CONTRACTIONS OF GRAPHS: A THEOREM OF ORE AND AN EXTREMAL PROBLEM*

Zevi MILLER
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Received 1 March 1977

Abstract

The contractibility number (also known as the Hadviger namber) of a connected graph G, $Z(G)$, is defined as the maximum order of a connected graph onto which G is contractible. An elementary proof is given of a theorem of Ore about this invariant. Aiso, the extremal problem of finding the maximun $Z(G)$ over all graphs G of a given order and regularity degree is solved.

1. Introduction

Let G be a finite graph as in [3]. An elenentary contraction of G is the identification oi t:. \checkmark adjacent points of G to a peint z. Alternatively, it may be viewed as a function of graphs $f: G \rightarrow G^{\prime}$ where for some pair of adjacent points $u, v \in V(G)$, we have $V\left(G^{\prime}\right)=(V(G)-\{u, v\}) \cup\{z\}$, and $E\left(G^{\prime}\right)=$ $E(G-\{u v\}) \cup\{z x: x u \in E(G)$ or $x v \in E(G)\}$ with loops and multiple edges of G^{\prime} suppressed. The graph G^{\prime} will be denoted by $C(u=v)$. A contraction of G is a sequence of elementary contractions starting from G. If there exists a contraction $f: G \rightarrow H$, we say G is contractible to H. Strictly speaking, the order in which the elementary contractions are performed is not relevant. In practice, howe ver, the contraction f will be ofien most easily described and understood when a specific order is used. An example of a contraction $f: \hat{J} \rightarrow K_{4}$ is illustrated in Fig. 1.

Let G be a connected graph. We define $Z(G)$, the contractibility number of G, to be the maximum order of a complete graph cato which G is contractible. If G is disconnected, let $Z(G)=\max \left\{Z\left(G^{\prime}\right): G^{\prime}\right.$ a cu inected component of $\left.G\right\}$.

Some well-known theorems and conjectures in the literature of graph theory can be stated in terms of the contractibility number. For example, Hedwiger's conjeciure says that every n-chromatic graph G satisfies $Z(G) \geqslant n$. Wagner [5] has shown that a graph G is planar if and only if it has no subgraph contractible to $K(3,3)$ and $Z(G) \leqslant 4$. Hadwiger's conjecture for $n=5$ thus implies the four color theoren, while the converse was also proved by Wagner [6].

In a contraction $f: G \rightarrow \boldsymbol{H}$, the inverse image of a point in H must be a connected subgraph of G. Hence f defines a natural partition of $G, V(G)=$ $\bigcup_{i=1}^{\text {IFii: }} V_{i}$ such that $\left\langle V_{i}\right\rangle$ is a connected subgraph of G for $1 \leqslant i \leqslant|H|$. Indeed, the

[^0]

G

$G^{1}=G(a-b)$

$$
{x_{4}}_{4}=r^{11}=G^{1}(x=y)
$$

Fig. 1. A composition of two elementary contractions that yields the ontraction $\mathbf{G} \rightarrow \boldsymbol{K}_{4}$.
sets V_{i} are identical with the sets $f^{-1}(v)(v \in H)$. If H is a com plete graph, then for each pair of distinct integers $i j, 1 \leqslant i \leqslant j \leqslant|H|$, there exists an edge $x y$ of G with $x \in V_{i}$ and $y \in V_{i}$. In this case, we will refer to the partition above as a complete $|H|$ partition of $V(G)$.

Any graph theoretic notation an 1 terminology not defined here can be found in [3]. In particular, all graphs are w ite with no ioops or multiple edges.

2. Ore's theorem

In his book [4] Ore proves, uring an elaborate method, that if the minimum degree of G satisfies $\delta(G) \geqslant 3$ with the possible exception of one point of degree 2 , then $Z(G) \geqslant 4$. Under the modified hypothesis $\delta(G) \geqslant 3$, an elementary procf of this theorem is now given.

Theorem 2.1 (Ore). If $\delta(G) \geqslant 3$, then $Z(G) \geqslant 4$.

Proof: We proceed by induction on $p(G)$, the order of G. The smallest possibl order for a graph satisfying the hypothesis is 4 , in which case $G=K_{4}$ and the theorem is trivally trie. Let G be a graph of order $p \geqslant 5$ with $\delta(G) \geqslant 3$, and assume the theorem tiue for all graphs of order $p-1$ or less.
Observe that it suffices to prove the theorem when $\delta(G)=3$. For if this known, then in an arbitrary graph H with $\delta(H) \geqslant 4$, we may choose a point h of degree $\delta(H)$ and remove all but 3 edges incident with it, thereby getting a graph h^{\prime} with a point of degree: We then know that $Z\left(H^{\prime}\right) \geqslant 4$, and since $H \supset H^{\prime}$, we get $Z(H) \geqslant Z\left(H^{\prime}\right) \geqslant 4$.
For every $v \in V(G)$, let $N(v)$ refer to the set of all points of G adjacent to v, also called the neighborhood of : $:$.

