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If the path connected topological space X has a countable open cover (I& with path connected 
elements, then I~,(X. * ) is computed as a colimit determined by the second homotopy groups of 
the intersection of elements of Q and the indices of the fundamental group injections of these 
intersections into tile fundamental group of X. Aside from assuming that the inclusions induce 
such monomorphisms, certain other inclusions are also required to induce monomorphisms of 
fundamental groups and restrictions are placed on the arrangement of the elements of %. 
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Under certain circumstances the second homotopy group of a topological space 
X is determined by the first and second homotopy groups of elements in an open 
cover $1 of X. This paper describes conditions on % which enable ?r,(X, * ) to be 
computed as a colimit. It is in three parts. First, the case % = {U,, &) is presented 
in complete detail as a basis for the generalizations which follow. Second, these 
generalizations are stated in such a way that the reader can quickly determine 
whether or not they are applicable to any particular situation at hand. Third, proofs 
are outlined. 

Most of thtise results appeared in the author’s thesis [l], which was written under 
the direction of Eldon Dyer whose assistance is gratefully acknowledged. In 
particular it was he who suggested this approach and Example 1. 

1. Tbe case % = {U,, U2) 

Theorem 1. Suppose X is a topological space and % = (IA, &} is an open cozier of 
X with U,, &, and W3 = U1 f3 U2 path connected. Let * E Us and let ki : Us- Ui, 

i = 1,2 denote the inclusions. Finally, suppose that *I (ki) is manic for i = 1,2. Then 
n,(X, * ) is determined as the push -out 
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in the category of abelian groups where Ij = 7~1 (X, * )/n, (Uj, * ) for j = 1,2,3. 

Proof. The classical van Kampen Theorem yields w1 (X, * ) as the push-out 

in the category of groups.. It is a theorem on amalgamated products [4, p. 91 that the 
hypotheses imply that the inclusion induced maps 

are manic for i = 1,2,3. Thus, for each i, g1 (Ui, * ) may be regarded as a subgroup 
of nr (X, * ). Consider t he inclusion induced pull-backs (restrictions): 

where rf -9 X is the universal covering 
covering projection. Furthermope, since 
projections, the diagrams 

*l(0i,*)---**~(X,*)=O 

3- 1 ( i 
~l(U,*)+~1(X*) 

projection. It is clear that oi + Ui is a 
TT] commutes with pull-backs of covering 

= 1,2,3) 

imply that vl (0.9 *) = 0 (in each component). Thus, in each component, li is the 
universal cover 0.. Since 7rl (Ui, * ) permutes the sheets in each component of ri,, we 
have 0 = & oi where U denotes disjoint union and 4 = 7~~ (X, * )/ml (Uj, * ) is a set 
which indexes the orbits of the action. The Hurewicz isomorphism theorem yields 

Hl(Q;Z)=$ Hl(oj;Z)s$ ~f(o’,*)=O* 
13 k4 

Since Li,, &, ti3 amount to restrictions of X --3, X, { 0,, 02) forms an open cover 
ofXwith 0,n 02= &. The Mayer-Vietoris sequence yields the exact sequence 

-+ H&;Z)-+ H@,;Z)$H&;Z)-+ Hz@; Z)-+O 

which is equivalent to the push-out 

H2(ir,; Z)- 

L 

H2(02;Z)---+ 
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in the category of abelian gyoups. Since all the fundamental groups are zero, there 
are Hurewicz (and universal covering) isomorphisms: 

Hz(Uj;z)=$ H~(Uj;z)z$ ~z(Uj,*)=$ pz(Uj,*)’ 
r, 4 

(i = 1,2,3) 

and 
‘?*(X,Z)” ?rz(X,*)= 7rz(X,*). 

