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In previous work it was shown that a class of axisymmetric viscoelastic mem- 
brane problems can be reduced to the numerical solution of a system of partial 
differential-Volterra integral equations. This general method has the disadvan- 
tage that a change in constitutive equation requires rederivation of specific 
details of the governing system. In this paper, a revised method is presented in 
which a change in constitutive equation does not affect the details of the govem- 
ing equations. All that is needed is a change in the subprogram for computing 
stress from the deformation history. 

The revised method is illustrated for the case of the inflation of a circular 
membrane by lateral pressure, a rheological experimental configuration. The 
membrane material is assumed to be a fluid such as polyisobutylene. This is in 
contrast to the solid type models used in all earlier examples. For this purpose, 
a BKZ model is developed from various sources. 

1. Introduction 

The study of the large deformation of thin polymer sheets is important in 
rheology and polymer forming. Such sheets can be modeled as viscoelastic 
membranes, for which a reasonably well developed theory exists in mechanics 
[ 11. One very useful class of situations considers deformations which can be 
assumed axisymmetric. This includes two particular test configurations used in 
rheology for determining constitutive properties. In the first, an initially plane 
circular membrane is inflated by lateral pressure through a sequence of surfaces 
of revolution [ 21. The polar region, which undergoes a locally homogeneous 
equal biaxial stretch history, is a source of data. The other test configuration 
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utilizes an initially circular cylindrical tube, bonded at its ends to rigid plates 
[3]. Under combined inflation by internal pressure and elongation, the mate- 
rial at the midplane undergoes a locally homogeneous unequal biaxial stretch 
history. Within this class it is also possible to simulate drape or vacuum form- 
ing of polymer sheets. Although the deformation is axisymmetric, useful 
information can be gained with a minimum of complexity due to spatial varia- 
tion. 

Initial work on large axisymmetric deformations of nonlinear viscoelastic 
membranes is due to Wineman. Plane deformations of a membrane with a con- 
centric hole were treated in [ 41, with the effects of spinning, included in [ 51. 
The rheological problem of inflation by lateral pressure was presented in [6]. 
An essential theme in the above work is that these problems have a formula- 
tion leading to a system of equations which is particularly convenient for 
numerical solution. The general method is independent of the details of any 
particular integral type of constitutive equation. However, specific ones were 
used for numerical examples. An analytical constitutive equation embodying 
the essential features of a nonlinear viscoelastic solid was constructed for use 
in [4] and [ 51. A constitutive equation developed experimentally for a 
styrene-butadiene rubber was used in [ 61. 

In rheological applications, such as presented in [6], the problem may be 
solved for several different constitutive equations. These may represent differ- 
ent candidate models for a single material, in which case calculated deformed 
membrane profiles are to be compared to observed profiles. Alternatively, 
solutions could be obtained for different constitutive equations, representing 
different materials, in order to compare the membrane profiles. The same 
could be true for problems which model sheet processing. In the above refer- 
enced work, the general formulation is reduced to a system of three equations 
in certain kinematic variables. Among this system is a nonlinear partial differ- 
ential-Volterra integral equation, which must be re-derived for each different 
choice of a constitutive equation. This necessitates spatial differentiation of 
the variables in the constitutive equation, substantial algebraic manipulation 
and computer modification. 

This paper presents a modified approach which avoids these difficulties. In 
particular, an alternate reduction is given along with the associated modifica- 
tions of the numerical procedure. It has the advantage that the governing 
field equations are unaffected by a change in the constitutive equation. The 
only change required is in the subprogram for computing stress from a given 
deformation history. This approach becomes especially useful in models whose 
time scale is affected by deformation, as in [ 71. 

The reduction is based on a transformation which can be applied to any 
axisymmetric problem. However, it will be illustrated here in the context of 
the problem of the lateral inflation of an initially plane circular membrane. 
The general equations for this case are presented in Section 2. The original 
reduction is outlined in Section 3 along with the numerical procedure. The 
proposed modification is discussed in Section 4. A numerical example is given 
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in Section 5. In all previous work in this area, the membrane material has been 
a viscoelastic solid. The numerical example here uses a model for a viscoelastic 
fluid. 

2. Formulation 

The formulation of the membrane inflation problem was discussed in detail 
in [ 61. The main equations are summarized here. 

The midsurface of the undeformed membrane is planar with a circular 
boundary of radius a. The initial thickness ho is uniform. A uniform time 
dependent pressure p(t) is applied to one side of the membrane. Assuming 
quasi&tic motion, the membrane remains clamped at its boundary while the 
midsurface deforms through a sequence of surfaces of revolution. 

