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1. INTRODUCTION 

The pioneering work of Hodgkin and Huxley [12], and subsequent investiga- 
tions, have established that good mathematical models for the conduction of 
nerve impulses along an axon can be given. These models take the form of a 
system of ordinary differential equations, coupled to a diffusion equation. 
Simpler models, which seem to describe the qualitative behavior, have been 
proposed by FitzHugh and Nagumo (see [3, 1 l] for background). This paper is 
devoted to the study of the FitzHugh-Nagumo (FN) system: 

v,t = vu,, +f(v> - u 
t > 0, XE R, (1.1) 

ut = uv - yu, 

where (T, y  are positive constants, and f(v) has the qualitative behavior indicated 

in Fig. 1 below. 
There are two basic problems in the subject; namely, the threshold problem 

and the traveling wave problem. The first problem is to show that small solutions 
of (1 .l) decay to zero as t --f + co. This corresponds to the biological fact that a 
minimum stimulus is needed to “trigger” a nerve; smaller stimuli lead to no 
signal transmitted down the axion. The second problem falls into two parts. 
The signals carried by the axon have a characteristic shape and speed. This leads 
one to investigate whether there are solutions U = (v, U) of the form U(t, LX) = 
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FIGURE I 

@(x - ct), where c is the speed and 0(s) is the wave form. For the FN equations, 
the existence of such solutions has been proved by Conley [4], Carpenter [2], 
and Hastings [lo], provided f, u, and y  satisfy appropriate conditions. At the 
heart of these conditions are the assumptions that y  is small and that f has the 
qualitative form indicated in Fig. 1, where the positive “hump” is larger than the 
negative “hump.” The second part of the traveling wave problem is to show that 
a large class of initial data do indeed “trigger” a traveling wave. Ideally, 

one would like to show that “most” large solutions converge to a traveling wave as 
t-++aL 

In this paper we present some new methods for the study of system (l.l), and, 
in particular, we give some qualitative information concerning both the threshold 
problem and the asymptotic behavior of large solutions. We now describe the 
contents of the paper in somewhat greater detail. 

The first thing we do, in Section 2, is to present a clean framework for studying 
the local existence and regularity questions for solutions of systems of coupled 
ordinary differential equations and diffusion equations. Earlier attempts at this 
seemed awkward because they separated the two forms. Roughly, our idea is to 
consider the operator 8, as 8, - aarx, when a = 0; we thus treat these systems 
as coupled diffusion equations with some coefficients being zero. From this 
point of view it is natural to study the dependence of the solutions on the diffusion 
coefficients as they tend to zero; we do this in Section 2.3. 

Our treatment allows us to consider initial data U(0, X) in translation-invariant 
Banach space B of distributions in BC”(R) (the bounded uniformly continuous 
functions on Iw), in which translation is norm-continuous. This wide freedom 
in choosing the spaces B permits us to prove the differentiability of solutions by 
choosing B to consist of functions differentiable in some sense. This freedom also 
comes up in our later developments where the natural framework for our 
theorems is in several different spaces B. We also discuss the differentiable 
dependence on initial conditions; this is needed later in our approach to the 
threshold problem. 

In order to pass from locally defined (small time) solutions to globally defined 
solutions, we need a priori estimates on 11 U(t)[lm . In [5], Chueh, Conley, and 
Smoller introduce a technique, which we call contracting rectangles, to yield such 
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an estimate for the FN equations. The basic property of a contracting rectangle R 
is that if U(0, X) lies in R for all x E R, then U(t, X) E R for all t 3 0 and x E R; 
i.e., R is an “invariant” set for the system (1 .I). In Section 3.1 we study in detail 
the questions of existence and location of contracting rectangles, and in Section 
3.3 we state the relevant global existence theorems for (1 .l). 

In Section 3.2 we give an important quantitative improvement on the basic 
property of contracting rectangles. This improvement asserts that, in fact, 
U(t, X) lies in a smaller contracting rectangle for t > 6 > 0. This fact, together 
with the results of Section 3.1 allow us to prove, via Lyapunov’s second method, 
that certain solutions tend to zero (Section 4.2), and that all large solutions 
eventually become smaller than some fixed number, the number being inde- 

pendent of the initial data (Section 5.1). 
In Section 4 we gather our results on the threshold problem. The main idea 

is to show that weak initial stimuli yield no traveling waves. Stated mathemati- 

cally, we show that if U(0, X) is small, then U(t) --+ 0 as t -+ + co. The first 
approach in Section 4.1 proceeds by the standard method of linearization, but, 
the analysis of the linearized equations leads to some amusing computations. 
The result we obtain is that for s > +, if 11 U(0)ljH, is sufficiently small, then 

’ II uwY tends to zero exponentially as t --f fco. In Section 4.2 we use 
the metshod of contracting rectangles to show that Ij U(t)ll,, + 0 as t -fco, 
where C, is the space of continuous functions which tend to zero as x + f  co. 
The nice feature of this result is that we obtain a simple explicit description of 
how small U(0) must be. The defect is that an “extra hypothesis,” namely, 
-f’(O) > U/Y, must be put on the equations. 

Using L, inequalities, in Section 4.3 we show that if U(0) EL, n C,, , and we 
know that a(t, X) is smaller than the first positive root off(v) for t > t, > 0, and 
all x E R, then U(t) --f 0 in L, n C, . This result shows the importance, for the 
existence of traveling waves, of the fact thatf(v) is not negative for all 2, > 0.l 
We then apply this a posteriori decay theorem in Section 4.4 to obtain a sharp 
subthreshold theorem for small u > 0. 

In reality, a nerve axon is of finite extent, and the appropriate problem is a 
mixed initial boundary-value problem on a finite interval, with boundary con- 
ditions at the endpoints. In fact, nerves are initiahy at rest (u = v  = 0 at t = 0), 
and are stimulated at an endpoint. In Section 4.4 we discuss a model of a semi- 
infinite at an endpoint. In Section 4.4 we discuss a model of a semi-infinite nerve 
on x > 0 stimulated at .2: = 0. We show that our previous results can be used to 
infer that “small” stimuli lead to decaying solutions. Here “small” can be taken 
in one of two senses: either it is a stimulus of small amplitude which can act over 
a relatively long time interval, or it is a large amplitude stimulus which lasts only 
a very short time. 

1 For scalar equations the importance of this sign change is well understood, see, for 

example, [l]. 
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In the last section we prove two results on “large” solutions. The first uses 
contracting rectangles to show that there is a limiting size M for U(t), in the sense 
that no matter how large U(0) is, 11 U(t)llm < M for t large. We feel that this is a 
first, albeit small, step toward showing that all large solutions tend to traveling 
waves as t -+ +a~ Finally, in Section 5.2 we turn to the problem of nerves of 
finite length. We show that solutions of the FN equations on a finite x interval, 
with reasonable boundary conditions, must decay as t + + co, if the interval is 
sufficiently short. Here the critical interval length increases with the height of 
the positive maximum off. This again shows the crucial role played by the posi- 
tive values off for positive er. 

2. GENERAL THEORY 

2.1. Local Solvability 

Consider the nonlinear system of equations in two independent variables, 

U, = AU,, +F(U), (2.1) 

where U = (ui ,..., u,) is a real n-vector, F is a smooth IP-valued function, with 
F(0) = 0, and A is a diagonal matrix, A = diag{a, , a2 ,..., an} with each ai 3 0. 
If all the ai are positive, then (2.1) is a parabolic system, while if some ai = 0, 
we have a coupled system of parabolic equations and ordinary differential 
equations. This coupling of equations of different form has made the literature in 
the field appear somewhat awkward. The purpose of this section is to show how 
systems of the form (2.1) can be treated in a unified manner; that is, in a way 
which disregards the differences between the parabolic and ordinary differential 
equations. The main point is that for a given F, one has solvability in an interval 
0 < t < to , where t,, depends only on the sup norm of the initial data U(0, x). 

We shall obtain solutions of (2.1) which are continuous functions of time with 
values in various Banach spaces B, where B depends, of course, on the initial 
data. To be precise we assume that B is a Banach space of functions on R with 
values in IP subject to the following restrictions: 

(2.2) B is a subset of the bounded continuous functions on I%’ and for 
WEB, II WIIB 3 II Wllm . 

(2.3) B is translation-invariant; i.e., if WEB, then W o 7 E B for any 
translation T: R -+ R, and 11 W * T /I8 = 11 WI], . 

(2.4) If f: DP + iFP is a smooth function with f(0) = 0 then f 0 WEB 
for any WE B and for any M > 0 there are constants KI and K, such that 

II WIIB < M and II J@IIB < M * Ilf~ W-f 0 J% < 4 II W - @‘lb 9 
and 

II Wllco < M * llfo Wile < K, II WIIB . 

