaves room for those ideal gambles. The definition 

of G- is such that in the representation a possible ideal gamble would have to be repre- 
sented below the points on which the gambles in G+ having the same expected value 
as the ideal gamble are mapped. Similarly for G-. In fact, no other definitions of G- 
and G- would have been possible. 

-Jxiom (iii). I f  a, b E G-t, a +,, b and b >,. a then a +P b. I f  a, b E G-, a +,1, b and 

a 3, b then a +, b (>, if either antecedent inequality is strict). 

Axiom (iii) states that for gambles which are too risky (G+) a gamble becomes more 
attractive when risk decreases and expected value increases, and that the converse holds 
to G-. 

The three axioms simply translate a FTS into empirical order relations. Consequently, 
most of the proofs are rather trivial. 

THEOREM 1. A set G with three binary relations 3, , >,,: , and 3 p satisfies 
-4xioms (i)-(iii) if it is FTS-representable. 

Proof (Suf7icency). By (i) th ere exist scales E and R satisfying Definition 3(3). Let 
h(a) = (E(u), R(u)). Let [a] = ({c 1 c -eZ) a}, {d 1 d -? a}), and define [u] +* [b] iff 

+’ 
+----- 

+------+,+- 
+------- +---- 

I 

EXPECTED VALUE 

FIG. 2. Indifference curves prior to the construction of the ideal crest. Elements of /z[G+] are 
indicated by +, elements of h[G-] by -, and elements of h[G - G+ - G-1 by O. 
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a +:p b. By (iii), 3 * is well defined. Moreover, (iii) implies that (G+/w,, x G+/w,. , 3 *> 
satisfies independence in the conjoint measurement sense (Krantz, Lute, Suppes, & 
Tversky, 1971), and that the induced orderings on the components are isotonic, respec- 
tively antitonic, with +,,, , respectively +r . Hence we can draw nonintersecting, strictly 
increasing indifference curves through h[G+] always terminating right of the rightmost 
point through which a curve is drawn. Likewise for h[G-1. The result is shown in Fig. 2. 
Now a curve I can be drawn such that it does not cross any of the existing curves and 
that it has a unique risk level for every expected value. Note that in case h[GJ is one 
point, I can be drawn at either side of that point. Both for (Gf/wepr x G+/mr, > *) 
and for (G-/mev x G-/w ~, 3 *) the induced ordering on the first component is 
isotonic with +,, . Hence we can extend both groups of curves in Fig. 2 to the opposite 
side of I, such that the set of new curves is nonintersecting. I is crossed exactly once by 
each curve, and every extended curve crosses I at its leftmost point. Clearly, the resulting 
structure is a FTS satisfying Definitions 3(l)-(3). 

(Necessity). Let s(a) be the number of curves left of the curve containing h(a). Then 
s(a) > s(b) iff a 3, b. Also, R and E are ordinal scales. Thus, 3,. , +,, , and +:, must 
be weak orders. For (ii) assume a, b E Gir, a >, b (a -r b is trivial) and there is c E Gi 
such that a >, c >, b. Hence h(c) must lie on a vertical line through h(u) and h(b) 
between these points. Also, there exists f EF such that it contains both h(a) and h(b). 
Then h(c) has to lie on a curve right off, which implies c >, a, b, contradicting the 
definition of Gt. Before we conclude the proof by showing (iii), first note that (iii) is 
equivalent to: if a, b E Gf, a +,, b and b 3, a then a +T 6, and if a, b E G-, a +,t, b 

and b 3, a then b +,. a (>, if either antecendent inequality is strict). 
Assume a, b E Gf, a +,, b, and b >, a. Then E(u) > E(b) and h(b) aF h(u). If 

a -= b then h(u) and h(b) lie on the same f E F, which implies R(u) 3 R(b) by the 
isotonicity of the part off above I. Assume b >, a, and let h(u) E f for some f E F. Then 
/z(b) >F h(u) together with the continuity off * imply that a vertical line through h(b) 

intersects f in some point (E(b), x), where x > R(b). By isotonicity of f  we have: 
E(u) > E(b) implies R(u) > x > R(b), and thus a >, b. Likewise we can show that 
a >ev b and b 3, a imply a >, b. The proof of the second part of (iii) is similar to that 
of the first part and will be omitted. 

The uniqueness of this representation is difficult to describe. Clearly, any strictly 
increasing continuous functions preserve the representation. However, given two FTSs 
representing the same empirical system, there do not necessarily exist strictly increasing 
functions transforming one FTS into the other, because I is not necessarily monotonic. 

DISCUSSION 

The present axiomatization differs from the system proposed by Coombs (Coombs, 
1974) not only in that it states necessary and sufficient conditions, but also in that the 
primitive terms are different: & is eliminated and E is replaced by +b. . It would be 
of interest to investigate whether or not the previous system is implied by the present 
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system. In order to do so, both E and q$ have to be defined in terms of three binary 
relations satisfying Axioms (i)-(iii). The definition of E is straightforward: By i there 
exists a scale E such that E(a) > E(b) iff a +:ev b. For & the situation is more complicated. 
For example, #Q cannot be defined as the restriction of an ordinal preference scale (b 
(which exists, by (i)) to the subset Gt . In that case, axiom 3 would be violated by any 
6, c for which E(b) > E(c) and 4&b) = &O(C), b ecause the second antecedent implies 
a h,, b, whereas the strictness clause in axiom 3 implies a >i, 6. However, if we define 
dt as follows, the desired result can be shown. First, consider the following relations 
on G: 

R = {(a, b) / E(b) 3 E(u) and a 3, b}, 

R= = {(a, b) / E(b) =I E(u) and a m9 b), 

R> = R - R=. 

R, R=, and R> are transitive but not necessarily connected. If we define $(a) as the 
number of elements b such that a R> 6, then 4 satisfies: if a R= b then 9(u) = $(b) and 
if a R” b then $(a) > 4(b). Then let & be the restriction of + to G, . Now we can show: 

THEOREM 2. If a finite set G with three binary relations +,, , +*. , and > y suti@es 
Axioms (i)-(iii) then real-valued functions E and & can be deJined on G such that axioms l-3 
hold. 

Proof. Let E(u) = E(6) = t and a +, b, then a R 6 and thus ~$~(a) 3 $,(b). If b >v a 
then b R> a and thus +,(6) > &(u). Let E(u) = E(b) = E(c) = t, and let c +r b $? a. 
There are three cases: 

(1) b E G+, then c E G+ and by (iii), b $, c. 

(2) b E G-, then a E G- and by (iii), b +D a. 

(3) b E Gl, then b +B a, c by definition of G’. 

Axiom 3 follows immediately from the definition of & . 
This shows that indeed (l)-(3) state necessary conditions for FTS-representability. 

The main reason for not using & as a primitive term in the present axiomatization is 
that it unnecessarily complicates matters, as the simplicity of the new axioms derives 
from the fact that this system is a direct translation of a FTS into empirical order relations. 
A similar argument might be given for replacing E by +,, . However, there are two 
more reasons. First, properties of expectation, like being a linear operator, are irrelevant 
for FTS-representability. The only property relevant is that in terms of E a weak ordering 
over G can be defined. More important is the following theoretical consideration. From 
a psychological point of view, it is not at all obvious that a gamble is perceived in terms 
of (risk and) expected value. In fact, it would be rather surprising if individuals were able 
to correctly order gambles according to expected value, even when given the most 
explicit instructions specifying the meaning of expected value. In that case, PT formulated 
in terms of expected value is incorrect. By formulating the theory to allow for biases 
in the perception of expected value this problem is circumvented. 
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