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Abstract : Shell-model core excitations based on the Sp(6, R) model are compared with those derived
from a~luaur models. Overlaps between the first sytnplectic excitations (essentially giant E2
excitations) and a-cluster states of the same SU(3) symmetry are used to estimais the a-breatup
probabilities of giant E2 tesonanoes in ' 60, = °Ne, =4Mg and =°Si . Although these probabilities
are large, a~luster and Sp(6, R) core excitations are essentially complementary and may both be
needed for a meaningful microscopic description of A = 16-40 nuclei .

1 . Introduction

The symplectic Lie algebra Sp(6, R) and its subalgebra Sp(2, R) have recently been
shown ' ~ 2) to be useful in selecting the shell-model core excitations needed for the
development of quadrupole collective features in a microscopic description of nu-
clear spectra. These symplectic models are a natural extension of the Elliott SU(3)
model, building in core excitations through the development. of an SU(3) band super-
structure which permits the continuation of rotational bands beyond the simple
shell-model limit . Arickx s) has shown that the irreducible representations of the
noncompact group Sp(2, R) form a meaningful classification scAeme for sBe by com-
paring the eigenfunctions ofan extended shell-model calculation s) for aBe, including
core excitations up to 4>~, with functions of good Sp(2, R) symmetry. A close con-
nection between this Sp(2, R) model and an a-particle model for aBe has also been
demonstrated ~) . Since eHe essentially is two a-particles, any meaningful model for
aBe must contain this feature; and it is interesting to investigate whether this close
connection between symplectic and a-cluster models persists to heavier nuclei . Recent
sculled extended shell-model calculations °~ e) have incorporated very high core ex-
citations into the microscopic description of nuclei in the A = 16-44 region through
the introduction of specific a-cluster states . The remarkably successful study of ' 60
by Suzuki') in terms ofa pure (a+ tZC) cluster model basis shows that the dominant
components ofthe states in r 60 below 16 MeVcan seemingly be organized into SU(3)
band systems e) of the type (oho), (~o+2, ~), (~o +4, ~), . . ., with significant ampli-
tudes up to high values of ~,, and with "bandheads", (oho), corresponding to np-nh
states of largest possible intrinsic deformation, with n = 0, . . ., 5. Since the SU(3)

f Supported by the US National Sàence Foundation .
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representations (~,~) of these band systems are identical with those generated by the
infintesimal operators of the noncompact group Sp(6, R~ more specifically the oper-
ators ofthe subgroup Sp (2, R) which generates intrinsic states ofthe largest possible
deformation, it is interesting to ask howmuch of the physics of quadrupole excitation
is contained in such a-cluster model calculations. Both the a~luster model basis and
the symplectic excitations select a very specific set ofcore excited states, free ofspurious
c.m . motion, from the huge space of shell-model core excitations. It is inter-
esting to determine the extent to which the two types of excitations are identi-
cal or complementary . In 160 the overlaps between the first symplectic excitations
based on the bandheads (~~) with the a~luster states of the same (~h) range e)
from 0.808 to 0.872 . For the second symplectic excitations, however, these overlaps
can be as small as OS49. In BBe the corresponding numbers are 4) 0.89 for the first
and 0.79 for the second symplectic excitation. In the present work the study of this
relationship between a~luster and symplectic excitations is extended to heavier nuclei.
Although the a~luster bases contain much of the physics of quadrupole excitations,
it is found that the a~luster and symplectic excitations give essentially a complemen-
tary set of core excitations, and both may be needed in detailed microscopic studies
of nuclei in theA = 16-40 region.

Since the excitation operators which generate the higher members of a symplectic
band are of%ctively E2 operators, shell-model states of 2iuv core excitation,
corresponding to the first Sp(6, R) excitations, can be expected to correspond closely
to giant E2 resonances based on the ground state ofthe system . In nuclei with ground
states ofrelatively pure SU(3) symmetry, states ofthe first symplectic excitations, with
SU(3) labels corresponding to large intrinsic deformations, can be expected to be the
dominant components ofthe giant E2 resonances ofsuch nuclei The overlaps between
these first Sp(6, R) excitations and a~luster states ofthe same SU(3) symmetry should
thus lead to a reliable estimate of the a-breakup probability of giant E2 resonances in
many light nuclei . Since these overlaps are large, the a-breakup channel must be an
important contributor to the total width of giant E2 resonances in many light nuclei.
Thea-amplitudes of the first Sp(6, R) excitations are given in sect . 3 for a number of
good SU(3) nuclei ranging from 8He to ZBSi.