607/27/1-z 
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(2.5) If  Q : Iw -+ Iw is translation by h, Q(X) = x + h, and rhW = 
Wo~,thenforany W~B,lim,,,jl~,W- W/I, =O. 

It is easy to see that the following spaces satisfy (2.2)-(2.5): 

BCk = {W: (d/dx)jW is a bounded uniformly continuous function 
on Iw for 0 <j < K}, K > 0; 

BCanL,,p >, 1; 

W,k={W~Lg:(d/dx)iW~LBforO<j<k},k>l; 

Cok = {WE BCk : lim (d/dx)i W = 0 as 1 x I-+ co for 0 < j < K}. 

Moreover, the intersection of a finite number of spaces having properties (2.2)- 
(2.5) again has these properties. On the other hand, the space L, n L, does not 
have property (2.5), as one easily sees by taking W to be the characteristic 
function of an interval. 

I f  j is in the Schwartz class, Y(R) satisfies JTm j(x) dx = 1, and jJx> = 
l -lj(,-lx), then (2.5) holds if and only if 

(2.6) Forany WEB,j,* W-t WinBasE+O. 

Proof. That (2.5) implies (2.6) follows from the identity 

j, * W = 1 j<(h)(~W) dh. 

The reverse implication is not needed below and the proof is left to the reader. IJ 

Applying (2.6) in the special case j = (4n)-l/” e-“* it follows that the solution 
of ZQ = au,, with u(0) = u” E B is a continuous function of t with values in B 
forO,(t<oo. 

Of special interest to us will be the Banach space of continuous functions on 
[0, T] with values in B. This space, denoted by C([O, T][ B), is normed by 

“Posts~ II W(t)lL3 * 
In order to solve system (2.1) we use the Green’s kernel G(t) for the associated 

linear system; namely, G(t) = diagk#), g,,(t),..., g,Jt)>, where g,(t) = 
(4rrut)-l12 exp[-x*(4&l] if a > 0, while go(t) = S(x). It IS a simple matter to 
show that UE([O, t]B) satisfies (2.1) (in th e sense of distributions) and the initial 
condition U(0) = U” if and only if U is a solution of the integral equation 

U(t) = G(t) * U” + [ t G(t - s) *F(U(s)) ds, (2.7) 
‘0 

where * denotes convolution on U!. 
It is worth noting that for U E C([O, t]l B) th e integrand in (2.7) is a continuous 

function of s with values in B, so that the integral is actually a Riemann integral. 
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Finally, if p is a finite Bore1 measure on R, and WE B, then ,LL * WE B and 

II II * W IIB < (total variation of p)ll W IjB . 

This inequality is a consequence of the translation invariance of the norm in B. 
Applied to G, we see that for any t 3 0, and U E B, we have 

With these preliminaries out of the way, we can solve the integral equation 
(2.7) for a short time interval by standard iteration techniques. The point to be 
made here is that the size of this time interval depends only on F and the sup 
norm of U”. The usual methods have the time interval also depending on A and 

II lJ” Ile * 

THEOREM 2.1. For any U” E B, there is a constant t, > 0, depending oniy on F 
and /I U” llDo such that the initial value problem for (2.1) with data U(0) = U” has a 
unique solution in C([O, to] I B). 

Proof. We first show that there is a to > 0 depending only on II UO IIs and F 
such that (2.1) has a unique solution in C([O, t] 1B) and II U Jlc([o,tl,a) < 2 (I 770 JIB. 
For any to > 0, let 

52 = {U E C([O, toll B): II U(t) - G(t) * U” IlB d II U” IIt, , 0 < t d to>. 

I f  U E Sz, then II U(t)ljs < 2 II U” II8 , for 0 < t < to, so by (2.4), we may choose 
a constant k, independent of to such that for U, V E Q, 

/I F(W)) - F(V(t)k(to.tom) < k 11 u(t) - v@)llC([O.t,llB) . (2.8) 

Let to = (2k)-l, so that to clearly depends only on F and /j U’J jlB . We define a 
map r from C( [0, to] I B) into itself by 

rU(t) = G(t) * U” + Jo’ G(t - s) * F(U(s)) ds. 

We first show that r maps the closed set Q into itself. For an element W = 
(Wl ,--.> w,) in B, let / W 1 = (I w, I,..., I w, I) E BP. We also define a partial 
ordering on B by W < l$’ if the inequality holds on each component. Since for 
every a, t > 0 the distributions ga(t) are positive measures of total mass equal 
to 1, we have, for U E 9, 

11 r(U)(t) - G(t) * u” IlB < k St II U(s)lls & 
0 
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where we have used (2.8) with V = 0. Hence, for 0 < t < to, 

II VW) - G(t) * U” Ile < 2kto II U” IlB = II U” 118 

so that r maps D into itself. 
We can also show that r is a contraction mapping on Q, for, if U, 5’ E 9, then 

I! r(U)(t) - W’)Wl, < It II G(t - 4 * (F(W)) - W(s)))lls ds 
0 

< s t II WW) - W(4)Il, ds 
0 

< k I t II u(s) - WIB ds 
0 

G kto II u - I f  Ilc([o.t,lls) 

Banach’s theorem implies that r has a unique fixed point in Q. 
Banach’s theorem tells us that U is the only solution in Q, but leaves open the 

possibility of solutions outside of Q. However, uniqueness of U E C([O, to]1 B) is 
a special case of Theorem 2.3 of the next section. 

To complete the proof we must extend the solution to an interval 0 < t < t, 
which depends only on I( U” /IQ . Since B C BC” the above argument shows that 
there is a t, depending only on F and I/ U” jlm and a solution V E C([l, t,]/BCO) 
with /I V(t)ljm < 2 // U” jl for t E [0, tJ. By uniqueness in C([O, t,]/BCO) we have 
U = V for 0 < t < to . To complete the proof it suffices to show that V E 
C([O, &l/B); then V provides the desired extension. To prove the regularity of V 
we will show that there is an 7 > 0 independent of t, E [O, tJ with the property 
that if V E C([O, t2]/B) then b’ E C([O, t, + 71/B). A finite number of applications 
of this result implies that V E C([O, t,]/B). The main point is an estimate for 
/I VI]c([o,t,~,a) which is independent of t2 . Now V is a solution of the integral 
equation (2.7) so taking norms of both sides yields 

II v(t>ll~ < II U” IIB + Jt IIF(~(s))IIB ds. 
0 

By property (2.4) and the fact that 11 V(t&, < 2 11 U” llm we may choose Ka so 
that /j F(V(s))ll, < Ka II V(s)llB . An application of Gronwall’s inequality yields 
a constant c > 0, independent of t, E [O, tl], such that 11 v(t)jjB < C for 
0 < t < t, . Choose 7 > 0 so that the initial value problem for (2.1) with data 
of B norm at most C has a solution in C([O, 71/B). Let WE C([O, q]/B) solve 
(2.1) with W(0) = V(tJ and then define V(tz + s) = W(s) for 0 < s < 7. 
This provides the extension to [0, t, + 71 and completes the proof. 0 
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The result of Theorem 2.1 can be strengthened in two ways if Eq. (2.1) is 
linear, that is, if F(U) = FU for a constant matrix F. In that case inequality 
(2.8) holds for all U(t), V(t) in C([O, to]/ B) if k is chosen suitably. In addition we 
need not assume that B satisfies (2.2), (2.4); B need only be a translation- 
invariant Banach space of distributions on R satisfying (2.5). These remarks 
show that in the linear case we may choose t, so that a solution exists on 0 < 

t =G to for any u” E B and 11 u Ilc~[o.t,~lB) < 2 ]I U” 11s . The solution can then be 
continued to t, < t < 2to by solving the initial value problem 

(a, - Aa, - F)8 = 0, t, G t G 24)) 

mo> = Wo)* 

The extended solution is then defined by 

U(t) = original U(t) if 0 < t < to, 

= U(t) if to < t < 2to . 

Continuing in this manner we find a solution 

u E C(P, ~0) I B) with ]I U(t)llB < 2[t’tJ+1 11 lJOllB . 

Summarizing these remarks we have 

THEOREM 2.2. If (2.1) is linear, that is, F(U) = FU for a constant matrix F, 
and B is a Banach space of distributions satisfying only (2.3) and (2.5), then for any 
U” E B there is a unique U E C([O, a~)[ B) which satisfies the initial value problem 

for (2.1) with data U(0) = U”. Furthermore, there are constants k and c independent 
of U0 such that 

II u(t>liB < keCt 11 U” I/B . 

