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A Stochastic Model for a Closed Biochemical System 
at Equilibrium-t- 

SANDRA HASSTEIXT 

/>qmrtmcnt of Huntarl Genetics, Vtlivemity of Michigan, 
Am Arbor, Michigan 48109, U.S.A. 

(Received 19 Ju1.v 1976, ard irz revisedform 27 Jurw 1977) 

This paper presents a stochastic model, a theoretical multi-variate 
probability function describing concentrations of reactants in a closed bio- 
chemical system at equilibrium. The theory applies to the complete range 
of biochemical systems from single enzyme reactions to combinations of 
reactions to complete pathways. Prior to examining the general system, 
probability functions are derived for the following systems as examples: 
a reaction with a competitive inhibitor. a bisubstrate reaction using the 
ping-pong mechanism and a series of two mono-substrate reactions. 
The theory of Markov processes is used to derive the probability functions 
for each of the example systems and then for the general system which 
includes the example systems as special cases. The probability function 
for any appropriate biochemical system proves to be the product of 
independent Poisson probabilities conditioned on the conservation 
equations. Finally, the implications of the theory are briefly discussed 
and possible extensions proposed. 

1. Introduction 

Previous stochastic treatments of closed biochemical systems consider only 
one type of enzyme reaction, the reversible Michaelis-Menten mechanism 
defined by the model: 

S+E+ C + P+E. 
4 

S, E, C and P represent free substrate, free enzyme, enzyme-substrate (or 
enzyme-product) transition complex and free product, respectively. Each of’ 
the earlier considerations of this reaction concerns deriving a probability 
generating function (pgf) in which the random variables represent the 
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concentrations of these reactants and li,, kz, li, and /i4, the rate constants I’OI 
the individual steps of the reaction, serve as the parameters. The derivations 
employ the theory of Markov processes (Feller, 1968). 

The initial (unsuccessful) attempts (Bartholomay, 1962a,b, 1964: Jachi- 
mowski, McQuarrie & Russell, 1964) to derive a pgf consider the complete 
time course of the reaction when k, = 0. Later investigators are more success- 
ful as a result of restricting the phase of the reaction. Specifically. the cases 
considered are the initial phase when li, = 0 (Heyde & Heyde, 1969), the 
equilibrium phase when k, = k, (Darvey & Staff, 1967) and the equilibrium 
phase without any restrictions on /I-, (Staff, 1970). A similar model, but for 
chemical reactions, is successfully derived to describe the number of con- 
versions in a reaction (Orriss, 1969). 

This consideration differs from previous ones in not being limited to the 
Michaelis-Menten mechanism. It treats a wide range of additional bio- 
chemical systems in the equilibrium phase, to extend Staff’s results. Staff, 
however, solves a differential equation for the pgf, whereas here a system of 
linear equations is solved to find the probability function. The derivation of 
the linear equations and their solution for each of three example systems, 
chosen to demonstrate various features found in biochemical systems, is 
presented in the next three sections. These example systems are: 
(i) A reaction with a competitive inhibitor. 
(ii) A bisubstrate reaction using the ping-pong mechanism. 

(iii) A series of two mono-substrate reactions. (Mahler & Cordes (1971) 
list and describe the mechanisms of these and other systems.) With the 
insight gained from these example systems’ derivations, the general case 
equations are solved. 

2. A Reaction with a Competitive Inhibitor 

Consider a reversible Michaelis-Menten mechanism with a competitive 
inhibitor defined by the model: 

S+E+ C$ Pt-E /+E + D. (I) 

S, E, C, P, I and n represent free substrate, free enzyme, enzyme-substrate 
(or enzyme-product) transition complex, free product, inhibitor and enzyme- 
inhibitor complex, respectively. The rate constants for the individual steps 
of the reaction are given by kj : ,j = I ,2,. . ,6. The conservation equations, 

.s+p+c = s,. 

e+c+d =E,, 

i+d =I,, (2) 
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complete the definition of the system. ,s, c, c, p, i and d symbolize concentra- 
tions of reactants designated by the corresponding large letters : S,, E0 and I,, 
are initial concentrations of substrate, enzyme and inhibitor (assuming the 
initial concentrations of product and the two complexes are zero). 