Let the polar axis of a cylindrical coordinate system coincide with the axes 
of symmetry of the deformed surfaces, and let the origin lie in the initial plane. 
A particle of the midsurface initially at 0; 13, 0) moves to (p(r, t), 6, z(r, t)) 
at later time t (see Fig. 1). In view of the axisymmetry, principal directions 
of stress and stretch at each time t are known a priori to be fixed with respect 
to the material and tangent to the membrane in the meridional (1) and circum- 
ferential (2) directions and also normal to the surface. The principal stretch 
ratios in these directions are given by respectively, 

x1 = [(g)‘+ (g2y2, x2 =p, x3 =& (2.1) 

where X3 is determined by the incompressibility condition. If u, denotes a 
principal stress, its stress resultant per unit length of circumferential or 
meridional line in the membrane surface is T, = h&u, (a! = 1,2). At each 
time t, the force balance equations in the principal directions, transformed to 

Fig. 1. Undeformed and deformed configurations of the inflated membrane. 



the initial configuration, are 
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where principal curvatures ICY and ICY are given by 

q$Alg 
K1 =q[g _q2]1/2 ' 

K2 = N -T2P2 
rM2 

(2.2) 

(2.3) 

As can be seen, the basic solution procedure can be carried out for all con- 
stitutive equations of integral type. For purposes of illustration, a nonlinear 
single integral type of constitutive equation is assumed. Let X(s) denote the 
pair (X,(r, s), h,(r, s)). Then the model considered has the form 

dt) = &(WO, 0 + j BaEVt), h(s), t -sl ds (CY = 1,2). (2.4) 
0 

Functions A, and B, depend on the choice of material. Equation (2.4) encom- 
passes the BKZ model [ 81 and finite linear viscoelasticity [ 91, whether solid 
or fluid. For viscoelastic fluids, the stress depends only on the relative strain 
history. Equation (2.4) can be regarded as a constitutive equation for a visco- 
elastic fluid if it is considered undeformed for t < 0 and B, has the form 

B, = i&[X(t)/h(s), t -s] . (2.5) 

For the problem and solution procedures considered here, and for the study 
of large axisymmetric deformations of viscoelastic membranes in general, it 
makes little difference whether the material is a solid or a fluid. 

3. Reduction to a system for hr, X2, 11 

Equations (2.2)-(2.4) imply that the primary dependent variables are X1, 
h2, ‘I), u1 and u2. Once these are known, p(r, t) and z(r, t) can be found from 
(2.1). The work in [6] reduces the problem to a system of equations for X1, 
X2 and the associated kinematic variable 77. 

The dominant equation is obtained by substituting (2.4) into the first of 
(2.2), which gives 

‘2 (0 IFI V(t), tl + j G, P(t), WI, t - sl c-is I 
0 

+ t ax, s ---(s)G2N0, W), t- ~1 C&J 
0 ar 

t 

(3.1) 

= 3 IF2 D(t), v(t), tl + $ %I [A(t), MS), q(s), t - ~1 &I. 
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The forms of F,, Fa, G1, Ga, Gi in this partial differential-volt integral 
equation depend on the forms of A,, B, in (2.4). The complexity of (3.1) 
results from the term al;/ar in (2.2) and the complicated structure of A, and 
B,. These depend on both the stretch tensor components and the stretch 
tensor invariants, which in turn depend on A(t) and A(s). 

The operations of carrying out this differentiation to obtain expressions 
involving 3 x(t)/ar and a h(s)/ar and the subsequent algebra leading to (3.1) 
are very lengthy. The expression ahJar which arises can be replaced so that 
the equation is entirely in terms of ah,/a r. This is done through the use of 
the compatibility relation obtained by eliminating p between Aa and r) in 
(2.1) and (2.2): 

ah.Jar = (q -X,)/r. (3.2) 

Forms for F,, F2, G1, G2, Gs which arise in the case of a viscoelastic solid 
can be seen in the Appendix of [ 61. When the material is a viscoelastic fluid, 
so that B, depends on the ratio X(t)/X(s) as in (2.5), these functibns become 
even more complicated. 