2.2. D#erentiable Dependence on Initial Conditions 

The integral equation (2.7) allows us to get some information on the depen- 
dence of solutions on the initial data, UO. First observe that if U and 0 are 
solutions belonging to C([O, T]j B), then for any t E [0, T] 

U(t) - o(t) = G(t) * (U(0) - ~(0)) + Lt G(t - 4 * m U(s)) - F(W) ds* 

Suppose that I] U(t)lL < M and ]I I?(t)llB < M for 0 < t < T, and choose k 
so that (2.4) holds for all IV, m with jl W llB and 11 @ IIB bounded by M. Then 

II w - ~~~)llB < II UP) - o(o>llB + k St II u(S) - o(s)llB & 
0 
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so that Gronwall’s inequality yields 

II u(t) - ~(t)lle < ekt II U(0) - ohs . 

We state this formally as 

THEOREM 2.3. Let U and U be elements of C([O, T]I B) which satisfy both 
(2.1) and 11 U(t& , // U(t)lln < M for 0 < t < T. Then there is a h depending 
only on M such that (2.9) holds. 

This result asserts Lipschitz continuous dependence on initial data. Our next 
result strengthens this to differentiable dependence. Define a nonlinear map 
s(t): B + B by S(t) U” = U(t), where U(t) is the solution of (2.1), with 
U(0) = U”. Let SJt) be the analagous solution operator for the linearized 
equations 

vt = A v,, + dF,( v), V(0) = uo, (2.10) 

where dFo is the Jacobian matrix of F evaluated at zero. 

THEOREM 2.4. Suppose that T > 0 is so small that the initial value problem for 

(2.1) has a solution in C([O, T][ B) for any initial data U(0) = U” in a neigh- 
borhood, 0,O E 0. Then the map S(t) is Frechet dsfferentiable at zero and 

dS( T). = S,(T). (2.11) 

Proof. For 0 < t < T let U(t) = S(t)(hD) with Ij @ jIB < 1 and ] h ] < E 
so that hsP E 0. We must show that S(t) 3 h-lU(t) converges to S,(t)@ as h + 0 
uniformly in @. For S we have the equation 

(a, - AS,,) S = h-lF(U(t)). 

From the Taylor formula with remainder (see [7, Sect. 8.141) and property (2.4) 
of B we have, for Y ranging over any bounded subset of B, 

IIV’) - @oCW, < ~1 II Y’lli . 

By (2.9) we have ]I U(t)jb < czh for 0 < t < T with c, independent of @, so if 
W - S(t) - S,(t)@, we have 

(a, - AS, - dF,) W = R(t), 

where I] R(t)llB < c,h for t E [0, T]. The usual Gronwall estimate shows that 
]I ?V(t)llB < c,h for 0 < t < T with c, independent of @, and the proof is 
complete. 0 



FITZHUGH-NAGUMO EQUATIONS 21 

2.3. rtependence on the Parameters a, ,..., a,, . 

We now investigate the dependence of solutions to (2.1) on the parameters 
a, ,..., a, . The main question that we are concerned with is how the solutions 
behave when some of the ats tend to zero; i.e., when certain diffusion terms are 
allowed to shut off. We show that the limiting solution (i.e., the one where some 
ai = 0) is indeed a limit of the solutions where the at are positive. In other 
words, the solutions depend continuously on the ai’s. We assume the following 
existence assertion. 

(2.12) There is a function #: & -+ R, such that for any a E (a,)*, and 
any U” E B, Eq. (2.1) h as a unique solution U E C([O, 2’11 B) with U(0) = Uo, 

and SUPOOST II W)lL < +(II U” II,& 
Our local existence theorem, Theorem 2.1, shows that (2.12) holds if T is 

sufficiently small. In the next section we shall show that for the nerve equations, 
(2.12) is valid for all T > 0. 

We now make an important observation; namely, if (2.12) holds for a space B, 
it also holds for any subspace B’ C B, with the same 9. This is true since the 

. . . 
a priori sup norm estimate in (2.12) allows the passage from a local solution to a 
solution defined for 0 < t < T. 

For any B and integer k define a new Banach space B, by B, = {WE B : 
(d/k)” WE B, for 1 < i < k}, 

We then have 

LEMMA 2.5. B, is dense in B for any k >, 0. 

Proof. Let j and j, be as in (2.6) then 

(&)” (i * W = (&-a) * WEB, 

so j, * WE B, . However, (2.6) asserts that j. * W+ Was t + 0, so B, is dense 
in B. 17 

Observe that B, C BC”, so in particular, we see that B n BCk is dense in B 
for all k. 

Now if we assume that (2.12) holds, we may define the solution operator 
S, : B + C([O, T]l B) by letting S,U” be the solution of (2.1) with U(0) = UO. 
We then have the’main result of this section. 

THEOREM 2.5. I f  (2.12) holds then for any U” E B, the map a --t S,UO is 
continuousfrom (lR+)n to C([O, T]I B). 
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Proof. Let N be any positive number and let 

BN = {U” E B: Ij U” llB < IV}. 

We prove that S,U” is a continuous function of a for U” E BN. 
With 4(N) as in (2.12), we use (2.4) to find a k so that 

IIV? -wm, < k II w- ills (2.13) 

for all W, I@ E BN. Then from (2.9) we have 

11 SJJo - &Jo llct~o,T~~B) < ekT II u” - 0’ HB (2.14) 

for all U”, o” in BN. Thus, as maps of BN to C([O, T]I B), the family {S, : 
a E (R+)n) is uniformly equicontinuous. Thus, if ak + a in (n+)“, it suffices to 
prove that S,kUo -+ S,U” for U” in a dense subset of BN. The dense set we choose 
is B, n BN. 

Since B, C B, our previous remarks show that both (2.12) and (2.14) hold for 
B replaced by B, . In particular, taking no = 0, we have that 

I/ s~u” hO.f~B~) < ekT l\ u” iiB2 . (2.15) 

For a, a’ E (w+p, let U = S,UO, U’ = S,, U”, and let 

A = diag(a), A’ = diag(a’). 

Then if I’ = U - U’, we obtain the following differential equation for V: 

v, - A v,, = (A - A’) u;, + F(U) - F( u’). (2.16) 

If E = max{i ai - ai’ / : 1 < i < B), then (2.14), with B replaced by B, , shows 
that the right-hand side of (2.16) is a continuous function H, with values in B, 
and (2.15) yields 

II H(Qlb < dT 11 u” IIB, + k 11 v@)liB . (2.17) 

If we write (2.16) in integral form, 

V(t) = G(t) * V(0) + lt G(t - s) *H(s) ds, 

and note that V(0) = 0, we get, from (2.17), 
. 

II WIB < dTT II U” llsz + k St II W)lb ds. 
0 
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Then Gronwall’s inequality implies that for 0 < t < T, 

It follows that if a, -+ (I in (R+)n then SakUo + S,UO in C([O, T]] B), and the 
proof is complete. q 

3. CONTRACTING RECTANGLES FOR THE FITZHUGH-NAGUMO EQUATIONS 

3.1. Contracting Rectangles 

In our proofs of theorems concerning global (in time) existence, stability, and 
asymptotic behavior of solutions of (1 . 1 ), a central role is played by rectangles which 
are contracting for the vector field (f(v) - u, uw - yil) in the following sense. 

DEFINITION 3.1. A bounded convex set R C IFP is contracting for the vector 
field F(U) if for every point U E ZR and every outward unit normal n at U, 
F(U).n <O. 

The importance of such sets for deriving sup norm estimates was pointed out 
in [5, 131. For systems of partial differential equations whose principal symbol is 
not scalar, a special role is played by rectangles (see [5]). In this section we gather 
together several results concerning the existence of such rectangles. We restrict 
attention to U = (v, u) E Iw2. 

LEMMA 3.2. Suppose H(U) and I?(U) are vector fields with the same second 
component, and that R is a rectangle containing 0 which is contracting for H(U). If 
(w 4 &(u> G (w 4 WJ), on aR, then R is contracting fbr I?. 

Proof. Since R is contracting for H(U) and h,(U) = f;z(U), we see that 
i,(U) is negative on the “top” of R, and positive on the “bottom” of R. On the 
other hand, the inequality in the hypothesis implies that f;l( U) is negative on the 
“right edge” of R and positive on the “left edge” of R. 0 

LEMMA 3.3. For the linear vector field F,(U) = (-j3v - u, ov - yu), y, 
/3 > 0, (5 3 0, there is a contracting rectangle containing (0,O) if and only sf 

B > U/Y- 

Proof. Suppose that R is a contracting rectangle for FL containing (0, 0). 
Then it is easy to see that the top and bottom of R must lie, respectively, above 
and below the line uv - w = 0, while the left- and right-hand sides of R must 
lie, respectively, below and above the line -/3v - zl = 0; cf. Fig. 2. 