In order to derive the probability function for the reactants in system ( E ) 
the following assumptions are made. 

(i) s, e, (2, p, i and d take on integer values only (reactant concentrations arc 
expressed in molecules). 

(ii) The future state of the system depends only on the present state and not 
on the history of the system (the Markov property). 

(iii) The probability of a conversion from one set of reactants to another is 
proportional to the concentrations of the reactants making the conver- 
sion. 

(iv) The probability of more than one conversion in a time unit At is ,(A!) 
where : 

,(W/Ar + 0, 
25 

At --f 0. 

Each arrow in system (1) represents a conversion from one set of reactants 
to another and therefore from one state (s, c, c, p, i, d) to another (s’, o’, c’ 
p’,, i’, d’). Using the assumptions made above, all possible conversions 
between states and their respective probabilities can be expressed as follows : 

- 
Conversions Probabilities 

.-... 
(s,e.c.p,i,d) -+ (s-l,e-l,~+I.p.i,~/) /i,srA.l + JAt) 

(.~.r.~..~),i,d)-,(s+l,e+l,c-l,p.,.~/) I, ,cAt + JAr) 

(~.e.~~.p.i.d)~(~,e$-l,c-1,p+1.i.tl) li,cAt + o(At) 

(s,e.~,p,i.tl)-t(s,e-l,c+l,p-l.i,d) I;,peAt + JAt) (3) 

(s.e.~,p,i,tl)-t(s,e-l,c,p.i-l.cl+l) /ijicAt+,(Af) 

(.s.e.~./~.i.d)~(s,e+l.c,p,i+I.d --1) /\,,ciAt+,(At, 
(s. e, c. p. i. d) -+ (s. e, c, p, i. d) I -(/<,.sr+l<,c t/c+-t 

I;,l’e+~,ie+/;,n)A~+,,(Ar) 

From the conservation equations (3). 

c = s,-s-p, 
rr = I,--i, 

e = E, - s,, -- I,, + s + p + i (4) 
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Therefore only s, p and i are needed to describe the state of the system. 
Rewriting expression (3) by making each conversion to the state (s, ZJ, i) and 
replacing c, d and e from equations (4) yields: 

Conversions 

(s+l,p.i) + (s,p,i) 
(.s - 1 ,p, i) --t (s,p, 0 
(s,p--1,i) -+ (s,p,i) 
(s,p+l,i) + (s,p,i) 
@,A i+ 1) + (s,p, 9 
(s.p, i- 1) + (s,p, i) 
(hp. i) --f (s.p, i) 

Probabilities 

li,(s+l)(&-SO-Z,+s+p+i+I)At+,(At) 
k&So-s-p+ l)At+,(At) 
k&S, -s-J> + !)At + ,,(At) 
~4(17+l)(EO-SO-ZO+s+P+i+ l)At+,(At) 
k,(i+l)(E,-S,-Z,+.s+p+i+l)At+,(At) 
k,(Z,,--i+f)At+,(At) (5) 
I -[(li,s+li,p+k,i)(E,-So-Zo+s+p+i) 
+(k,+k3)(SO-S-p)+k6(Z0- i)]At+JAr) 

This list includes all possible ways of attaining the state (.s, p, Z) in a time 
unit At. Therefore it is possible to write the probability of a state (s, p, i) 
at time t + At in terms of the probabilities of all the origin states at time t as : 
P(s,p, i; t+At) 

= {t-[(k,s+k,p+k,i)(E,-S,-I,+s+p+i) 

+(k2+k3)(SO-S-~)+li~(Z~-i)]At}P(s,~, i; t) 

+(I-G,,~,)k,(s+l)(E,-S,-f,+s+p+i+I)At P(s+I,p.i: 1) 
+( I -6,,o)k2(So-.s-p+ 1)At P(s- l,p, i: I) 