2. Sp(6, R) symmetry
Thesymplectic algebra Sp(6, R) is generated by the nine U(3) operators

A
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with SU(3) irreducible tensor character Ttz°~ and T't°zt. To create excitations free of
spurious c.m . motion contamination, the oscillator quantum creation operators, such
as .

must be replaced by

so that
A

	

1 A A

Aü = ~{ ~ ~ni(khT~k)+n~k~li (k)]- ~
t
~

	

~t~ni(~1~(m)+n~mNii(~~}+
t=t

It will also be important to express the 2ttcu raising operators is (properly normalized)
irreducible tensor operators 7;,;;~A in the SU(3) ~ SU(2) x U(1) basis, characterized
by the Elliott quantum numbers 9) eAMA:

rzot = r2ot

	

r2ot = rzo>
400+ ~ ztfv

n

r:
r

f These authors use the notation Sp( 3, R) in plag of the more conventional Sp(6, R).

and, finally, in terms ofthe polynomials t° ) ~20~~1+)
~the harmonic oscillator crea-

tion operators

r2oi = ~{~ ~2°~~+(k))- 1

	

~ [PCt°t(~1+(~) x Ptt°~M+(m))7â2°t}~a

	

k-t

	

A i.~~t

where Pâx° t creates a normalized oscillator function, when acting on the oscillator
ground state . The square bracket denotes SU(3) coupling, and a is any component
of the (20) tensor in either the Fr1MA or theLMT scheme.

Earlier applications t t " tz) of this algebra have made elegant use of Sp(6, R) sym-
metry in the space of harmonic oscillator functions of a single (three~imensional)
variable, but have missed the rich spectrum of symplectic bands in a many-nucleon
system . The important implications of the existence of this spectrum have . only re-
cently bcen recognized by Rosensteel and Rowe t)t . The U(3) quantum numbers of
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any -~Alence configuration (states of Oftcv oscillator excitation) characterize an (in-
finite-dimensional) unitary irreducible representation of the noncompact group
Sp(6, R) . The three labels ~~v° will be chosen to characterize these representations,
where (~i,°Ib) are the Elliott SU(3) quantum numbers of the symplectic bandhead,
while the U(3) quantum numbers of the bandhead,~+No+vo, ~+vo, and v° give
the total number of oscillator quanta in the three space directions . Certain core ex-
cited states can form further symplectic bandheads . Thenp-nh states oflargest possible
intrinsic deformation, such as the 4p~h state in t 60with (~u) _ (84), e.g. characterize
further irreps of Sp(6, R) . (The lowering operators 7~°s ~ must annihilate this state,
since (02) operators acting on this (84) statecould create only states with (gyp) _ (10, 2),
(64) (86), (83), (75) and (94) . No such Pauli-allowed states exist in the space of core
excitations of 2itm .)
The matrix elements of the 2itco raising operators with 1= 2 are proportional to

the matrix elements of the mass quadrupole operator (defined relative to the c.m .
of the system). Between SU(4) scalar states they are also proportional to the matrix
elements ofthe charge quadrupole operator ; and for this reason nuclei with A = 4n
in the A 5 28 region will be chosen as the prime examples. For giant E2 excitations
based on ground states the first symplectic excitations are ofgreatest interest. They are
given by

[7.csot X ipcxawt~ txp~
a ,

where ~«°"°~ is the symplectic bandhead wave function, which is assumed to be the
major SU(3) component of the actual A-nucleon ground-state wave function ; and
where the square bracket again denotes SU(3) coupling. E.g.