First we reduce to the case where for every $v \in V(G)$, there exists $s \in N(v)$ with $d(s)=3$. Suppose to the contrary that there exists $v_{0} \in V(G)$ such that $d(t) \geqslant 4$ for all $t \in N\left(v_{0}\right)$. Then $G-v_{0}$ satisfies the hypothesis, so $Z\left(G-v_{0}\right) \geqslant 4$ by induction. Hence $Z(G) \geqslant 4$.
Next we reduce to the case where $\langle N(v)\rangle \cong P_{3}$ for all points v of degree $d(v)=3$. If $N(v) \cong K_{3}$, then $\langle N(v) \cup\{v\}\rangle \cong K_{4}$, so that $Z(G) \geqslant 4$. Hence we may assume $N(v) \not \equiv K_{3}$. To finish the reduction, we need only consider the possibility that $\langle N(v)\rangle$ contains a_{i} isolated point y. Then the contraction $\lambda: G \rightarrow G(y=v)$ yields a graph $G(y=v)$ of order $p-1$ and minimal degree at least 3 . Hence by induction $Z(G(y=v)) \geqslant 4$, so that $Z(G) \geqslant 4$.
We may therefore now assume that $\langle N(v)\rangle \cong P_{3}$ for all points v of degree 3 , and that for each such " there exists $s \in N(v)$ with $d(s)=3$. It will now be shown that under these conditions the theorem is true.

Let v be a point of degree 3 , and let $s \in N(v)$ satisfy $d(s)==3$. We show that s may be taken to be an endpoint of $\langle N(v)\rangle \cong P_{3}$. For if it cannot, then both endpoints have degree 4 at least. Consider the contraction $\lambda: G \rightarrow G(v=x)$ where $x \in N(v)$ and $d(x, N(v))=2$. Either the graph $G(v=x)$ satisfies $\delta \geqslant 3$ or another elementary contraction (identifying the image of v and x with a neigh ior) yields such a graph G^{\prime}. By induction, we have $Z(G(v=x)) \geqslant 4$ or $Z\left(G^{\prime}\right) \geqslant 4$. and herce $Z(G) \geqslant 4$.

We are now able to construct the contraction of G onto a graph with contractibility number at least 4 . Let $u \in N(s)$ be such that $u \notin N(v)$ and $u \neq v$. Such a point exists since $|N(s)|=3$ and $N(v) \neq K_{3}$. Since $N(s) \cong P_{3}$, we must have $x u \in E(G)$ where $d(x, N(v))=2$ as above. But then the contraction $\lambda: G \rightarrow$ $G(s=v)$ has image graph satisfying $Z(G(s=v j) \geqslant 4$ by induction, so that $Z(G) \geqslant$ 4.

It has been pointed out by A. Plass that a slight modification of the above proof actually yields Ore's theore'ia as originally stated (that is, with the possible point of degree 2). This modifica ion tás teen omitted, however, for reasons of space.

We now turn oui atiention to extremal problem involving the contractibility number.

3. An extremal problem

All graphs discussed in this section are assumed to be connected.
We will investigate the problem of inding, given k and p, the maximum contractibility number among the class of all k regular graphs of order p.

We begin with a lemma which will te used later in the construction of an infinite class of extremal regular graphs. When x is a real number, $\{x\}$ will be the least integer ξ greater than or equal to x.

Ienenu 3.1. Let G be k-regular with $\beta_{0}(G) \geqslant\left\{\frac{1}{2} k\right\}$. Then there exists a k regular graph G^{\prime} satisfving $Z\left(G^{\prime}\right) \geqslant Z(G)$, with

$$
\begin{array}{ll}
\left|G^{\prime}\right|=|G|+\frac{1}{2} k & \text { if } k \text { is even, } \tag{a}\\
\left|G^{\prime}\right|=|G|+\left[\frac{1}{2} k\right] & \text { if } k=1(\bmod 4) \\
=|G|+\left\{\frac{1}{2} k\right\} & \text { if } k=3(\bmod 4), \\
\beta_{0}\left(\dot{i}^{\prime}\right) \geqslant \beta_{0}(G) .
\end{array}
$$

Proo. Suppose first k is even, and let G satisfy the nypothesis. Let $v^{1} \in V(G)$, and let $N\left(v^{1}\right)$ be as above the neighborhood of v^{1}. We tak' a partition of $N\left(v^{1}\right)$, $\mathbf{N}\left(v^{1}\right)=N_{1}\left(v^{1}\right) \cup N_{2}\left(v^{1}\right)$, such that $\left|N_{1}\left(v^{1}\right)\right|=\left|N_{2}\left(v^{2}\right)\right|$. We then define the graph $H\left(G, N_{1}, N_{2}\right)$ by $V(H)=V\left(G-v^{1}\right) \cup\left\{v_{2}^{1}, V_{1}^{1}\right\}$, and $E(H)=E\left(G-v^{1}\right) \cup\left\{v_{1}^{1} x\right.$: $\left.x \in N_{2}\left(v^{1}\right)\right\} \cup\left\{v_{2}^{1} y: y \in N_{2}\left(v^{1}\right)\right\} \cup\left\{v_{1}^{1} v_{2}^{1}\right\}$. Now define the set of graphs $S^{1}\left(G ; v^{1}\right)$ by

$$
S^{1}\left(G ; v^{1}\right)=\left\{H\left(G ; N_{1}, N_{2}\right) \cdot N\left(v^{2}\right)=N_{1} \cup N_{2} .\left|N_{1}\right|=\left|N_{2}\right|, N_{1} \cap N_{2}=\theta\right\} .
$$

The operation of transforming G to a graph in the class $S^{1}\left(G ; V^{1}\right)$ will be called a spliting of G at v^{1}. A graph $;$ and two different splittings of it at a point are shown in Fig. 2.