+(l--6,,,)k,(S,-s-p+l)At P(s,p-I, i; t) (6) 
+(l-S,,s,)kS(p+1)(E,-S,-Zo+s+p+i+l)At~(s,p+l,;;r) 
+(l-6;,1,)l\s(i+1)(E,-S,-Z,+s+p+i+1)A.t P(s,p,i+l: t) 
+(I-d,.,)k,(Z~~-i+l)At P(s,p.i-1: f)+JAt). (s,p. i) En, 

where : 
R, = {(s, p, i): s = 0, I, . . . S,,, p = 0, 1, . . . . S,,. 

i=O,l ,..., IO, s,-ErJ 5 s+p I so. (7) 
IO-E, 5 i. S,+I,--E, 5 s+p+i] 

and b,,, is the Kronecker delta, 
1 if m = II, 

(L,,, = 
i 

0) 
0 if in # II. 

Subtracting P(s, p, i; t) from both sides, dividing by At and taking the limit 
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as At + 0 yields the forward Kolmogorov equations: 

303 

lim P(s,p, i; t+At)-PP(s,p, i; t) dP(s,p. i; t) 
At-0 ~----- -= ~~~__. 

At at 

= -[(k,sfk,p+k,i)(E,-So-Z,+s+p+if+(k,+k,)(S,-s-p) 

+ Ml0 - 91 e, P, i; t> 
-i-Cl -6,so)k,(s+1)(Eo-So-lo+s+p+i+1)P(s+l,p, i;t) 
+(l-G,,O)kz(So-s-~+l) P(s-l,p, i: t) (91 
+~1-6,,o)k,(So-s-p+1)P~s,p-1. i;t> 

+(I-6,,,)k,(p+l)(E,-So-I,+s+p+i+l)P(s,p+l, i; t) 

+(1-6~,~,)k~(i+1)(E~-S~-Z~+S+~+i+l)P(s~~~ i+l; t) 
+(1-6,,&(r,-i+l) P(s,p. i-l; t), (s.p, i)ESZI. 

To this point the standard Markov procedure used by other investigators 
has been followed. Their next step would be to transform the system of 
forward Kolmogorov equations into a differential equation in the probability 
generating function. In making this transformation, probabilities containing 
a product of two concentrations, which always occur in biochemical systems, 
cause this partial differential equation to be second order. Therefore, solution 
is difficult and an alternative method is used here. 

The equilibrium phase of the reaction is being considered (t = a), so the 
derivative of the probability with respect to t is zero. Letting dP(s,p,i;t)/& = 0 
in expression (9) leaves a system of linear equations in the unknown proba- 
bilities: 

C~~li,s+I;,p+k,i)~E,-So-Zo+s+p+i)+(li,+k,)~S,,-.s-/~) 

+ k6Uo - 91 fYs, p, 9 
=(l-6,,,,)k,(s+l)(E,-So-I,+s+p+i+l)P(s+I,p, i) 

+(1-6,~,o)kz(So-s-y+1)P(.s-1,p, i) 

+(I-3,,,)k,(S,-s-p+l) P(.s,p-I. ij (101 

+(I -cS,,s,)k,(p+l)(Eo-So--I,+s+p+i+l) P(s.p+l. i) 

+(I -Si.,,)k,(i+l)(E,-S,-I,+s+~~+i+l) P(.s.p. is I) 

+(I -S,,0)k6(fo-i+1) PCs, p, i-i), (7. p. i) E ST&. 

where Q2, is given in expression (7) and t no longer enters into the proba- 
bilities. 

The solution to the system of linear equations in equation (10) is a proba- 
bility function for which the random variables are the concentrations of the 
reactants in system (1). Since there is an equation for each probability, there 
are the same number of equations as unknowns; there is one dependency in 
the system of equations but the requirement that the probabilities sum to 
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one compensates for it to yield a unique solution given by: 

where R, is given in expression (7) and CI is a normalizing constant. 

3. A Bisubstrate Reaction using the Ping-pong Mechanism 

Now consider a bisubstrate reaction operating by the ping-pong mechanism 
defined by the model: 

S+E$ C, $ P+E’ T+E’+ C+Q+E. 