~Kzi`er -
[~zot X

rpcxawr~KLnrC<(~~)117KSO~lI(ZoNo)> ]-t

_

	

~

	

~(20)h (~o~o)xoLoll(~Ft)KLM~(bnL°MoILMi

	

(8)
tK~~o

given here in the angular momentum basis, a = rcLM, so that the reduced Wigner
coetfdent needed here is an SU(3)/R(3) reduced coefficient . With a = eAM,, the

TABLE

Reduced matrix elements ofthe first Sp(6, R) excitations in the band characterized by ~ovo

(~i,o, No+1)

	

~[.io+2po+2vo+A-3]
(Zo+~, Ro - l)

	

~[Zo+Ft o+2vo+A-4]

(~o- ~, No)

	

?[Ro+2vo+A-5]
(~o+ No- 2)

	

~[2vo +A-5]
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Wigner coefficients must simply be replaced with the appropriate coefficients for the
SU(3) ~ SU(2) x U(1) basis .
For these first symplectic excitations the states (gyp) are simple, (have a single oc-

currence in a symplectic band) . The SU(3) reduced matrix elements of T~z°~ for these
first symplectic excitations are given in table 1 . Another set of simple states within
the symplectic band are the states of largest possible intrinsic deformation for each
core excitation of 2miuo which form the SU(3) ladder (~olb), (~o +2, ~), . . ., (~o + 2m,
~), . . ..To generate these states it is sufficient to consider the subalgebra z) Sp(2, R)
generated by F+ = 7zs °~, F_ = T~°z~, and Fo = ~A=~ . Even though this Subalgebra
does not contain the angular momentum operators, it is sufficient to create states of
the form (~ with (.tp) _ (~+2rrr, ~) and a = xLM, since we can use the Wigner-
Eckart theorem, as expressed by eq . (8), and since the SU(3)-reduced matrix elements
of T~z°~ for the full Sp(6, R) group are given by matrix elements of T~=° ~ between
highest weight states, HW, in the eAM,, scheme

<(~o+2m+2, f~o)HWI7=~°~~(~,o +~, uo)HWi

= 1 x ((~o+ 2m+ 2, po)~~Tczol~~(~o+~, ho)i = -L(m+lxm+2~F~)]}~

with m = 0,1, 2 . . ., where ~F~ is given by the minimum possible eigenvalue of Fo
(from table l, 2~F~ _ ~i.o+~+v°+~{A-1)).
To give the actual shell-model decomposition ofa symplectic excitation, it is useful

to express the 2iuo-raising operator in (7) in terms of the polynomials P~q° fin+ ) of
eq . (6), since the shell-model decomposition of SU(3) coupled states of this form can
readily be evaluated by SU(3), SU(4) recoupling techniques of the type used to give
the shell-model decomposition ofa~luster states in refs . ' 3. 1a) . Table 2 gives the shell-
model components of the first symplectic excitation with (gyp) _ (10, 0), based.on the
z°Ne Ofico excitation state with (~opo) _ (80), (vo = 4), and for comparison the a~lus-
ster state

~~r1~L~l~a~)-coo,(i6U) x ~coo~(a)x ~~Q°_;,o~]~r.~~-~QoI+

	

(10)

with a harmonic a-160 relative motion function, carrying Q = 10 oscillator
quanta, and '60 core and a-article closed shell internal wave functions, ~, with
(~.p,) _ (00) . (In eq. (10) sal is the antisymmetrizer and N the norm factor.)
The large amplitude components ofthe Sp(6, R) state (the first three entries oftable

2) are those in which a single particle is excited by 2itw, up from the sd to the sdg shell,
or from the p to the pfshell (without change in the sda configuration). The four small
components, making up only 2 ~ of the Sp(6, R) wave function, involve simultaneous
excitations of two particles by 1 üw. Theae components are generated by the 1/A parts
ofthe 2fjco-raising operators, and are needed to insure a final state free ofspurious c.m.
excitations. The a~luster state also has large components in which a single particle
is excited by 2hc° , but the similarity between the two types of states is now less pro-
nouneed than it is for similar excitations e) in 160 and 813e. The overlap between the
(10, 0) Sp(6, R) and a-cluster states in z°Ne is 0.686, which compares e " a)with overlaps
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T~st.E 2

') The shell-model components are given in SU(3), SU(4) coupled form. Square bracrets denote both
SU(3) and SU(4) coupling . Redundant quantum numbers are omitted. Since all SU(4) quantum numbers
follow from the SU(3) labels (Zp) they are not shown explicitly.