The system of equations for Xi, Xa and r) is completed by substituting (2.3) 
into the second of (2.2) and rearranging: 

a7 q aAl [G -91 a2 -=- -+ 
ar X1 ar - -kj-h:h2[h: -q2]1/2. 

rh2 01 0 I 
(3.3) 

Expressions for u1 and u2 are given by (2.4). 
Boundary conditions are : 

r= 0: h(O, 0 = MO, t) = r1(0, t) = A(t), say, 

r = a: h2(a, t) = 1 (3.4) 

The numerical procedure reduces the problem to the solution a system of 
three ordinary differential equations for Al, h2 and q at a discrete set of times. 
If these times are t1 = 0, t2, . . . . tn.+ t, = t, then the integrals can be approxi- 
mated by finite sums of form 

j Gl[VO, A(s), t - sl ds = & Wntz 6 [N&A h(b), t, - bl. (3.5) 
0 

s 

Wnk are weighting functions associated with a particular approximation proce- 
dure and set of times. Suppose X,(r, tk), X,(r, tk), q(r, tk) and a&(r, tk)/ar, 
k = 1, 2, . . . . II - 1 have been found. Then (3.1) can be solved for al,(r, t,)/ar, 
which results in a nonlinear ordinary differential equation associated with 
time t, of form 

‘2 0; GA = @l Fh(c Cd, X2@, t,), r)h &A 4. (3.6) 

The dependence of a1 on r arises from the presence of previously determined 
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solutions in finite sums (3.5). Substituting (3.6) and (2.4) into (3.3) leads to 
an equation of form 

(3.7) 

Joining (3.2) to (3.6) and (3.7) leads to a system of ordinary differential 
equations for AI, X2, r) at time t, which can be integrated by standard numer- 
ical methods. 

There are several numerical issues which arise in conjunction with the solu- 
tion of this two-point boundary value problem. First, a method is needed for 
the determination of A(t,) at r = 0 so that the boundary condition (3.4) at 
r = a can be met. Second, as seen from (3.1), (3.2) and (3.3), the derivatives 
air/k, &q/ar and aAz/ar are apparently indeterminate at r = 0. Finally, it 
was pointed out in [6] that (3.3) can be replaced by 

(3.3) 

A detailed discussion of each of these issues is presented in [6], and will not 
be repeated here for the purpose of brevity. 

4. Revised reduction 

The revised reduction introduces the transformation 

&= %/XI, 62 = ozlh2, 4 = 77lb. 

Equations (2.2) and (3.2), using (2.3), become 

(4.1) 

a6, -.-..-= it& - 61 

ar r ’ 

ai2 _ be - x2 -- 
ar r ’ (4.2) 

gi = (I- ;i2) 3 _ P (1 - fi2Y2W2 

ar r b,h, 61 
. 

When (2.4) and (4.1) are combined and then joined with (4.2), the result is 
a system of three differential equations and two integral relations for X1, X2, 
4,8r, C2 at time t. Proceeding formally, suppose h&r, s) have been found for 
0 f s < t. Since these are known functions of r, (2.4) and (4.1) can be regarded 
as implying 

b,(t) = &(&(t), x2(t), r, 0 (e = 1, 2). (4.3) 

Since its derivative does not appear on the left hand side of (4.2), C2 can be 
eliminated from (4.2) using (4.3). Finally, it is assumed that the expression 
for G1 in (4.3) can be inverted to give the relation 

W) = S*(W), x2(t), r, 0. (4.4) 
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This inversion is assumed possible when, relative to the principal directions, 
the constitutive equation expresses u&t) explicitly in terms of h(t) as well as 
X(s), 0 Q s Q t. This will be the case when the constitutive equation is of 
integral type, whether for solid or fluid behavior. The method of obtaining 
the inverse wiIl be described shortly. The purpose of introducing this assump- 
tion of invertibility is to avoid the enormous effort required in the derivation 
of (3.1). 

With (4.4), A,(t) can be eliminated and (4.2) becomes a system of ordinary 
differential equations for 6r, 4, Xa at time t, i.e. 

I 1 
6 

(71 
dA 
dr= @(A, r), 

I 
A=*?/ . (4.5) 

I I x2 

Revised boundary conditions are, by (3.4), (4.1).and (4.3): 

MO, t) = 1, X2(0, t) = 40, 

h(O, t) = f&MO, 40, 0, 9, (4.6) 

h&.X, t) = 1. 

As in Section 3, the numerical procedure used here determines the solution 
at a discrete set of times ti = 0, t2, . . . . tn-r, t, = t. The integrals in (2.4) are 
approximated by finite sums as in (3.5). Treating X,(r, tk) and X2(?-, tk), 
k = 1, 2, . . . . n - 1, as known functions of r in the approximations to (2.4), 
functions S, in (4.3) become specific functions of x,(t) and h2(t). An explicit 
expression for the inverse function S* is not actually found. Instead, values 
for S* are found as needed. In particular, suppose system (4.5) is numerically 
integrated by; say, a fourth order Runge-Kutta method. 