Let (Y = u/y; then if we let (v. , ~~0) denote the upper right-hand corner of R 
and (v, , @oh h 9 u ) (v. , ill) denote the other corners of R (oriented counter- 1 3 
clockwise from (v, , ug)), then there exist ei > 0, 1 Q i < 4, such that v. = 
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(VI 
” (Vo,“o) 
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,“o) 
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(V,,“,) 
(VZ,“I) 

u = -/3v 

FIGURE 2 

(us/a) - e1 , Vi = (-uO/p) - c2 , u1 = awl - l s , er, = w2 = (ur//3) + Ed . Using 
the last three of these equations, we have 

so that together with the first equation, we get 

(1 /a - 4P2> 110 = El + E4 + %/P + ac2//3. (*) 

Since the right-hand side of this last equation is positive, and u. must be positive, 
we have /3 > 01. Conversely, suppose /I > (Y. We let (w. , uo), u. > 0 be any point 
as in Fig. 2, and successively construct points (ZJ~ , uo), (~1~ , ur), (n2 , ul) satisfying 
the above relations for some Ei > 0, 1 < i < 4. We must show that we can 
choose these ci so as to satisfy w2 = w. . But this means that we must solve (*) for 
the ENS. Since the left-hand side of (*) is positive, this can obviously be done. 0 

Notice that for the linear vector field of Lemma 3.3, if a set R is contracting, 
then TR is contracting for all T > 0. We now investigate the existence of small 
contracting rectangles for the FitzHugh-Nagumo vector field. 

LEMMA 3.4. I f f  ‘(0) = -& and/3 > u/y, then there is a rectangle R containing 
0 such that TR is contracting for F(U) = (f(w) - u, ow - yu) for all sujiciently 

small 7. 

Proof. For w small, f(w) = -/30 + O(w2). Thus we may choose E > 0 so 
small that j3 - E > a/y and (sgn w) f  (w) < (sgn w) (--/I + E)W for w small. The 
result now follows from the last two lemmas since we may choose R contracting 
for the field ((-/I + E) w - u, uw - .yu). Then TR is contracting for this field 
for all 7 > 0. If 7 is sufficiently small, the above inequality, together with Lemma 
3.2 shows that TR is contracting for F. 0 

If we examine the proof of Lemma 3.4 we find that we can show more; 
namely, we can show that there is a critical rectangle R, , which, roughly 
speaking, is an upper limit of “small” contracting rectangles containing 0. For 
small w > 0 (resp. a < 0), the graph u = f  ( ) 1 w ies below (resp. above) the line 
u - (a/y)w. Forf (w) a cubic, we see that even if 1 f  ‘(0)l > a/y, the curve u = f  (w) 
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crosses this line for large v. Assuming that -f’(O) > o/y, and that {v: f(v) = 
-(CT/~) v, v # 0} is nonvoid, let 

0, = min{l v I:f(v) = -(u/r) v, v # 0). 

Let R, be the rectangle symmetric in the u and v axes with upper right-hand 
comer at the point (vC , a/p& see Fig. 3. We then have the following result 
which will be used in Section 4.2. 

LEMMA 3.5. Suppose that F(U) = (f(v) - u, uv - yu), -f’(O) > u/r, 
ana’ R, is the rectangle described above. For any compact set Q in the interior of Rc , 
there is a rectangle R and a constant k > 0 such Q C R C Rc and F( U) * n < - k7 
for all 7 E (0, I], U E a(rR), and outward unit normah n at U. 

V 

= f(v) 

FIGURE 3 

Proof. Choose A, 0 < A < 1 so that Q C AR, and let R(E) be the rectangle 
symmetric with respect to the u and v axes, with upper right-hand corner 
(h , (u/r + 4 h). Ch oose E,, > 0 so small that Q C R(q,) C int Rc ; then 
R(E,) is the desired rectangle. 0 

Next we consider the question of the existence of large contracting rectangles 
for the vector field F(U). Notice that for the biological models of the nerve 
conduction equations, the function f (v) is a cubic polynomial. For such functions, 
we have 

,$Fa f w/v = +a. 

In particular the following growth condition is satisfied 

(3.1) 
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LEMMA 3.6. Suppose that f(v) satisfies (3.1). Then there is a rectangle R 
containing 0, and a real number r0 > 0 such that TR is contracting for F(U) = 
(f(w) - u, uv - yu) if 7 >, To. 

Proof. Choose E > 0 so small that 

if(v)I < (-dr - c)v 

for v sufficiently large, say 1 v / > M. Let R be a contracting rectangle for the 
linear field ((-u/r - 6) z, - u, ov - yu). Then TR is contracting for F provided 
that (fM, 0) E TR, in particular, for T large. q 

Remark. Observe that the rectangle R of Lemma 3.6 is contracting for all 
the fields p(U) = (f(v) - II, Gv - yv) with 0 < u < 6. Reducing the value 
of o makes the field point more toward the interior of R. This fact, which is 
analogous to Lemma 3.2, will be needed later. 

Just as we have a critical “small rectangle” R, , there is a lower limit RC to 
“large” contracting rectangles. Thus, suppose f  satisfies (3.1) and set 

vc = maxi/ e, 1 : f(v) = -(a/y)v}. 

Let Rc be the rectangle symmetric in the u and v axes with upper right-hand 
corner (vc, an&), see Fig. 4. We then have the following refinement of Lemma 
3.6 whose proof proceeds in a manner analogous to Lemma 3.5. 

LEMMA 3.7. Suppose f  and F aye as in Lemma 3.6. Then for any compact set Q 
in the exterior of RC, there is a rectangle R such that RC C R, Q is in the exterior of R, 
and TR is contracting for F for 1 < 7 < CO. 

3.2. The Basic Lemma 

The basic fact about contracting rectangles is that they allow us to define non- 
linear functionals, which are decreasing functions of time for solutions of the 
differential equations (2.1). This result is applied in Section 3.3 to prove global 
existence and in Sections 4.2, 4.4, and 5.2 to study asymptotic behavior as 
t + co. For our applications the ai are not equal, so a special role is played by 
rectangles (though for A = cl the results of this section can be extended to 
arbitrary convex R, cf. [13]). 

The functionals we consider are associated with rectangles R such that the 
origin is in the interior of R. Let 1 . IR be the norm on W” defined by such a 
rectangle in the usual way: 

( U lR = inf(t 3 0: UE tR). (3.2) 
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FIGURE 4 

Thus / U IR is the smallest multiple of R containing U. We define a continuous 
function ryR : BC -+ 08 by 

The basic fact, which is a quantitative version of the maximum principle of 
Chueh, Conley, and Smoller [5], is given in the next lemma. Recall that for a 
function Y: [w + It& the upper Dini derivate is defined by 

IPP((T) = lim sup w + 4 - Y(T) 
he0 h * 

LEMMA 3.8. Let F(U) be a vector field on IWn, and let R be a rectangle with 
0 E int(R). Suppose that U E C((T - 6, T + a), Co@)) is a smooth solution of 
(2.l)for j t - T 1 < 6 and that -yk( U(T)) = s. If there is an 7 > 0 such that for 
any WE a(sR) and n(W) normal to a(sR) at W we have F( W) . n(W) < - 7, then 

W&V)) G -CWL) +‘XU(T)), (3.4) 

where L is the length of the shortest side of R. 

Proof. Let U = (~1 ,..., u,,), F = (fi ,..., f,J, and let R be defined by the 
inequalities --& < ui < ri , i = 1,2 ,..., n. Multiplying R by a scalar if necessary 
we may assume that VR( U(T)) = 1 so -Zj < ui( T, x) < ti for all X. We say 
that U(t, X) is in the jth right-hand face if u,(t, X) = rj , with an analogous 
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definition for the left-hand face. If  now U(T, X) E aR, then there is a subset 

JCU, z..., n} such that U( T, x) is on one of the jth faces if and only if j E /. 
I f  U( T, 2) is in the jth right-hand face, then z+( T, X) < rj for all x with equality 
at x = x so aj&&T, X) < 0. Thus 

so that uj(T + h, X) < rj - $z for small h. By continuity, this holds for all x 
in a neighborhood of X. A similar result holds for left-hand edges. 