These isomtirphisms enab?& the homology groups in the push-out :.J be replaced by 
second homotopy groutis as required. q 

Theorem 2. Suppose X is a topological space and ciu = (U,, U,} is an open cover of 
X with U,, Uz and U3 = U1 n U2 path connected. Let * E Us and let ki : U+ Ui, 
i = 1,2 denote the inclusions. Finally, suppose that ker rrl (k,) = ker mTTI (k2) = D. 

Then n2(X, * ) GCCUICS in the exact sequence 

@ Ha(V;z)-*@ v2(U,*)e$ ~z(UZ,*)*~~(X,*)+@ Dab+0 
13 11 12 13 

where Dab is D abelianized, 4 = ml (X, * )/WI (Uj, * ) for i = 1,2,3, and V is the 
covering of U3 determined by rrl (V, * ) = D e 7r1 ( U3, * ). 

Proof. There is a push-out 

a 
D - ~(UI,*) 

b 
I 

rr,(k 1) 

rr,W I 
nt(Uz,*)- m(X*) 

where the maps a and b are manic. As before the pull-backs 

~*(Qjv*)--* 7&,*)=0 

I I 

yield rl (U,, * ) = 71, ( U2, * ) = 0 in each component. However, 7pl (Us, * ) = ker c3 = 
D. A Mayer-Vietons sequence is obtained as before and the theorem follows after 
applying the Hurewicz isomorphism theorem as much as possible. 

The following example exhibits spaces .X and Y with respective covers 

{U,, U2, U3 = Ut 17 U2} and IV,, V2, V3 = VI fl V2) such that Ui and Vi have the 

same homotopy type for i = 1,2,3 and such that the action of wl ( U3, * ) on 
w * (Ui, * ) is identical with the action of rrl (Vq, * ) on 7p * (Vi, * ) for i = 1,2. 
However, 7r2(X, * ) # 7f2( Y, * ). Thus, some re:striction on 7r1 (ki) is necessary since 
in general g2(X, *) is not determined even by at1 the homotopy groups of elements 
in an open cover and the fundamental group action. 
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&mmple 1. Let A = K(Zz, 1) = Z%(R)and let X = K(& 2). The cohomollogy ring 
of P-(R) is a polynomial ring in a single generator, q, in dimension 1. Let f:: A --) X 
be such that f*(b) = q2 where L denotes the fundamental class. X1 is the space 
obtained from the mapping cylinder of f by attaching a cone on A. That is, X1 is the 
push-out 

.A’-CA I I 

f 1 1 
X-XUCA=Xt 

where 7 is the cofibration replacing f in the mapping cylinder construction. X2 is 
the push-out 

A-CA 

1 I 
Y-XvSA =:X2 

where Y is obtained by 2 itaching the vertex of a cone on A to the basepoint of X. 
SA denotes the suspension of A. 

That the elements in these two covers have the same respective homotopy types 
is obvious. Since in XZ, 3~~ (A, * ) acts through the basepoint, this action is trivial. 
Clearly, ?r,(X,, * ) = ZZ 8 Z2. It remains to be shown that W, (A, * ) acts trivially in X1 
and that 7r2(Xl, *) = Z4. 

By hypothesis rrl (A, *) ;= 22; ~i (A, *) = 0, i # 1; ni (CA, * ) = 0; n,(X, *) = 22; 
si (X, * ) = 0, i # 2. The long exact homology sequence of the pair (X, A ) yields the 
short exact sequence: 

and the fact that rrl (X, A, * ) = 0. The relative Hurewicz isomorphism theorem 
yields 

(2) Hl(X,A;Z)=O 
and 

(3) h: m(X,A,*)=+H2(X,A;Z) is onto. 

The universal coefficient theorem for homology together with (2) yields 

The long exact cohomology sequence of the pair (X,A) is 

Since f* is an isomorphism 

BY (9, H,(X A ; is cyclic. The Hurewicz isomorphism and the long exact 
homology sequence yields the short exact sequence 
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Thus, &(X, A ; Z) = Z4 and (1) together with (3) yields ‘rr2(X, A) = Z4. Recall that 

ker(h)={x-cuxIxEtrz(X,A,*),aE?Ir(A,*)}. 