of 0.808 and 0.894 for the corresponding states in 160, with (~.~) _ (20), and sBe
with (gyp) _ (60) . To study the relationship between the a-cluster model and the
Sp(6, R) excitations further, higher excitations in the symplectic ladder, (~+2m, ~),
of s°Ne are compared with the corresponding a~luster states with a-1 60 relative
motion function carrying Q = ~+2m quanta. The overlaps between the two types
of states are shown in table 3. [Norm factors for the a~luster states have been given
by Bandô 6), the normalizations for the Sp(6, R) states follow from eq . (9).] Although
there is sufficient overlap between the first symplectic excitation and the correspond-
ing a~luster state to give a large a-breakup probability to an E2 excitation based on
the (80) Z°Ne shell-model valence configuration, the higher symplectic excitations
diverge more andmore from the corresponding a~luster states. The higher symplectic
excitations which are important for the full development of the quadrupole collective
features of the s°Ne spectrum are thus largely complementary to the a~luster ex-
citations of the same SU(3) symmetry. [A similar conclusion for Z°Ne was reached by
Bandô 6) with a successful application of a mixed a-cluster and E2 excitation model,
however without the use of Sp(6, R) symmetry.]
The symplectic excitations also contain (~u) which are not found in the a~luster

basis but which must play a role in the incorporation ofquadrupole collective features
T~~ 3

Sp(6, R)

	

a~luster

0.710

	

o.sos

Overlaps between sympletic excitations with (x~) - (Zo+2m, 0) and a~luster states in ~°Ne

Isa[pl1 (Ul)[sd4(80~f'](11, 0)7(10, 0)) 0.603 0.494
Is4[pll(O1)[sd`(SO~f](91)](10, 0)) 0.336 0.068
Isa~l l(U1)[sd4(61~f'7(91)7(10,0)) 0.102 O.s03
Isapls [edzPf=7(10, 0)) -0.079 0.260
Isa[plo(02~s(82)7(10,0)) 0.046 -0.337
Is4[p 10(10)6(ib(90)7(10r 0)) 0.034 -0.2s1

(.~) Overlap

(80) 1
(10, 0) 0.686
(12, 0) 0.49s
(14, 0) 0.364
(16, 0) 0.281
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Shell-model component')

Shell-model deoompositions of the first Sp(6, R) excitations in

(ZP) ~ (81)
IsaPl :[~a(~)~B'(gp)7(B1))
IC$'P' =sd s(81)7(B I))
Isapl=C~'(~~(~)7(BI))

Isa~ll (Ol)[sd4[f,] = Co](ZsI+~P~7(Zsl~s)7(BI)> °)

Isa[p'1(Ol)Csd"[l',] _ [2117 (x~~P~](ZePs)7(BI)) °)

Is~~l o(z~oKlo)~6(x6k6)7(81))

(2P) _ (62)

ICssPl ~~s(62)7(62))
Is.P13C~3(~~B'(~)7(62)>
Isapl=C~'(~)P~(~)7(62))
Isapl=C~'(~)1~(~)7(62))IsaCP"(01)Csa"Co](zap,)Pf'7(zsPs)7(6z)> °)

1g4~.,10(~~,~6(^6i16)I7(~)) ~)

IS4r�10(lO)Bd6(^6l`6)I7(~)) ~)

TABLE

') For notation, set table 2.
°) In these~SU(4) quantum numbers do not always follow from (x,p~, and [ßa7 is indicated .
°) In the case of multiple occurrences of (~Sp6) within CFb], statea su choses according to refs . ' s . '°). All

uro amplitudes .

into the microscopic description of the spectrum . In the case of the first symplectic
excitations for 2°Ne, these are the states with (~,~) _ (81) and (62). The shell-model
decompositions for these symplectic excitations are shown in table 4. In both states
there are only four large shell-model components, corresponding to excitations of a
single particle by 2üco, from the s to the sd shell, from the p to the pfshell, and from
the sd to the sdg shell. The small components, wmprising 2.81 ~ ofthe wave function
for (du) _ (81), and 3.69 ~ for (~.~) _ (62), are again generated by the 1/A parts of
the 2fiurraising operators . They are included in table 4 mainly to illustrate the rich
number . of possibilities for core excitations of 2itu~, even when restricted to a specific
SU(3) representation{~.~). The symplectic excitations select a very specific set ofstates
out of the large shell-model space of core excitations.
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Amplitude