Let X = {x: U(T, x) E iiR}; then X is a compact set in [w and by the above 
computation, there is a neighborhood P 3 X such that for 0 E If, we have 

c’( T + h, 0) E (1 - h~( min (rj , I,))-‘)R 
1CKn 

for small h. 
For x E lF!\S we have U(t, a+) C int(R), so since C E C((T - 6, T - a), C&Q)) 

there is an h, > 0 and a compact set KC int(R) for which c-(1’ t h, X) C K 
for all 1 h j < h, . Thus for sufficiently small h, U( T + h, x) C (1 - 2hqjL)R for 
all x E [w. Hence -t a( U(T + h)) < 1 - (2/177/L), so that (Y k( c:( T + h)) - 
VR(U(T)))/h < -27/L, and the proof is complete. q 

Remark. If  A = cI and R is a arbitrary convex set contracting for F(U) and 
0 E int R then we would have B’Pi( U( T)) < -(27/d) Yi( U( T)) where 

1=sup{x.rl/sl =I,YER}, 

The proof of this result is similar to the proof of Lemma 3.8 and is omitted. 

3.3. Global Existence for the FitzHugh-Nagumo Equations 

The basic lemma of the last section allows us to prove global (in time) existence 
theorems for the FitzHugh-Nagumo equations for U = (a, U) (where c > 0), 

Z't = z',, -tf(4 - % 
Ut = EU,, + crv - yu. 

(3.5) 

THEOREM 3.9. If B C C,, andgrowth condition (3.1) holds, then for any U” E B 
there is a unique sobtion U E C([O, co)1 B) of (3.5) with U(0) = U”. 

Proof. Suppose U” E B. By Lemma 3.7 we may choose a rectangle R such 
that R is contracting for F(U) and $/a( U”) < I. Let U E C([O, to]1 B) be the 
solution of (3.5) with U(0) = U” where to is as in Theorem 2.1. Then we must 
have VR(U(t)) < I for 0 < t < to . For if this were not true, let 

t = infit E (0, to)1 -tR(U(t)) = I}. 
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Then, f  > 0 by the continuity of VR(U(t)) and by Lemma 3.8 DVR(U(r)) < 0. 
Thus we must have V’s(V(t)) > 1 for t E (i - E, q, contradicting the definition 
of i. The estimate VR( U(t)) < 1 for t E [0, ts) is the sup norm estimate we 
need to extend U to a global solution with VR( U(t)) < 1 for all t > 0. The 
proof is complete. 0 

The sup norm estimate of the theorem can be made more quantitative as 
follows. Using Lemma 3.7 we can show that there is a constant c such that for 
any Y there is a contracting rectangle R whose largest side has length less than 
c(1 + Y) and such that {( et u , )I max(l e, \,I u 1) < Y} C R. Then for solutions of 
the FN equations, we have that 

for all t >, 0. 
II w)llco G 4 + II wwm) (3.6) 

4. THE THRESHOLD PROBLEM 

4.1. Stability via Linearization 

In this section the decay of solutions with small initial data is proved by 
studying the linearized equations. This line of attack going back to Poincare 
yields results which are very general in the sense that the convergence is in the 
topology of any space H,(R) with s > $. In addition the results of this section 
apply when y  = 0. 

The linearized (at zero) FitzHugh-Nagumo system for U = (w, u) is 

where fl = -f’(O). We assume that fi > 0, a > 0, E 3 0, y  3 0, and 
y  + u > 0. These equations can be solved explicitly by using the Fourier 
transform. Let 

ok 8 = &p j- e+U(t, x) dx 

be the partial Fourier transform and let 

Q(6) = (-8, 52 -2 (t2). 

For U” E 9, the Schwartz class, the solution of (4.1) with U(0) = UO is given 
by the formula 

#(t, 5) = et@(C) O”( 5). 
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Recall that H, = {u E Y(rW)j(l + 1 .!J j2)s/2 9~ E&}, where SU is the 
Fourier transform of u. For any s E [w, H, is a translation invariant Hilbert space 
of distributions and for s > Q , H, is an admissible space B. 

THEOREM 4.1. There are positive constants K and c such that for any s E Iw 
and any solution U of the linearized FitzHugkNagumo equations I/ U(t)iJH, < 

eet II WWH, . 

Proof. To prove the theorem it suffices to show that supEEIW j/ eta(c) /I < Ke+. 
First we treat the case E > 0. Let b = - 5” - p, d = -et2 - y; then the eigen- 
values of CD are 

A* = (b + d) &((b - d)2 - 40)l/~, 

the solutions of h” - (b + d) A + (bd + u) = 0. Since b + d < 0 and bd + 
(T > 0 the roots hi have negative real part for all E E Iw. In addition, for 1 E / 
large, we have 

L = -P + O(l 4 I), 

A+. = -52 + O(l 6 I). 

The result2 follows from the following inequality for n x n matrices, M, 

jl eM II < c,(l + /I M !i)“-l exp[sup{Re h : h E spectrum (M)}]. (4.2) 

For M = t@(t), there is a 6 > 0 such that 

sup{Re tL} < -8& vt 20, (ELF!, 

so I/ eta(e) 11 < c(1 + tP) e- se”t; this implies the desired inequality. 
When E = 0 the analysis is a little trickier. In that case 

((b - d)’ - 4u)-:J = (6” + 2$(r - ,6) + O(l)), 

= P + (Y - 19) + O(F2), 

so 

A+ = -p + O(p), 

A- = - p - y + o(p), 

? A long proof of (4.2) can be found in [9]. We sketch a short proof. If A1 ,..., h, are the 
eigenvalues of &.f, let B = {z E c 1 1 z - AI 1 < 1 for some j} and let r = as. The 

curve F consists of a finite number of circular arcs. In addition, length of F < 25~2 and 
z E r implies 1 z 1 < 1 + II M 11, 1 z - Aj ) > 1 for all j, and Re z < 1 + sup9 Re &. 
It follows that for z E r, j det(z1 - IM)l = n / z ~ hj I > 1, and by Cramer’s rule that 
Il(zI - M)-* II < C,(l + II MIl)+*. The d esired inequality follows from the formula 
eM = (Z~ri)-~ $r (~1 - AI-l eL dz. 
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so the crude inequality (4.2) d oes not suffice, and we must make a more detailed 
analysis of 0. The eigenvectors Y* corresponding to eigenvalues A* are given 
by Y* = (1, --/I - 42 - &)so 

y+ = (0, -5”) + O(l), 

y- = (1, -B + y) + o(5-2). 

Thus the angle between the normalized eigenvectors E;t = Y& Y* 11 is bounded 
away from zero uniformly in $. Therefore, the matrices D(I) with columns 
E+( 5) and E-( 6) satisfies 

and jl D 11, Ij D-l Ij are uniformly bounded in 6. Since 

e*@ = D f; ,i-) D-l, 

we have j/ et8 jl < Ke-ct and the proof is complete. 0 

This result for the linearization allows us to prove asymptotic stability of the 
zero solution of the FitzHugh-Nagumo equations. 

T~~oltE~4.2. Forunys>~thereisabaZZ~={(W~H,I/IWII, <r}and 
positive constants K and c, such that if UQ E g then the solution U of the ?&Hugh- 
Nagumo system with U(0) = U” exists for all t > 0 and 

II W)lb, < K+ II U” lb, , Vt 2 0. 

Remark. When y = 0 the global existence part of this assertion is not 
contained in our Theorem 3.9. 

Proof. Let f&(t) be the linear map from H, into itself sending U(0) to U(t), 
where U is the solution of the linearized equations (4.1), and let S(t) be the 
analogous operator for the nonlinear system (2.1). From Theorem 4.1, we can 
find T > 0 such that 11 S’,(T)11 < Q. 

We first show that there is an tr < 0 such that if II UO Ilx, < e1 , then there is a 
solution of (2.1) defined for 0 < t < T with U(0) = U”. To see this, observe 
that from the proof of Theorem 2.1 there is a to > 0 such that if 11 U” IIB < 1, 
then the system (2.1) has a solution defined on 0 < t < t,, satisfying 11 U(t)lb, < 

2 II WY, on this interval. Let N be an integer such that Nt,, > T, and let or 
be chosen so that 2”~ < 1. If II U’J llH, < e1 , then as in the proof of Theorem 2.2, 
the solution U(t) can be continued from [0, t,] to [t,, ,2&l. Continuing in this 
manner for K steps, we can define U(t) on 0 < t < Kt, and 11 U(t)lle < 

607127/r-3 



32 RALJCH AND SMOLLER 

2K 11 u” l/B < 24, . Thus, if K < iV, 2K~, < 1 and this process can be repeated. 
In this way U(t) is constructed on 0 < t < Nt, . 