Since w2(X, A, *) z H2(X, A ; Z), ker(h) = 0 and the action of ?rl(A, *) on 
n,(X, A, * ) is trivial. By (1) m(X, * + w2(X, A, *) is manic so that the action of ) 
7~ (A, * ) on ‘ITS (X, * ) is also trivial. The relative Hurewicz isomorphism may be 

written as the composition 
f< 

n2(XA,*)=rrr(XUiCA,*)4&(XUCA;Z)~61z(X,A;Z). 

This may be rewritten 

Since this is an isomorphism, 

v~(X,,*)= tr,(X UCA)=Zg. 

2. Statement of results 

If till contains more than two elements (but is locally finite and countable), then 
matters are complicated for two reasons. First, if we agree to call each path 
component of the intersection of elements of % a part of %, then it is not sufficient 
to assume that all inclusions of parts of % into X induce monomorphisms of 
fundamental groups (see Example 2). Second, if n % = 0, then it may not be 
possible to define the functor required to compute 7r2. Sufficient conditions are 
given to guarantee that the appropriate functors exist. While particular cir- 
cumstances may admit weaker hypotheses, the conditions chosen simplify the 
theorems and their proofs in general. 

In summary, the approach is to construct a CW-complex analogous to the nerve 
of %. To this complex we associate a graph which when embedded in X provides a 
minimal selection of basepoints and paths between them. The edges and vertices of 
this graph are labeled by the parts of %. Our hypotheses are that either this graph is 
a tree or else its labels satisfy a condition specified below. 

Definition. If % is a locally finite open cover of X with path connected elements, 
then c% is the CW-complex defined inductively as follows: to each open set in % 
associate a vertex. For it 3 1 represent each path component of the intersection of 
n - 1 elements in % by an n-simplex attached with the appropriate (n - l)- 
simplices as boundary. (In particular cases, this complex will not be a simplicial 
complex because the intersection ‘>f some pairs of simplices will not be connected.) 
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A simplex in this complex is a free face if it is not a face of anotl,sr simplex. The 
l&al finiteness of % guarantees that each simplex is contained in a free face. Each 
simplex in & corresponds to a part of %. 

Definition. By a grapct Y we mean a collection of vertices ZJY and oriented edges 
eY together with functions O, t: eY --, OY giving origin and terminal points, 
respectively and an inversion “: eY -+ uY, such that for each y E ey, j7# y, f= y 
and o(y) = t(y). The graph g% of a locally finite open cover % has vertices 
corresponding to the free faces of c% Whenever two free faces v, w of c% 
intersect, their intersection v n w is another CW-complex. The edges in g% 
between the vertices’v, w correspond to the free faces in v n w. (Technically, each 
such free face is represented twice to allow inversion.) Each vertex and edge of this 
graph corresponds TV a part of %. If e is an edge of g%, we denote the 
corresponding part b;r Xc. 

Definition. A path iLr a graph is a finite sequence (ei !&, of edges such that 
O(ei+l) = t(ei) for i = 1,. . ., PZ - 1. It is a circuit if t(e,,) = d(el) as well. An edge e is 
unnecessary because of the path (e,}L, if the path has o(el) = o(e), t(e,) = t(e), and 
Xei CX= for i = I,..., n. (Geometrically, unnecessary edges are ones which are 
unnecessary for shifzing basepoints.) A subgraph 59 Gg% 2 a generating graph if 
023 = vg% and each edge in eg% - es is unnecessary because of a path in 9??. A 
generating graph % is minimal if no edge in S is unneces$tiry because of a path 
i-n %. 

The vertices cf a minimal generating graph % corespond to free faces in C% 

whicn in turn correspond to the highest levels of non-empty intersection of 
elements of %. If basepoints corresponding to each vertex in 3 are selected, at least 
one point in each part of % will be chosen. An edge, e E es, will correspond to a 
path in Xc between two selected points. A minimal generating graph contains 
precisely those edges which are necessary to provide all the basepoint shifts. 