0.496
O.d09

-0.037

(2SN6)i :

	

(82) (71) (53) (44)s
-0.062 -0.022 -0.069 -0.073 0.017

(ZsNs)~~

	

(63) (71) (52)2
0.087 0.035 0.054

neededsd shell c .f.p. follow from refs .'s~'6) . In the throe cases with multiple occurrences, states with i = 1 have

For the higher excitations of table 3 and for heavier nuclei, the full shell-model
decompositions would involve a huge number of shell model components. Overlaps
between the Sp(6, R) and a~luster states can, however, be evaluated very simply with
the use of so-called "cluster-like" functions t' " t3) in which the relative motion
oscillator function ~t4°l(ra_c) of eq . (10) is replaced by a function of the a-particle
c.m . vector, ~tQ°~(RJ. Since the Sp(6, R) states are rigorously free of spurious c.m .
motion excitations, the spurious components of ~tQ°l(RJ cannot make a contribu-
tion to the overlaps . Since ta)

(Z~Nû (ZsNs)~

(Z~N~ (ZsPs)~

(~) (91) (~) (n)
0.554 0.501

(61) (91) (61) (80)
0.086 -0.023

(42) (~)
0.027

(42) (72)
0.092

(ZioN,o) (2SNs)~ (02) (82) (02) (71) (02) (63) (10) (90) (10) (71)
-0.058 0.023 -0.048 0.039 0.044

0 .412
0.278

-0.012
0.025

(Z4Na) (~sNs)~ (~) (72) (~) (53) (42) (72) (42) (61) (42) (53)
0 .466 0.706 -0.005 -0.007 0 .018

(2rN~ (ZsNs)~ (61) (72) (61) (61) (61) (53) (42) (72) (42) (61) (42) (53)
0.057 0.007 -0.035 -0.017 10.024 0.063
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where + . . . contains only pieces with spurious c.m. motion excitations, the overlap
between a Sp(6, R) state and a true cluster function is equal to [Al(A-4)]~ x (overlap
between the Sp(6, R) state and the corresponding "cluster-like" function). To calculate
the latter overlap, projection onto a small number of "cluster-like" shell-model
components is sufficient ; the "cluster-like" shell-model components being those in
which the shell-model configurations and SU(3) quantum numbers are those of the
(A-4)-particle core wave function, in the case of 2°Neonly shell-model components
of the type ~sapt Z(OOXsd, pf, . . .~(QO)i . (Of the seven shell-model components of
table 2, only the first and fifth are "cluster-likeH .) For the validity of this technique,
however, it is important that the Sp(6, R) states are rigorously free of spurious c.m.
contaminations . The four small components in the Sp(fi, R) wave function of table 2
which insure this property make up only 2% of the wave function . The neglect of
these small components, however, especially when propagated to the higher sym-
plectic excitations, can lead to errors ~ 50 ~ in the evaluation of overlaps or matrix
elements . The 1/A parts of the 2>`tco-raising operators can thus not be neglected for
nuclei in the A s~s 20 mass range.

Overlaps between a-cluster states and the first symplectic excitations for some
heavier nuclei are included in table 5. These overlaps decrease with A and in general
are largest for the SU(3) excitations corresponding to largest possible intrinsic
deformations.

Overlaps between a~cluster states and the first Sp(6, R) excitations in .! = 4n nucleï
TABLE S

') The a-breakup factors are (I/~,~,~) x overlap, where the overlaps are between normalized a-cluster
and Sp(6, R) states .