Two products, P and Q, are formed from two substrates, S and T. The 
obligatory first substrate, S, combines with the enzyme, E, to form a complex, 
C1 ; then product, P, and an altered enzyme, E’, are released. The second 
substrate, T, combines with E’ to form complex C,; then product, Q, and 
the original enzyme, E, are released. Representing the concentrations of the 
reactants by the corresponding small letters, the conservation equations are: 

s+c,+p = s,, t+c,+q = To, 
e+e’+c,+c, = E,, s+q-e = So--E,. 

(13) 

where S,, T,, and E, are initial concentrations of S, T and E, respectively 
(assuming the initial concentrations of P, Q, E’, C, and C2 equal zero). 
With the addition of these four equations to the definition of system (12), 
only four random variables are needed to describe the state of the system: 
s, p, t and q are used. 

Making the same assumptions as for the inhibited reaction already discussed. 
the conversions between states and the probabilities of each occurring are: 

Conversion Probability 
_.--.- 

(s+L P, t, 4) -+ (s, PY t, 4) kl(s+ l)(e+l)At+,(At) 
(s-1, P, t, 4) -+ (s, Pt f,  4) kz(cl + 1)At + o(At) 
(ST p- 13 t, 4) + (s9 P, t, 4) k3(c1 + 1)At + o(At) 
6, P + 1, f,  4) + (s, P? t. 41 k,(p + 1 )(e’ + 1 )At + JAt) 
(s,P,t+l,q)~(s,P,t,q) k,(t+ l)(e’+ 1)At +o(At) 
(s,p,t-l,q)-t(s,p,t,q) k6(cz + 1)At + o(At) 
(s, p, t, 4 - 1) -+ (St p> t, 4) li,(c, + I)At + &At) 
@, p, t, q f  1) + (s, P? f, 4) k,(q +l)(e+ I)At+,(At) 
(s. P? t, 4) -+ (.v, p, f? 4) I -(k,se+k,c, +/i,c,+k,pe’+/;,fe’ 

-tli,c,3-I;,c,+k,qe)At+,(Af) 

(14) 



where ~1, c’, c1 and c2 are expressed in terms of the random variables, .s, 17. f 
and q, from equations (13) as: 

e = E,--so+s+q, e’ = p+t-To, 

c 1 =&-s--p, (‘?. = 7-o-t-q. 
(15) 

Following the same procedure as before, the system of linear equations 
arrived at is: 

(I:.,~e+l<~c~~ +k3c, +k,pe’+k,te’+ khc2 +k7c2 +k,qe) P(s, p, t, q) 

==(l -s,,,~,)iC-,(s+I)(e+l)P(s+l.p. r.q) 

+~l-s,,,)1\~(c,fl~P(s-I,y.I,q~ 

i-i I -d,,,)k,(c, + I) P(s, p- 1. t, q) 

f~I-6,~,,)k,(p+l)(e’+I)P(s.p+l,t.~~~ 

-+(I -d,,To)k5(t+l)(e’+1) P(s.p. l+l,y) 

+( I -s,JJk,(c~ f  I) P(s, p, r-- I. q) 

f( I -S,.,)k,(c,+ I) P(s, p. t, ‘I- I) 

+(I-iS,.,~,)l~,(q+l)(e+l)P(s.p,t.q+I), 
(s. p. q. I) E n, $ 

where : 

(16) 

f& = ((5. p, t. q): s = 0, I, . . . , S,. p = 0. I.. . . . S”. 

t = 0, I... .I T,, q = 0, 1.. . . . T[,. r,, I p+t. 

S,,-E,, _< sfp I So, To--E, 2 tsy I T,,. S,,-E, < ssq) 

(17) 

and L, is given by expression (8). 
The solution to this system of equations can be shown to be: 

1 (/izik,)“(k,/k,)P(k~/k,)‘(k,/k,)q 
p(,s, p, t, q) = (x _. _ ~~~ ~,~---- --; . ..- -I- -.-- -, 

s.p!t!q!e!e !c,!c,. 
(IX) 

where R, is given in expression (17) ‘A is a normalizing constant and c, ts’, 
c, and c2 are given in equations (15). 