It is possible to homeomorphically embed any minimal generating graph % into 
X by selecting basepoints corresponding to vertices and arcs (in the appropriate 
parts) corresponding to edges. Recall that path-connectedness implies arc- 
connectedness. Also, it may be necessary to reselect (once) basepoints after the arcs 
have been inserted among the initial selection. 

Suppose % has a minimal generating graph, 3, which is a tree. Under this 
assulnption it is possible to define the necessary functor immediately. Let any of the 
selected basepoints serve as the basepoint * for X. Given a part A of % choose its 
basepoint *A as follows. In 93, let the distance between vertices be defined as the 
(minimal) number of edges in a path between them. Then *A is the selected point in 
A whose corresponding vertex is closest to the vertex corresponding to *. 

We view % as a category whose objects are the parts of % and whose morphisms 
are all the inclusions. The functor F, from tilt into the category of groups is defined 
on parts, A by 
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F,(A)= m(A,*,) 

and on morphisms i: A w B to be the composition 

~1 (A,*~)=,,(B,..)-+,,(B,..) 

the arc corresponding to the 
and *icg. 
inclusion A c, X induces a 

where the second map is the conjugation induced by 
edge in VI between the vertices corresponding to *c, 

Suppose further that for each part A of % the 
monomorphism of fundamental groups. Defitpe the index set IA by 

IA = WI (x1 * )/WI (A, *A). 

The functors F,, II B 2, are defined for parts A of % by 

F,(A)=@ nJA,*A) 
44 

and on morphisms i: A c+ B to be the composition 

where the second map is the same as before. 
The final fundamental group condition is expressed by the following definition. 

Definition. The cover % satisfies condition H provided for each U E %, the 
inclusion 

un U(sl--{u))-,u 
induces a monomorphism of fundamental groups. (Since the proofs are by 
induction the following slightly weaker condition may be substituted: there exists a 
sequence (U,, Uz, . . .} = % such that for each i = 2,3,. . . 

Uj 
> 

+ VI (Ui) is manic and id U’ is path connected.) 
j-1 

Note that if c% is l-dimensional, each element of % will intersect at most one 
other element of %. Thus, the intersection U n u (% - {U}) will be a part of 31. 
Since we are going to assume that the inclusions of parts of 4% into X induce 
monomorphisms of fundamental groups, this extra condition is unnecessary in this 
case. 

Theorem 3. Suppose X is a path conrsected topoiogical space Llnd % is a loccally 
fide countable open cover of X such that each element of Ou is path connected. 
Suppose fwsher that % has a minimal generating graph 53’ which is a tree. Then 
colim F, = ‘all (X, * ). 
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Theorem 4. Suppose that X, % and % satisfy all the hypotheses of Theorem 3. 
Suppose further that for each part A of % the inclusion A f+ X induces a monomorph - 
ism of fundamental groups. If % also satisfies condition H, then 

dim F, = 7~~ (X, * ). 

Theorem 5. Suppose that X, % and Y satisfy all the hypothesfs of Theorem 4 and 
that rj (A,%) = 0 for i = 2, -. ;, n - 1 for each part A of %. Then 

colim F, = w,, (X, * ). 

Corollary. Suppose that X, %, and 99 satisfy all the conditions of Theorem 4 and 
that each part A, of 9 is (n - l)-connected, n 9 1. Theirt 

n;, (X, *) = cc slim FI, 

where FL(A) = ?r, (A : ‘A ) and F;(i) is the composition 

Proof. If n = 1, this is just Theorem 3. Otherwise, for each part A, w,(A, *A) = 0 
and Theorem 3 implies that qI (X, * ) = 0, Thus, IA has cardinality 1. 

Now suppose that % does not have a minimal generating graph which is a tree. 