Let G1(ri, t,), fi(ri, t,), Xz(ri, t,) and Xr(ri, t,) be known at space mesh 
point ri. As part of this method, functions @in (4.5) are evaluated at these 
new arguments. Next, Cl(ri, t,), fi(ri, t,) and Xa(ri, t,) are incremented using 
these values for 9. For this new set of values for G1 and X2, (4.3) with (Y = 1 
is a nonlinear equation for the new value of X1. This is solved by iteration, to 
yield the evaluated inverse S* at required arguments. With these new values 
for G1, 6, h2, X1 and then C2, the right hand side of (4.2) can be evaluated 
and the solution procedure continued. In actual practice, the converged value 
for X1(t) during the previous inversion is used as the first estimate during the 
current iteration. Generally this is so close to the current value of x,(t) that 
only a few iterations are needed. 

In applying boundary conditions (4.6) at time t,, the common value for X1 
and h2 at r = 0, A(&), is assumed. &(O, t) is then computed, as implied in 
(4.6). This avoids the inversion (4.4) at the first node. 

It is seen that the present formulation leads to a modified system of equa- 
tions and method of solution. However, the same numerical issues mentioned 
at the end of Section 3 also arise here. The only change is that (3.8) can be 
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put in terms 3 and 6, using (4.1). The previously mentioned discussion in [6] 
is still ap,plicable. 

In contrast with system (3.1), (3.2), (3.3), the revised system (4.2) has the 
same form for all constitutive equations. If a change in model is to be made 
the former system requires recalculation of F,, Fz, G1, G2, G3 in (3.1). The 
system discussed here requires only a change in the subprogram for computing 
G,(t) from b(t), as in (4.3). Standard methods for solving (4.3) forhi are 
available and can be the same for all constitutive equations. 

The revised system (4.2) becomeseven more attractive for use with con- 
stitutive equations in which the argument t - s in (2.4) is replaced by a stretch 
history dependent pseudo-time, 

(4.7) 

as has been proposed in [ 71. If the method of Section 3 were to be used, the 
operation a Tl/ar in (2.2) leads to an equation involving a fyar which is much 
more complicated than (3.1). In the revised reduction, the structure of equa- 
tions (4.2) and the solution procedure is unaffected. 

5. Numerical example 

The membrane material is assumed to be a homogeneous, incompressible 
viscoelastic fluid which can be modeled as a BKZ fluid [8]. One material 
which has been used in the membrane inflation experiment and other thin 
sheet forming studies is polyisobutylene [ 21. A specific constitutive equation 
of the form (2.4) for polyisobutylene which can be used for sheet problems 
does not appear to be available. For this reason a composite constitutive 
equation was constructed from several sources [lO,ll]. With respect to prin- 
cipal directions, it has the following form: 

o,(t) = 2(&W) - G(t)) [I+ I ,;;;‘+;2z(;; + 3] G(t) 
1 9 , 

(t s) +“;&, s) + 3 (1 + $$I 
(5.1) 

x Qt -s) ds, 
1, P 

where (II = 1, fl= 2,0r a = 2, /3 = 1, 

2 

MW=,$1(~ , 
1 I2(C 3) = g1 (+) 

X-(s) 2 

1 
, (5.2) 

andG(t)+Oast-*m. 
This constitutive equation is a simplified version of one presented by Zapas 

in [lo]. It was developed from biaxial extension experiments and contained 
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Fig. 2. Assumed form of the relaxation function G(t). 

three material dependent functions of time, one of which is G(t). Values for 
G(t) for polyisobutylene were not given. Instead, G(t) was taken from [ 111, 
which considers the response of PIB L-100 at 25°C subjected to uniaxial ex- 
ponential stretch ratio histories. Experimental data was fit to a uniaxial model 
proposed by Zapas and Craft [ 121, which is qualitatively similar to that in 
[lo]. Material time functions were determined and presented graphically, see 
[ 111, Fig. 21, p. 294. G(t) was chosen to be the same as P(t) + r(t) on this 
graph shown here in Fig. 2. Although (5.1) is admittedly a patchwork constitu- 
tive equation, its structure does embody many features which might be antici- 
pated in a correct version. As such, it is certainly useful for the purposes of a 
numerical example. 