Next, we note that by Theorem 2.4, S(T) is differentiable at 0 and dS( T), = 
S,( 2’). Since S,(T) is a linear map of norm less than 4, it follows that there is an 
E in (0, ci] such that 

II S(T) WIIH, -=c & II WllH,, if 11 WiiH, < E. 

Thus if B = (w E H, : // W IIH, < E}, S(T) maps 9 into itself. It follows that for 
UO E A?‘, the sohttion S(t) U” can be extended as a solution of the nonlinear 
system for T < t < 2T, since the “initial data” S(T) Us E k%?. Continuing in 
this way we get a solution U E C([O, co)1 H,), with /I U(nT)IIH, < (4)” (1 U” IiH, . 
But then from (2.9) 

where [t/T] is the greatest integer in t/T. This completes the proof. 0 

4.2. Stability by Contracting Rectangles 

In this section stability of the zero solution is investigated by constructing a 
Lyapunov function with the aid of Lemma 3.8. The most important aspect of the 
result obtained is that an explicit and simple estimate is given on how small U” 
must be in order to imply U(t) + 0; namely, U”(x) E R, for all x E [w. Precisely, 
we prove 

THEOREM 4.3. For the FitzHugh-Nagumo equations, suppose -f ‘(0) > a/y, 
and let R, be the critical rectangle described in Lemma 3.5. If U” E Co@) and 
U*(x) E int(R,J for all x E Iw, then there are nonnegative constants c, K such that 
11 U(t)&, < Ke-ct,for all t 2 0. 

Proof. Since U” E Co , there is a compact set Q C int (R,) such that U”(x) E Q 
for all x E [w. Choose a rectangle R with Q C R C R, , as in Lemma 3.5, and let 
V’a be the associated function. If L is the length of the shortest side of R and k 
is as in the above quoted lemma, we may apply Lemma 3.8 with 7 = kVR(v) to 
conclude that 

D%(u) < (--2W) “&z(u), cyR(UO) < 1. 

Thus VR( U(t)) < e-zktlL and the proof is complete. 0 

The authors feel that the restriction range U’J C int R, is much stronger than 
is necessary to ensure that U(t) decays to zero. In particular we feel that the 
smallest positive zero of f(w) is a critical parameter which does not enter the 
description of Rc . The importance of this zero is illuminated by the results of 
the next sections. 
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4.3. An a Posteriori Decay Theorem; the Energy Method. 

The standard asymptotic stability theorems assert that if U” is suitably 
restricted then U(t) tends to zero as t -+ + co. In this section we present a 
decay result with a different flavor; namely, if U(t) satisfies a suitable condition 
for all t sufficiently large, then U(t) --+ 0. Our result asserts that if w is always 
less than the smallest positive root, 01, off(w) = 0, then U(t) decays exponentially 
in L2 n L”. This result is applied in the next section. 

THEOREM 4.4. Suppose the function f(v) in the FitzHugh-Nagumo equations 
(1 .l) satisjes the growth condition (3.1), f’(0) < 0, and in addition f(v) > 0 for 
v  < 0. Let OL = inf(v > 0 1 f(v) = 0) be the smallest positive zero off and +po.se 
that (v, u) = U E C([O, co) 1 L, n BCO) is a solution with ~up~>~,~n v(t, x) < CL 
Then there are positive constants K and c depemling onZy on )I U(0)JIL,nBc~ such that 

II Wllm + II Wlh, G &rot. 

Proof. It suffices to prove the theorem assuming U(0) E H,(R) for if U(Oi i 
L, n BCO, we may choose U,(O) E H,(R) with U,(O) ---* U(0) in L, n BCO. Then 

II U&)llm + II W)lL, G Ke-Ot 

with K and c independent of n. Since U, -+ U in C([O, co) 1 L, n B) the desired 
inequality for U follows. 

If  U(O)EH~ then UEC([O, co)lH,(!R)). Multiply the equation wt =vzr + f  (w)-u 
by on, the equation ut = cuss + az, - yu by u, and add to get 

4 (d/dt)(ov2 + u”) = ~,a? + ~wzx + uvf (v) - p2* 

Integrating this expression over Iw we obtain, after an integration by parts, 

$(d/dt) j-1 (uv” + u”) dx = $1 owz2 + EU,~ + uvf (v) + yu2 dx. (4.3) 

Since v  < (Y we have -vf (w) > 6d for some 6 > 0 so 

H44 J-1 ov2+u2dx < - 
I 

co 

CT Soa + pa dx, 
-co 

and it follows that ]I U(t)l12 < Ke-ct. 
Assume now that E > 0 and observe that 

U(t) = s,;, G(t - s) * F(U(s)) ds + G(1) * U(t - 1). 
(4.4) 

In Section 3.3 we showed 11 U(t)llm is bounded independent of t > 0, so, 
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l~F(U(s))~]s < ca // U(s)(]a with c2 independent of s. Applying the Schwarz ine- 
quality to (4.4) yields 

Thus the decay of sup norm follows from that of the L” norm. This completes 
the proof in case E > 0. 

Next suppose that E = 0. As above, the decay of /I w(t)li, follows from the 
decay of II W)IIL~ and the representation 

w(t) = g(1) * v(t - 1) + J^’ g(t - s) * F1( U(s)) ds, 
t-1 

where F = (FI , F,) and g is the fundamental solution of the heat equation. 
To estimate u we solve the equation ut = --yu + uv obtaining 

u(t) = e+‘%(O) + u 1: e+‘(t-s) w(s) ds. (45) 

In Section 3.3 we showed that there is an M > 0 such that 11 U(t)llm < M for all 
t > 0 and we have shown that 11 v(t)llm < Ke-ct. We may assume that y > c > 0; 
then 

11 u(t)[lm f  Me+ + (aK/(y - c))[e-ct - e-vt]. 

This proves the exponential decay of /( ~(t&, and the proof is complete. 0 

Unfortunately there are data U” with V”(X) < 01 for all x and for which it is 
not true that v(t, X) < OL for all t, X. To see this we suppose thatf’(or) > 0 and 
sketch, in Fig. 5, the integral curves of the vector field F(v, u) = (f(v) ---a, 
uv - yu). Let W, be a point as in the diagram so that the integral curve W(t) = 
(wi(t), wa(t)) of F with W(0) = W, passes from er < a! to v > 01, say w,(l) > 0~. 
Choose I/ E Corn(R) with 0 < 9 < 1, and #J(O) = 1. Then it is not hard to show 
that if U,(t, x) is the solution to the FN equations with U,(O, x) = #(a) W, , 
then for 0 < E < 1 the derivatives of U,(t, x) with respect to x will be very 
small for 0 < t < T. Thus U,(t, x) M #(Gx) W(t) for 0 < t < 1. In total, if E 
is sufficiently small then U,(l, 0) is to the right of the line ZJ = OL even though 
U,(O, X) was to the left of this line for all X. 

4.4. A Subthreshold Result for Small CJ 

The threshold result that we are interested in is the following. If the initial 
data uo(4 = ( V, x , u, x ( > ( N satisfies ZJ~(X) < 01 and u. > 0, then the solution of 
the FN system decays to 0. In this section we prove a result of this type provided 
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FIGURE 5 

u is sufficiently small. The basic idea is to perturb away from the FN system with 
u = 0. 

Thus, consider the FN system (1 .l) with u = 0: 

Ut = %z - yu, wt =%%+f(q-u, E >, 0. 

Supposef’(0) < 0 and let 01 be the smallest positive root off. We suppose that 
f(v) > 0 for w < 0 that f  satisfies the growth condition (3.1). It follows that 

lim sup(f(~)/o) < 0. 
v<o 

(4.6) 

For any 0 < 6 < 1, let QB be the quarter space defined by (see Fig. 6) 

The basic observation is that for u = 0 our contracting rectangle construction 
can be appreciably strengthened. 

LEMMA 4.5. Suppose that f’(0) < 0 and f satisfies (4.6), and Zet F(w, u) = 
(f(w) - u, -p). Then for any 0 E (0, 1) and any compuct subset KC QB there is u 
rectangle R such that KC R, and TR is contracting for 0 < T < 1. In fact there 
is a constant c with F(U) . n(U) < -CT fiw all U E I, where n(U) is an 
outwurd normal to 2(rR) at U, and 0 < T < 1. 