Detinitian. A circuit {ei }y= I in a generating graph is inessential if there exists a part 
A of % such that Xc, CA for i = 1,. . ., n. A minimal generating graph is essential 
if it has no inessential circuits. 

This condition may also be phrased topologically. First embed 3 in c% by 
associating to each vertex the barycenter of the corresponding free face and to each 
edge an arc through the barycenter of the corresponding simplex. 3 is essential if 
the induced map ml (%, * ) + wl (c%, * ) is monk. To see this, note that if 9! is 
ines.sential, then the loop in cczl corresponding to any inessential circuit in ($3 may be 
contracted to any wrtex corresponding to an element of % containing A (the part 
m the definition). 

Theorem 6. If % and X satisfy the hypotheses of Theorem 3, % has an essential 
generating graph 3, and X is locally grcc-connected, then vl (X, * ) is the semi-direct 
product determined by the split extension 

o-*I,(~,~)--,~*(X,*)~~~(~,*)~o 

where 2 is a covering space of X which has on open cover 4 = LI, % with a 
generating graph which is a tree. (Thus, rl 2 is computable by Theorem 3.) 

Theorem 7. Suppose X, 99, and % satisfy the conditions of Theorem 6. Suppose that 
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jw- xch part A of %, the inclusion A + X induces a monomorphism of fundamental 
groups and that % satisfies condition H. Finally, suppose that wI ($3, * ) is a countable 
group. Then n-,(X, * ) is determined by the groups nt(A, *A) for each part A of %, by 
the indices of the .fundamental group injections and by 5% 

In the proof of Theorem 7 we will use the universal cover of 99 and the elements 
of % to construct an explicit coveringspace of X to which Theorem 4 is applicable. 
The details of this construction are given below. Exactly this same procedure 
enables a similar generalization of Theorem 5. 

The next example illustrates the necessity of condition H. 

Example 2. X is the surface obtained by rotating the circle (rc - l)* + y* = 1 about 
the y-axis. % is the three piece cover generated as this circle rotates from - E to 
2~13 + 6, 2~13 - E to 4~13 + E, and 4~13 - E to 2~ + & for some small positive 
number E. All intersections are path connected and all three pieces intersect at the 
origin. Thus, c% is a triangle and g% = 98 is a point. Each element of the cover and 
the intersection of any two elements is homeomorphic to the circle which generates 
7~~ (X, * ) = Z. It follows that the inclusion of each part of % into PC induces a 
monomorphism of fundamental groups. Since each part of % has n?o higher 
homotopy, F, is identically zero for n 2 2. However, condition fi fails since each 
element of the cover intersects the other two in a figure 8 inducing the mapping 
2 * Z-, 2. Nevertheless, we can use Theorem 4 to compute w,(X, * ) by noting that 
upto homotopy, X is a torus with a disc sewn across the inside. The universal cover 
x is an infinite spiraling circular cylinder with discs sewn in at regular intervals. 
Thus, W*(X, *) = n*(X, *) = @zZ. 

3. Proofs 

Theorem 3 is the main theorem of [2, p. 431. In this paper an isomorphism (and its 
inverse) from colim FI + w1 (X, * ) is given explicitly. 

The following easy lemma will permit inductive arguments for Theorems 4 and 5. 

Lemma. If X is a topological space and % = (U,, U2,. . .) is an open cover of X 
such that LJi c Ui+l for all i, then 

H, (X; 2) = colim H, (ui ; 2). 

Theortms 4 and 5 will follow immediately from the appropriate generalization of 
the Mayer-Vietoris Theorem. It is easier to obtain this theorem if we incorporate 
slightly more generality than we actually need. Suppose p: Y + X is an onto map. 
The functor FP: % -+ Top is defined on parts A of % to be the pull-back 
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449 - -Y 

1 1 
P 

A-x 

and on morphisms in the obvious way. 