3. The a-break op of giant E2 reeonances in light nuclei
The overlaps between the a~luster and Sp(6, R) states calculated in sect . 2 can

lead to reasonable estimates ofthe a-breakup probabilities ofgiant E2 resonanoes in

Nucleus Symplectic
bandhead (l ohu)

(A-4}cluster
rnre (Z~p~)

(ZR) ~~P
a-breakup
factors ')

8Be (40) (00) (60) ~ 0.894 1 .095
(41),(22) 0 0

~ 6O (00) (04) (20) 0.808 0.950
'°Ne (80) (00) (10, 0) 0.686 0.490

(81),(62) 0 0
~'Mg (84) (80) (10, 4) 0.599 0.448

(85) 0.612 0.387
(66) 0.260 0.183
(93), (74), (82) 0 0

'°Si (0,12) (84) (2, 12) 0.721 0.608
(1, I1) 0.319 0.212
(0, 10) 0.084 0.058
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nuclei with ground states of relatively pure SU(3) symmetry . In such nuclei the first
symplectic excitations can be expected to be major components of the giant E2
resottances. This approximation should be particularly good in A = 4n nuclei
with predominant SU(4) scalar character, for which the matrix elements of both
charge and mass quadrupole operators are proportional to the matrix elements of
the 2itco-raising operators of the symplectic algebra. Even in such nuclei we can
distinguish two extremes, the SU(3) strong and weak coupling approximations . In
the SU(3) strong coupling approximation, it is assumed that the dominant component
of the giant E2 excitation has good SU(3) symmetry and is given by the SU(3) state
(ip) from the first symplectic excitations, [(~i.oF~o) x (20)] -+ (~~), corresponding to
largest possible intrinsic deformation, normally the state with (~~) _ (~+2, ~)
(a normalized SU(3) coupled state of the form of eq. (8)). In this approximation the
a-amplitude "~ ") follows from the simple overlaps (table 5)

1
x

	

Q

	

<Y`(SP(6, R))ta"ll~a(-~~t~Yi~~(4o1x~1~,

	

(12)N�..,
where the double-barred coefficient is an SU(3)/R(3) Wigner coefficient which can
be obtained from the code of Akiyama and Draayer' 8). The overlap is between the
normalized Sp(6, R) excitations and the a~luster state ofeq . (10), where it is assumed
that the (A-4)-particle daughter nucleus has a ground state of good SU(3) sym-
metry (i.~,tt~) .

In the weak-coupling approximation the dominant component of the giant E2
excitation is assumed to have the form

T~a~e 6
The ~-breakup amplitudes for 2* E2 excitations into daughters in 0 + ground states

') The symplectic bandhead (i.~° ) and (d-4}sluster daughter (i.~N~) are those given in table 5 .
°) See eq . (12).
`) See eq . (14).
") In I 60 there is no distinction between strong and weak coupling approximations.

Nucleus ') Strong coupling (i.N)

x-amplitudes

strong-coupling n)
approximation

weak-coupling `)
approximation

16O (20) 0 .233 0.233 °)
=°Ne (10, 0) 0.490 0.260
aiMB 0.136

n = 2 : 0 .028
zesi

= 2 : 0 .127
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where the square bracket now denotes angular momentum coupling only ; so that
the state is a mixture ofall (~.~) ofthe first Sp(6, R) excitations [(~olb) x (20)], although
(~~) is assumed to be a good quantum number. (The norm factor, .N', follows
from the reduced matrix elements of table 1 and SU(3)/R(3) Wigner coefficients.)
In this weak~oupling approximation the a-amplitude has the form

1

	

(~)

	

It.~opcl x t~)1(~)

<(~~)II T`2olll(~o~o))<(~oNol~ ;(~)211(~.~)x2)x
[ ~ <(~0~0~1 ;(~~II(~'~')x'2)z x <(~'p~IIT~2o111(~0)) ]~'

	

(14)
tx

Some examples are given in table 6. For comparison it may be useful to recall the
SU(3) shell-model estimate for thea-amplitude ofthe s°Ne ground state "), A = 0.48 .
The a-breakup channel can thus be expected to be a significant contributor to the
total width ofgiant E2 resonances ; and the a-amplitudes oftable 6must be taken into
consideration' 9) in the study of the giant E2 resonances recently observed 2°) in
these nuclei .

Although there is sufficient overlap between the first Sp(6, R) excitations and
the corresponding a~luster states to give giant E2 excitations a large a-breakup
probability; we conclude that a~luster and symplectic excitations are essentially
complementary in all but the lightest nuclei . In order to incorporate both the physics
of quadrupole collectivity and a~lustering, extended shell-model calculations
should include core excitations of both types.
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