Proof. Let ii = max[sup(zl I(o, U) E K}, 11, R = Q8 n (u < ii} n {w > -A}, 
where K > 0 is chosen so large that K--l@ < b,,, f  (w)/I w 1 and KC R. (Geo- 
metrically E fixes the “height” of R and then k forces the rectangle far enough to 
the left so that the left-hand edge of TR lies below the graph off for all 0 < 
‘T < co.) This R does the trick. 0 
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FIGURE 6 

As in the proof of Theorem 4.3, the method of contracting rectangles can be 
applied to show that if U” E Co with U”(x) in QB for all x E R then, for the solution 
of (4.6) with initial data G(O) = U”, /j U(t)lim decays exponentially. By a pertur- 

bation argument we show that this property is inherited by the full FN system, 
(I. I), provided CJ is small. 

THEOREM 4.7. Let B = Co or B = Co n L, , and suppose that U” E B with 
values in Q0 for some 0 < tJ < 1. If f satisjies (4.6) and f ‘(0) < 0, then there are 
positive constants c, K, a0 such that ;f 0 < (T < a0 and U, is the solution of the 
FitzHugh-Nagumo equations (1.1) with U(0) = U” then \j U(t)lle < Ke-ct. 

Proof. First we treat B = Co . Let K = (UO(.r)l x E R} so K is a compact 
subset of QB . For any o 3 0 let U, be the solution of the FN equations with 
U,(O) = U”. By Theorem 3.9 and the remark following the proof of Lemma 3.6, 
U, E C([O, co)1 Co), and there is a constant c such that for 0 < 0 < 1, t > 0 
we have 

II ~&>llcc < c. (4.7) 

Xow let d(t) = UJt) - Uo(t); then 

A(t) = jt G(t - s) * [FO(U,(s)) - F,(U,(s))] ds 
0 

where FJv, u) = (f(v) - u, uv - yu). 
Using (4.7) it follows that there is a constant K such that j/ F,(U,(s)) - 

Fo(Uo(s))ll, G UC + k’l~4)IIco . Thus 

II 4t)llm < act + K jt II nil, ds. 
0 
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By Gronwall’s method (see [7, 10.5.1.3]) we have 

Choose (pi < 1 so that -f’(O) > al/y and let R, be the critical rectangle of 
Lemma 3.5. Choose T > 0 so large that U,(T, x) E 4 R, for all x E R. By (4.8) 
there is a (T,, < (pi so that for 0 < u < aa we have d(T, x) E a RC for all x E R. 
Then since U,(T, x) = d(T, x) + U,(T, x) we have U,( T, x) E 3 R, for all 
x E R. Theorem 4.3 then applies to show that I/ U,(t)lloo decays exponentially; 
this proves our result for B = C,, . 

For B = C, n L, observe that 11 U(t)&, decays exponentially so there is a 
t, > 0 such that v(t) < $ a! for t 3 to. Then Theorem 4.4 applies to show that 

11 U(t)/lL, decays exponentially, and the proof is complete. q 

4.5. Implications for the Mixed Problem 

Biological nerves are not infinitely long, and signals are not begun along the 
entire length of the nerve, but arise from stimulation at one end. A model which 
takes one-end stimulation into account is the following: 

wt =%+f(4+% x > 0, t > 0, 
Ut = 60 - yu, x 2 0, t > 0, 

w(0, x) = u(0, x) = 0, x >, 0, 

o(t, 0) = h(t), t 2 0, 

@(t, 4, fJ(t, 4) ---f (020) as x-co, t>o. 

(4.9) 

(4. IO) 

(4.11) 

(4.12) 

(4.13) 

In this model, the nerve is initially at rest, and is stimulated at the endpoint 
x = 0. A reasonable assumption is that the stimulus h(t) lasts only a finite time, 
so that we require h(t) = 0 for t > T. 

The threshold problem here is to show that if h is sufficiently small then the 
solution to (4.9)-(4.13) tends to zero as t + + 00. Both numerical and biological 

experiments seem to indicate that a strong stimulus which lasts a short time 
and a weak stimulus which lasts a long time are subthreshold. Our main result is a 
mathematical result of this sort. 

For the sake of brevity we will not discuss in detail the existence and regularity 
problem for (4.9)-(4.13), merely mentioning that if h E C(R+), h(O) = 0 then this 
problem has a unique solution U E C([O, co)1 L, n (?,-,)a provided growth con- 
dition (3.1) is satisfied. As usual, the main problem is to get an estimate for 

II wNx > and this is provided by the method of contracting rectangles which 

3 In this section, spaces like LS and CO , etc., mean Ln(R+) and C,(R+) = {u E C([w+) I 
lim 2+m u(x) = 0}, etc. 
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works for mixed problems (see [13] for the case where A = const 1). It is 
important to notice that since (4.12) gives the value of 7~ at x = 0, Eq. (4.10) 
can be solved to yield 

u(t, 0) = u 1’ e-+‘) h(s) ds, 
0 

so I/ u(t, O)llm < y-la supOgs(t h(s), and we have a sup norm estimate for U on 
x = 0. As in Eq. (3.6), the method of contracting rectangles p,rovides a constant 
M such that 

and global solvability follows (see [14], [16] for more details). 

THEOREM 4.7. Suppose that f  satisfies growth condition @.I), and -f’(O) > 
u/y. For h E C(R+), with h = 0 for t = 0 and for t 3 T, let U = (0, u) be the 
solution of (4.9)-(4.13). Then 

(i) For any T > 0 there is a constant c such that if // h (iz. < cT then 

II wlL,nC, --f 0 exponentially as t + co. 

(ii) For any Y E R, there is a T, such that if jj h /jm < r and T .< T,. , then 

II WIL,,Co -+ 0 exponentially as t --+ co. 

The precise dependence of c on T and T, on Y  are of interest but the results we 
get are quite crude (see [3] for numerical evidence and [15] for more precise 
mathematical results.) 

Proof. In both cases (i) and (ii) the proof is given in two steps. First one 
shows that U(T) is small in L, n Co and then proves decay of U for t > T 
using the fact that the boundary condition is homogeneous in that region. 
Define the odd extension of U by 

UC@, x) = w, 4 if x > 0, 

= qt, -x) if x < 0. 

For t > T, U, satisfies the FN equations (4.9), (4.10) on --co < x < CO. 
To estimate U for 0 < t < T we use the basic integral equations for U, 

namely, 

v(t) = lt g(t - 4 * Fduo(s)) ds + 4, 4, 

u(t) = y  It e+‘(t-s)w(s) ds, 
0 

(4.15) 
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where F,(u, u) = f(v) - u, and w is the solution of the mixed problem 

w,-ww,=o for x > 0, (4.16) 

w(0, x) = 0 for x > 0, w(t, x) -+ 0 as x -+ co, t > 0, (4.17) 

w(t, 0) = h(t). (4.18) 

To estimate U by Gronwall’s method we must estimate w. For this we use the 
comparison function rZ which satisfies (4.16), (4.17), and the boundary condition 
e?(t, 0) = 1. It is easy to see that if 5 is a solution of this problem, then so is 
eZ(pt, p%) for any p > 0. Thus by uniqueness rZ(t, X) = +(X/W), where b(s) = 
rZ( 1, s). The equations for ~5 imply that 4 satisfies the equation 

-QSC’ =d”, 

and the boundary conditions 4(O) = l,+(s) + 0 as s --t + co. This problem can 
be solved explicitly as 

c+(s) = 1 - (l/A”) j-o’ c?-‘=‘~ d[, s 2 0. 

Observe that for t > 0, /] r5((t)]jm = 1 and )[ &3(t)jL, = t* 1) 4 jJLz . 
We now prove assertion (i) of the theorem. Fix t > 0; then for 0 < t < T we 

have i w(t)1 < 11 h /jm C(t), and for t > T I/ w(t)jL, < (1 w(T)IJLz. Thus for all 

t 3 0, 

II w(th2 < II d IIL, m4 II h Ilm *A’ 6. 

Suppose 11 h /la < 1, then by (4.14), I\ U Jjm < 2M, so there is a constant K 
depending only on M such that 

II Wh, < 8 + K j” II WIIL~ ds. 
0 

Gronwall’s inequality implies 

II W>lL, < II h IL II d llr, T1i4eKt, (4.19) 

For the sup norm estimate, observe that (1 w(t)ljoo < // h /lm for all t > 0, so as 
above 

II Wllm G II h IL + K’ it II Wllm 4 

II Wllm < II h I/co eK‘t. (4.20) 

From Eqs. (4.19) and (4.20), it follows that for any E > 0 there is a c > 0 such 

that if II h IL < c then II Uo(T)lI~,nco G E. 
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Let R, be the critical small rectangle of Lemma 3.5 and choose E so small 

that II WV, < E implies that the range of U(T) lies in a compact subset Q of 
R, . Choose R and k as in Lemma 3.5, and decreasing k if necessary we may 
suppose 0 < k < y. For .t = 0 and t > T, U(t, 0) = (0, U(T) e-v(f--T)) so 
I W, Oh -c e- vu-t). With this information to control the boundary values, a 
straightforward extension of Lemma 3.8 (see [14] for details) yields DyR(U(t)) < 
-kyR(U(t)) for t > T, so I/ U(t)ljz < Ke- ~-r) for t > T. In particular, for t 
large, we have v(t, X) < a, the first zeros off. The energy method of Theorem 4.4 
yields the exponential decay of jj U(t)lL, and the proof of (i) is complete. 