Theorem 8. Suppose X, 52 and 538 satisfy the conditions of Theorem 4. Then if 
p: Y --, X is a disjoint union of unioersal covering projectiovns, 

Hz ( Y; 2) = Hz colim FP = colim &F, 

Proof. The proof is by induction on the cardinality of 94. If ‘ill has a single element, 
then FP is constant and the t leorem is trivial. If % has two elements, then since % is 
a tree, f? % is path connR:ted and the theorem follows as in Section 1 of this 
payer. 

Suppose till has n elemc?ts. There exists an element U’ E % such that U % ’ is 
path-connected for % ‘ = % - (U}. Let X’ = U % ‘, W = U’ n Xl. Clearly, 
{X,, U(] is an open cover for X. Consider the push-out 

Since U’ is a part of “3, d induces a monomorphism of fundamental groups. That c 
induces a monomcrphism of fundamental groups is precisely condition H. Thus b 
induces a monomorpnism of fundamental groups. 

It is straightforward to verify that if W is not path-connected, then no minimal 
generating graph for % is a tree. Define Y’ and Y” to be the pull-backs 

Y’- Y 

1 1 
X’c--, x 

Y”+ Y 

1 i 
w-x. 

The hypothesis that 93 is a minimal generating tree is sufficient to guarantee that the 
intersection of elements of % is path-connected [l, Theorem 2, p. 121. If we cover 
W by th : intersection of pairs of elements of % it turns out that this cover, w, has 
fewer than n elements. Generating trees %’ and 59” for %’ and w are obtained by 
restricting 9% With these covers and generating graphs, X’, % ‘, $‘, Y’, and W, w/l 
%“, Y” satisfy thz hypotheses of the theorem so that &( Y’; 2) and &( Y”; 2) are 
coiimits. If we now apply the Mayer-Vietoras Theorem as it appears in the proof of 
Theorem 1, Theorem 8 follows by diagram chasing. 

nition. Let Ab denote the category of Abelian groups and define FH : % -+ Ab 
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as follows. On objects, A, FM (A) = eIAH2(A ; 2) for A the universal cover of A 
and 1A as before. On morphisms, define Fw in the obvious way. 

Theorem 9. Hz@ ; 2) = colim FH. 

Proof. This follows from Theorem 8 (by taking Y to be 2) and from the fact that 
singular homology is additive (like in the proof of Theorem 1). m 

Theorem 4 is an immediate consequence of Theorem 9 since the Hurewicz 
isomorphism is a natural transformation and 

Theorem 5 can be proved by these same arguments since its hypotheses 
guarantee that the lower dimensional part of the Mayer-Vietoris sequence is zero. 

In order to prove Theorems 6 and 7 Iwe will show how to use % and (;e to 
construct a covering space, X, for X. This covering space will have an open cover W 
induced by %. It has as many open sets as elements in the set % x 7r1 (%, * ). (This 
explains why ml (3, * ) must be countable.) A minimal generating graph for W will 
be @, the universal cover of %. It turns out that X, W” and G satisfy the conditions 
of Theorem 4. If c% is l-dimensional it is possible to use the map c% --) c% to 
construct an analagous covering space (exactly as was done in Example 2). The 
appropriate analog of Theorem 6 may also be proved in this case. If c% is not 
l-dimensional it is necessary to use % and IS universal cover to construct W. The 
idea is to embed 48 in X, notice which edges lie in which parts and then assemble W 
from parts of 91 placed on the appropriate edges of 9. If $3 is not essential, W will 
contain singularities and will not be a covering space. If % is essential, W is not too 
tangled. 