4. A Series of Two Enzyme Reactions 

The third example biochemical system considered here is a series of two 
reversible Michaelis-Menten mechanisms defined by the model: 

(19) 

The product of the first reaction serves as the substrate of the second reaction 
to form a short pathway. S, P and Q represent the intermediates in the 
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pathway; E, and E, symbolize enzymes for the two reactions and C’, and 
C2 are complexes containing E, and E,, respectively. Letting the correspond- 
ing small letters represent concentrations of the reactants in equations ( IO), 
the conservation equations are : 

s+p+y+“~+(‘~ = s,, e, +c, = EJ,,, e2 fcZ = I&, (20) 

where So, E,, and E,, are initial concentrations of S, E, and .E2 (assuming 
the initial concentrations of P, Q, C, and C, are zero). These equations 
reduce the number of variables needed to describe the state of the system to 
four, s, p, q and e, are used. 

Making the same assumptions and following the same procedure as 
before, the system of linear equations becomes: 

k,se, + kzcl + k,c, + k,pe, + k5pe, + k6c2 + k,c, + k,qe,) P(s, p, q, e1 ) 

= (1 -4,s,)(1-~e,,E”, )kl(s+l)(e,+l)P(s+l,p,q,e,+I) 

+(I -&,0)(1 -&,,dk2(c1 + 1) PCs- 1, P, 4, el - 1) 

+(1-6,,,)(1-6,,,,)k,(cl+1) fY.hp-1, 4,el-l) 

+(I -~p,s,)U -h?l,Eol )k,(p+l)(e,+l)P(s,p+l,q,e,+l) 

+(1-6,,s,)li,(p+l)(e,+1)P(s,~+1,9, el) (21) 

+(I -~p,oY4c2 + 1) Pb, P- 1, q, e,) 

+(I -4&k7(c2+ 1) PCs, P, q - 1, e,> 

+O -4&kdq + l)(e, + 1) PCs, P, q + 1, eA (s, p, 9, eJ E 4. 

where : 

Cl3 = {(s, p, q, el): s = 0, 1,. . . . So, p = 0, I,. . . , S,, 

q=O,l,..., SO,e,=O,l ,..., E,,, W) 

S,,-E,l-E,,a I s+p+q I S,,, Eel-So I el>. 

6,,, is the Kronecker delta given in expression (8) and c,, cZ and r, are 
given by the random variables from equations (20) as: 

cl = E,,-e,, c2 = So--E,,--s-p-q+el. 

ez = J% +J% -S,+s+p+q-e,. 
(33) 

The solution to this system of equations is: 

PCs, P, 4, eJ = 
1 (kz/kl)s(k~/k~)s+e’(k~/ks)S+E’+P(k,/ks)q 
; s!p!q!e,!e,!c,!c,! 

(24) 

where R, is given in expression (22), c,, c2 and e, are given in equations 
(23) and u is a normalizing constant. 
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Lt is convenient at this point to rewrite the equations in another form. Let: 
x’ = (s, e,, p, q, cl, e2, c2) = (s,. . . . ,x7). (25) 

the reactants, 
x; = (s, e,* p, (I). (26) 

the random variables, 

A= 

I 0 0 01 [o 0 0 01 

1000 0 
* 
[I A2 I 

I 0 0 
0010 0 I 0 0 OOOO=**~a 1 

I 

I 
I nd B = 0 0 0 I = . . . . . . 

0 1 0 0 1000 I 
0 0 1 

0 0 0 

0 0 0 1 I i 0 1 I 0010 

(27) 

A, and B are formed by placing a 1 in row i and column j if reactant si is 
converted to another reactant in stepj; A specifies conversions in the forward 
direction and B in the reverse direction. Using this notation, equation (21) 
can now be rewritten as: 

$ k,j-l fi ($‘)+k2j fi ($‘I) 

,=I i=l i=l > 

P(X,) 

= $/I -6 xl+Alj-Blj’n3)kZj-l fi [(Xi-t I)“‘] P(Xl+A,j-Blj) (28) 
i=l 

+2’(1-6 - 
j=l xl Al,+B,j,RA)kZj dll(Xi+ ljb”l P(XI -A,j+B,j), 

x1 EC&. 
where 0, is given in expression (22), AIj and BIj are columns of A, and B,, 
oij and hji are elements of A and B and 6,,,, is now: 

-0 

1. 