To prove (ii) we observe as before that /j w(t)llLz < r I/ 4 /IL? T* and then by 
Gronwall’s inequality, 

II U(t)llr, < r /I+ IIL, T1iJeKf (4.21) 

for all t > 0. The derivation of sup norm estimates for 0’ is trickier for this case. 
We analyze w for t >, T by considering the odd extension w,,(t, x) which satisfies 

we(t) = g(t - T) * w,(T). 

Then since ljg(t)llL., = ct-f, we have for T < 1 

/I wo(t)~~m < crTt(t - T)-:. 

Thus assuming T < 1 we have 

(4.22) 

By (4.14), we have an a priori bound on I/ U(t& which depends only on Y, so 
the integral equation (4.15) yields 

with K depending only on Y. The Gronwall method (see Dieudonne [7, assertion 
10.5.1.31) implies 

II VW < /I w(% + eKt i ’ Ii w(t)lL & 
0 

so using (4.22) we have 

/I U(2)& < Cr[T: + T + Th] (4.23) 

where E depends only on r. 
From (4.21) and (4.23), it is clear that for any E > 0 we may choose T suffi- 

ciently small to ensure 11 U(2)ljL2nc0 < E and then decay of U(t) follows as for 

6). 0 
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Using Theorem 4.7 instead of Theorems 4.3 and 4.4 in the analysis for t > T 
the condition -f’(O) > u/r can be eliminated at the expense of having to assume 
that u is small. Furthermore, stability theorems in the spaces 29, can be proved 
using Theorem 4.2 in the endgame. The advantage of these spaces is that fewer 
hypotheses need to be placed on f. However, in this case more than just the 
supremum of h comes into play; the derivatives of h enter also. For the sake of 
brevity we will not present the details of these results. 

5. ASYMPTOTIC BEHAVIOR OF LARGE SOLUTIONS 

5.1. An Attractor for the Flow 

The method of contracting rectangles can be used to show that as t -+ co the 
values of U(t, x) converge to RC uniformly in x. The basic idea is to 
use Lyapunov’s second method with the functions Vfi (see Section 3.2) for 
appropriate rectangles R. 

THEOREM 5.1. For the FitzHugh-Nagumo equations satisfying growth condition 
(3.1), let Rc be the critical rectangle described inLemma 3.7. If U” E C,(W), we haoe 
Eiii t++m Y>J U) < 1; that is, the values of U(t, x) lie inside (1 + c) RC for large t. 

Proof. For any real numbers M, e > 0, we shall show that there is a T > 0 
such that if 11 U” /I < M, then V&(U(t)) < 1 + F if t > T. We first prove this 
assertion for U’JE 9, the Schwartz class; the general case will then follow 
easily. Thus, suppose U” E 9, then by Theorem 2.1, U E Cm@+ x Iw) n 

cm a)l cocw 
By Lemma 3.6, we may choose a rectangle R, = R,(M) contracting for 

F(U) = (f(w) - u, uw - yll) so that R, 1 {w E Iw2: max[[ wr I, / w2 I] < M). 
Then if U is the solution of (2.1) with data U”, 1 U(t, x)jR, G 1 for all t >, 0, 
x E R, by the results of Section 3.3. Let Q C W2 be the compact set defined by 

According to Lemma 3.7, we may choose a rectangle R such that Rc C R, 
Q C W\R and sR is contracting for the vector field F(U) for 1 < 7 < 00. We 
choose 7. = 7,(M) so that T$ r) R, . By continuity, there is an 77 > 0 such that 
F(w) . n < -7, for any w E I for 1 < T < TV , and n an outward unit 
normal to I at w. Let VR be the associated functional on C,(W). If  there is a 
to > 0 such that VR( U(t,)) < 1, then since R is contracting, we have U(t) E 
R C (1 + l ) Rc for t > to , so we are done. If  -yk( U(t)) > 1 for all t > 0, then 
by Lemma 3.8, fi-vk(U(t)) < -277/L, for all t > 0. Since “yk(U,) < T,, , we 
have VR(U(t)) < To --2$/L. But, if T = L(T, - 1)(27)-l, then t > T implies 
Vs( U(t)) < 1, a contradiction. 
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Suppose now Us E C, . For any 6 > 0, (2.9) implies that if U” E Y and 
jl U” - o”l\m < 6 then 11 U(T) - ~(T)jloo < 8eKT, where T is defined above. 
Thus, we can choose 6 so small that U(T) lies in R C (1 + E) Rc, and since the 
former rectangle is contracting, we have U(t) E (1 + 6) RC for t 3 T. 0 

As an application of this result, observe that if U(t, X) = @(x + et) is a 
traveling wave solution of the FitzHugh-Nagumo equations with 0 E C,(R), 
then we must have @(z) E Rc for all z E R. 

5.2. Global Stability of Zero for Short Nerves 

A real nerve has only finite extent, and the correct problem is a mixed initial- 
boundary value problem with zero initial conditions, and an inhomogeneous 
boundary condition at one end, corresponding to stimulation of the nerve at that 
end. A model based on the FN equations is 

vt = %, +tf(fg - u, O<x,(L, (5.1) 

Ut = CTV - yu, O<x<L, (5.2) 

MO, 4, u(O, 4) = UO(x), O<x<L, (5.3) 

v(t, 0) = v,(t), t 3 0, (5.4) 

where vo(t) and U”( x are prescribed functions. For this system we must also ) 
give another boundary condition at x = L. We shall suppose that one of the 
following homogeneous boundary conditions is given at x = L: 

v(t, L) = 0 t 3 0, (5.5) 

or 

v,(t, L) - av(t, L) = 0, t > 0, a < 0. (5.6) 

In order to analyze the solutions, we suppose that the stimulus vu(t) is nonzero 
only over a finite time interval, 0 < t < T. Then for t > T, (v, U) satisfies a 
mixed problem with homogeneous boundary conditions. For brevity, we again 
will not treat in detail the existence and regularity problem for these mixed 
problems (though this is not difficult), but we merely consider an interesting 
qualitative phenomenon. Namely, if the length of the nerve is small, then all 
stimuli decay exponentially in time. In order to make this precise, we must 
introduce the following parameter s (see Fig. 7) 

s = supf(v),‘v. 
VSR 

(5.7) 

THEOREM 5.2. Suppose that (v, u) is a classical soktion of (5.1)-(5.4) and one 
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u=f(v) u u=sv 

* 

V 

FIGURE 7 

of (5.5) or (5.6), and that w,,(t) = 0 for t 3 T. Let s be defined by (5.7), t/m ;f 
L2 < Try4s, 

II W)lL + II ~(t)ll~l(ro.~~) < Kt+ 

for smne constants K, cx > 0. 

Proof. Multiply (5.1) by w, (5.2) by a-4, add the results and integrate over 
0 < x < L to get 

LL bwt + U/4 WI dx = lL [mu,, + wf (w) - (r/4 ~“1 dx. 
0 

For t > T, we integrate the term VW, by parts and observe that the boundary 
contribution is nonpositive. Thus we get 

&(Wt) LL [w” + (l/u) u”] dx < l’ [-(y/u) u2 + sw2 - a%*] dx. (5.8) 

Since w(t, 0) = 0 for t >, T, we have 

I 
L 

I 

L 

on2 dx >, X w2 dx, 
0 0 

where h = (~r/2L)~ is the smallest eigenvalue of the operator -(a/&~)~, with 
Dirichlet boundary conditions at x = 0, and Neumann boundary conditions 
at x = L (see [6, VI.11). Thus, if s < (7r/2L)2, we get, from (5.8), 

a(a/at) IL [w” + (l/u) u”] < r,L [-(r/u) us + (s - rrs/4Ls) ws] dx 

< -c oL [w” + (l/u) u”] dx, I 

where c > 0, and it follows that st [e;” + (l/u) u2] dx decays exponentially. Sup 
norm decay follows as in the proof of Theorem 4.4. 0 
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Finally we remark that if a diffusion term euxz is added to the right-hand side 
of (5.2) and a suitable boundary condition on u at the endpoints is imposed, then 
a similar result is true. 
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