The construction of W involves the introduction of a category C. Let p: g + % 
denote the universal covering projection. The objects of C are equivalence classes 
of pairs [(A, u)] where v E U@ and A is any part of % such that XPu C A. The 
equivalence relation is generated by - where 

if there is an edge e in g from 2, to v’ such that XP c A. As for morphisms, 

C([(A, u )I, [(BP ZJ ‘>I> is non-empty If and only if A G B and (B, u’) E [(B, ZJ)]. In this 

case C([(A, v )I, [(R 01) contains only the inclusion A + B. The functor 
G: C+ Top is defined on objects by G[(A, u)] = A. On morphisms it is the 
identity. The family of inclusions G[(A, u)] + X is a compatible family which 
induces an onto map r: X + X. It will be convenient to denote the image of 

G[(A, u)] in X by #G[(A, v)]* 
It is clear that the collection 
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is a cower for 2. It is also true that if X, 631, and %’ satisfy the conditions of Theorem 
7, then A, W, and @ satisfy the conditions of Thleorem 4. 

It turns out that 0 is e minimal generating tree for W. We will show that the 
usual action of ?rl(%, *) on its universal cover extends to a properly discontinuous 
action on 2 which maps d onto itself and whose orbit space is X. It follows that I is 
a covering projection and Theorem 7 is proved. 

Theorem 6 is an immediate consequence of Lemma 1.1 of [?i since $ is a tree. 
(Local arc-connectedness is an hypothesis of Lemma 1.1. It is also used in the proof 
that W is an open cover of 2.) 

A detailed proof of Theorems 6 and 7 involves many straightforward verifica- 
tions. We shall limit ourselves here to an indication of how the fact that 59 id 
essential is used to okain the properly discontinuous action. 

The category C cam be constructed given any cover till and graph %. In general, . 

an open subset of X 7 kl not be evenly covered because the equivalence relation on 
C identifies too man! pairs. The equivalence relation is defined in terms of paths in 
93 and the hypothesis of essentiality limits these identifications. For example, the 
following lemma indicates that if %9 is essential then all identifications in the colimit 
may be accounted fLr by the shortest possible diagrams. 

Lemma. If % ir essential and x E qG[(Ao, vo)] n #G[(A1, v$ then there exists a 
diagram 

w29 vdl 
/ 

,S A4 
KAo, vdl 1; A 1, Vl )I 

iri C and elements Xi E G[(Ai, vi )], i = 0, 1,2 with GSX~ = ~0, GtX2 = ~1 and +xi = x 

f or i -0,1,2. 

Proof. The proof is by induction. Suppose 8 ckgram of length two relates 
elements in 2: 

J \ J -\ 
[W, a)] ’ Iv339 v3)l [(Bs, a)]. 

It is immediate that representatives can be chosen such that pv2 = ~~~~ = pv4. If 
~2 $ v4 then the paths relating (B3, v2) to ( 3, v4) to (B3, v3) project to a 
circuit ia 59 since p is a covering projectiorz. This circuit is inessential (all its edges 
are in 3), Thlus v2 = vn. From the definition of a pair, XP9 c B2, XIpy c B4. Since 
Xm= XpV,,, 1% n B4 #a 3 and there is a pair (Be, v,) and a diagram 
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which relates the original elements. 

Lemma. If A is part of % (and 3 is essential), then 

PA = u (CIG[(A, v)]. 
V 

Proof. It is easy to verify that r-’ A = U, qW[(A, v)]. The difficulty lies in 
showing that this union is disjoint. If x E JrG[(A, v)] n JIG[(A, v’)], then the 
previous lemma guarantees the existence of a diagram 

Iv% WI1 
J \ 

I(A* u>l l(A9 a* 
These maps exist only if (B, w) E [(B, v)] and (B, w) E [(B, v’)]. The definition of - 
provides a path in $ from v to o’ which projects into B c A. Thus, [(A, v)] = 
[(A, v’)l- 

The action cy of r1 ($9, *) on 2 is defined as follows. If v E v@ and g E rrl (93, * ), 
denote by gv the usual action of ~~(99, *) on v. If x E 2, then since W is an open 
cover of g9 x E JIG[(U, v)] for some U E %. Since +G[(U, u)] n $G[(U,pv)] = 8 
(if pv# v), we may let at&, X) be the image of x in $G[(U,pv)] under the “identity 
map” (G[(U, v)] = U = G[(U,pv)]). 
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