111 E Il. 
hn,” = (29) 

I 111 # II. 
Also using the new notation, the probability function (24) is 

where: 
g(x,) = (B, -A,)-‘x,. 

and GI is a normalizing constant. 

(30) 

(31) 
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5. A General Biochemical System 

The probability function for a general biochemical system results from 
following the same procedures used for the example systems. Instead of a 
model of mechanism(s), an m x 1 vector, x, of reactants and corresponding 
m x n matrices, A and B, of conversions specify this system of II steps with 
t~z reactants. Each of the n steps proceeds at forward and reverse rates, 
k,j and kmj, j= 1,2 ,..., IL A set of m-12 conservation equations restrict the 
concentration ranges of the reactants. 

The elements of x represent the reactants in the system; the first tz elements 
are the random variables. A and B are formed by placing a 1 in row i and 
column j if xi undergoes a conversion to another reactant in step j and a 0 
otherwise; A specifies conversions in the forward direction and B in the 
reverse direction. The m-n conservation equations are linear combinations 
of reactants for which the same linear combinations of rows of B- A produce 
rows of zeros. Each of x, A and B may be partitioned into separate matrices: 

where x, is n x 1 and A, and B, are each n x n. For the theory to hold, the 
system must be such that m 3 n (at least as many reactants as steps), B, - A I 
is non-singular and k, j and /i-j are non-zero for j = I ,2,. , II. 

Making the same assumptions as before, the conversions between states 
and the probabilities of each occurring for a general system are : 

Conversions Probabilities 

(X1 +A,j-B,j)’ ~ X; k+j fi (Xi+ 1)~“At-t-o(At), j= 1.2, . . ../I 
i= I 

(X1 -A,j+Blj)’ + Xi /i-j fi (-xi+ l)bi’At+JAf). j = 1 .3,...,/1 
i=l 

x; + x; 1 - 2 /<+.j fi xqij+kdj fi xfij Af+JAf) 
j=l i=l i=l > 

(31) 

where Alj and Blj are columns of A, and B, and aij and bij are elements of 
A and B. 

Using the forward Kolmogorov equations and setting the time derivative 
to zero (as for the example systems), the system of linear equations reduces 
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to: 
$! (k+ j ifI, XT*‘+ k-j fll x!“) P(XI) 

= $, (‘-6 xl+Alj-B,rjvdk+j fi (Xi+f)a”f’(X, +Ali-Blj) (33) 
i= 1 

+-&l-S.- \I ,4,,+alj.n)k-j fi (xi+ ljb” P(X, -A,j+ B,j), x, ER. 

. j= I i=l 

where R is determined by the conservation equations and initial conditions, 
AIi, B,j, aij and bij are defined above and a,,, is given in expression (29). 
The first example system derivation considers the uniqueness of the function. 

Equation (33) is satisfied if each of the 2n terms on the left side equals a 
different term on the right side; i.e. if: 

111 St, 

k+j n $“f(Xl)= k-i [I (X,+I)b’Jf(Xl-A,j-B~j). (34) 
i=l i=i 
j=1.2 ,..., II, Y,, X,-A,j+B,j Ed. 

(The other II terms yield identical equations.) Assuming P(x,) # 0 and 
k-j # 0. 

For some j, when bjj = 1, rui+ 1 occurs in the denominator on the right in 
this ratio and in the argument of the numerator probability function on the 
left: when aij = 1, xi occurs in the numerator of the ratio on the right and 
.yi- 1 in the argument of the numerator probability function on the left. 
This occurs if the probability function contains 

so that: 

where: 

gj(x, -AIj,+BIj,)-gj(x,) = 0, j’ = 1. 2. . . . II. j’#,j. 
(37) 

The vector g has this property if: 

g(x,) = (B, -A,)- ’ x,. (3X) 

The probability function given in equation (36) is the product of independent 
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Poisson functions conditioned on the conservation equations. The moments 
remain to be determined. 