For computational purposes, G(t) was fit by a function of t as follows. 
Values for G(t) at various times between t = 1 set and t = 600 set were esti- 
mated from its graph. On each of the intervals 1 Q t < 10,lO < t < 100, 
100 < t Q 600, G(t) was represented by a cubic spline. For a typical interval 
ti < t < tj, this had the form 

G(t) = G(log t) = 
C 
Gi + [GI lo&t&j) - 2 Gi] 

+ + [Gjlogtj/ti-2 (5.3) 
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TABLE1 

ti (set) Gi Gf 

1 65.437 -25.960 
10 47.026 -9.891 
100 36.874 -12.179 
600 24.720 -22.605 

4 = 76.712 I? =-11.274 
A = 87.521 B =-22.605 

where 

Gi = G(log ti), Gj = G(log tj), 

G, _ d&log 0 
i- 

d(log t) t=ti’ 
Gt = dG(log 0 

J 
d(log t) ‘mtj - 

(5.4) 

Function values and first derivatives were matched at t = 10,100. The eight 
function values and derivatives in this representation were chosen to minimize 
the square error between the graphical and evaluated values of G(t) at various 
times. 

On the intervals not represented by experimental data, G(t) was extra- 
polated by, 

o<t<1: G(t)=ji+&, 

600 < t < 7442.2 : G(t) = ii + B log t, (5.5) 

7442.2 < t : G(t) = 0, 

where A, 8,x, g were selected to ensure continuity through the first deriva- 
tive. Values for the various constants appear in Table 1. It is seen that G(0) = 
A = 76.7 and G(t) has decayed to zero at t = 7442.2 sec. 

The selection of times ti at which the solution is to be computed appears to 
be somewhat arbitrary in solving viscoelasticity problems. For viscoelastic 
solids, if the pressure reaches a limiting value then a fixed equilibrium state is 
reached. Time increments can become larger as shape changes become slower. 
For fluids, even if the pressure is limited, the material will continue to creep. 
This suggests that time increments cannot become too large. A method of 
selecting times was used which will be discussed in more detail in a later publi- 
cation. To select times ti, the integral in (5.1) is written as a Stieltjes integral, 

t 

s %OW, A(s)) W(s), (5.6) 
0 

where G,(s) = G( t - s). It is then approximated by 

j &(X(t), X(s)) dG,(s) = k.l K,,%(%), Vt,))(G(t, - t,z) - Wt, - tk-l)), 

0 
(5.6) 
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Fig. 3. Dimensionless pressure history P(t) and polar height history Z( 0, t)/a. 

using a Simpson’s rule for unequal intervals. Times are selected so that the 
most recent interval is K times the previous one, i.e. t, satisfies 

[G(O) - G(t, - t,-r)] = K[G(t, - t,-i)- G(t, - t,-s)] . 

Time tz was selected so that the initial increment in G(t) was 0.01. 
Before computing, equations (4.2) were non-dimensionalized by setting 

r + r/a, p + p/a, z + z/a, 6, + &/G(O). The equations are unaltered with the 
exception that p/h, in the last of (4.2) is replaced by P = (pa)/(h,G(O)). The 
pressure history used for computation is shown in Fig. 3. It increases linearly 
until P = 4.07 at t = 13.6 and is then held constant. The maximum height his- 
tory is also shown. It continues to increase even though the pressure is fixed. 
Deformed profiles at various times are shown in Fig. 4. 

No numerical problems arose in connection with the obtaining of the 
inverse (4.4) during the integration of (4.2). The only issue of a computa- 
tional nature has to do with the form of the integrand in the constitutive 
equation (5.1). The stresses are evaluated many times during the iteration 
associated with obtaining the inverse (4.4) and selectingA to satisfy the 
boundary condition. During each evaluation, it is necessary to sum the inte- 
grals from t1 to t,, which uses a lot of computing time. This could be avoided 
if integrals were a polynomial in Ir(t, s) and 1s(t, s). (5.6) could then be 
written as 

j &(W), Ns)) G(s) = $ I,) j M+(s)) d’&(s). 
0 0 

(5.7) 
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0.6 0.8 1.0 

Fig. 4. Deformed profiles of the membrane at various times. Dashed lines denote particle 
paths. 

The integral could then be evaluated only once while iteration involving h(t) 
proceeds. Since many different choices of functions can fit the same experi- 
mental data, it is suggested that constitutive equations be developed with an 
awareness of computational efficiency. 
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