Considering the reversible Michaelis-Menten mechanism, 

as did Staff (1970), 

A= 

e 
The conservation equations, 

e+c = E,,+C,, s+p+c = &+P,+C,. 

result from consideration of B- A, 
-1 o- 

0 1 

B-A= . . . , 

I -1 1 -1 1 

(41) 

(4.2) 

since the sums of rows three and four and of rows one, two and three are 
rows of zeros. S,, P,, C, and E, are initial concentrations of .x, p, c and e. 
respectively. Taking the inverse, 

(B, -A,)-’ = (43) 

Therefore, 

g(x,) = 
Letting P,, = C, = 0 as did Staff, from equation (36), 

(44) 

(45) 

where : 
c = &-s-p, e = E,-S,,+s+p, 

and 
n={(~,p):s=O,l,..., S,,p=O,l,..., So,&-E,<s+p<S,,) 

(46) 

(47) 
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in agreement with Staff. Since the means of ,Y and p. derived from the proba- 
bility function, are : 

where /I is a constant, the ratio: 

(49) 

where K is the equilibrium constant for the reaction. 

6. Discussion 

The state of the art of analyzing biochemical systems would be greatly 
improved by the development of a comprehensive probability theory for 
both open and closed systems. Functions of rate constants could be estimated 
from it? L’I’VO measurements of concentrations of intermediate reactants, 
eliminating the need for the assumption that enzymes operate identically in 
~r’tvo as in D~PO (Walter, 1966, preface). A larger proportion of the total 
number of mutations that occur could be detected by statistical testing 
procedures applied to intermediate data than are detectable by electro- 
phoresis. Nei (1975) estimates that 70% of all mutations result in amino 
acid changes while only 30 y/o are detectable by electrophoresis. The source 
of altered enzyme activity resulting from a mutation could possibly be 
determined by testing for a change in the amount of enzyme, thereby simpli- 
fying an otherwise difficult problem (Harris, 1975). Regulatory enzymes 
could be located with statistical rigor, not obtainable using crossover plots 
(kolleston, 1972) Finally, models of enzyme mechanisms could be tested 
against alternatives using in vivo data. 

Analyses, which employ the probability function derived here, are limited 
to those that can use data from a closed (in GPO) system at equilibrium. 
Functions of rate constants, or equilibrium constants in this case, can be 
estimated. Both detecting mutant enzymes and testing models for enzyme 
mechanisms require that enzyme properties be reflected in the data. One 
would not expect this to be true at equilibrium since the equilibrium constant 
does not depend on the enzyme. The location of regulatory enzymes and 
the determination of enzyme level necessitate irz zkjo data. The probability 
function finds its main importance as the first step in the development of a 
more complete theory, one which includes open biochemical systems. 

On the other hand, while the applications of this theory are limited, the 
systems to which it applies are numerous and varied. Three restrictions are 
required to develop the theory. Two of them qualify easily since most 
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reactions can be considered reversible and closed systems generally have as 
many reactants as steps. The third restriction, that B, -A, be non-singular, 
eliminates certain allosteric mechanisms, yet, in the cases tried, a solution 
proves possible if particular rate constants are equated. There is no limit to 
the length of the pathway, to the number of reactants or to the mechanisms 
assumed for the reactions as long as these three restrictions are met. 

Consideration of the plausible uses and shortcomings of this theory leads 
to proposals for its extension. Measurement error will have to be incorporated 
for the function to be practical since the variation included in the present 
model may not nearly represent all that occurs in the data (Heyde & Heyde, 
1971). The applications will increase with extension to open systems. Logi- 
cally, the reactants in the model should have a continuous density rather 
than discrete probabilities, for that is the nature of their measurements. 
Including compartmentation (as in mitochondria or in different cells), 
variable enzyme levels (as with degradation), or more than one set of rate 
constants (as with heterozygotes), may add useful, though unessential, 
features. 

I would like to thank Dr Peter Smouse, Dr Michael Savageau, Dr George 
Brewer, Dr Michael Woodroofe and especially Dr Charles Sing for reviewing 
and offering valuable, timely suggestions which improved this manuscript. I also 
wish to thank Dr Jeffrey Weisberg for proposing needed revisions to increase the 
clarity of the language. 
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