We now iterate this procedure by defining sets $S^{i}\left(G ; v^{1}, v^{2}, \ldots, v^{i}\right)$. Let $\left\{v^{j}\right\}_{j=1}^{i}$ be a set of i independent points of G. Having performed successive splittings of G at the points $\left\{v^{j}\right\}_{j=1}^{i-1}$ resulting in a graph H^{i-1} of the set $S^{i-1}\left(G ; v^{1}, v^{2}, \ldots, v^{i-1}\right)$, we perform a splitting of H^{i-1} at v^{i} to get a graph H^{i}. The set of all such graphs H^{i} will be denoted by $S^{i}\left(G ;\left\{v^{i}\right\}_{j=1}^{i}\right)$. More precisely, we let $S^{i}\left(G ;\left\{v^{j}\right\}_{j=1}^{i}\right)=$ $\cup S^{1}\left(H^{i-1}, v^{i}\right)$ where the union is over all graphs H^{i-1} of the set $S^{i-1}\left(G ;\left\{v^{i}\right\}_{j=1}^{i-1}\right)$. A graph in $S^{3}\left(K_{s} ;\left\{v^{j}\right\}_{i=1}^{3}\right)$ is shown in Fig. 3.

The required graph G^{\prime} may now be constructed. We find a set of $\frac{1}{2} k$ independent points $\left\{v^{j}\right\}_{j=1}^{k / 2}$, and let $G^{0} \in S^{k / 2}\left(G ;\left\{v^{i}\right\}_{j=1}^{k / 2}\right)$. The construction of G^{0} produces a sei of k points $\left\{v_{m}^{l}\right\}_{m=1}^{2}{ }_{j=1}^{k / 2}$, the "splittings" of the points $\left\{v^{j}\right\}_{j=1}^{k / 2}$ of G. Let the two subsets $X_{1}\left(G^{0}\right)$ and $X_{2}\left(G^{0}\right)$ of $V\left(G^{0}\right)$ be defined as $X_{1}\left(G^{C}\right)=\left\{v_{1}^{j}\right\}_{j=1}^{/ 2}, X_{2}=$ $\left\{v_{2}^{j}\right\}_{j=1}^{k / 2}$. Each point in the $X_{i}\left(G^{0}\right)$ has degree $\left(\frac{1}{2} k\right)+1$ by construction. Define the graph $\left(G^{\prime}\right.$ by $V\left(G^{\prime}\right)=V\left(G^{0}\right)$ and $E\left(G^{\prime}\right)=E\left(G^{0}\right) \cup\left\{v_{2}^{i} v_{1}^{i}: i \neq j\right\}$. Thus G^{0} is a

Fig. 2. Two different splittings of G at v.

Fig. 3. A g.aph $H \in S^{3}\left(K_{5} ; v_{1}, v_{2}, v_{3}\right)$.
spanning subgraph of G^{\prime} containing all edges of G^{\prime} except those joining points of X_{1} with points of X_{2}.

It is now shown that G^{\prime} has the required properties. Obviously $\left|G^{\prime}\right|=\left|G^{0}\right|=$ $|G|+\frac{1}{2} k$. To see that G^{\prime} is k-regular, observe that the points of $G-\left\{v^{i}\right\}_{i=1}^{k / 2}$ are naturally present in G^{\prime} as the points of $G^{\prime}-\left(X_{1} \cup X_{2}\right)$. As such, they have the same degree in G^{\prime} as they do in G. Thus all points of $G^{\prime}-\left(X_{1} \cup X_{2}\right)$ have degree k in G^{\prime}. As for points $x \in X_{1} \cup X_{2}$, we have $d\left(x, G^{\prime}\right)=d\left(X, G^{0}\right)+\left(\frac{1}{2} k\right)-1=k$. Hence G^{\prime} is k-regular. We now show that $Z\left(\sigma^{\prime}\right) \geqslant Z(G)$. If we contract each of the edges $\left\{v_{1}^{i} v_{2}^{i}\right\}, 1 \leqslant i \leqslant \frac{1}{2} k$, of G^{\prime}, we arrive at a graph F having G as a (non-induced) subgraph. That is, F is just G with some extra edges, those joining v^{i} and v^{j}. This graph can be contracted to $K_{Z(G)}$ because G can. Composing the contractions $G^{\prime} \rightarrow F$ and $F \rightarrow K_{Z(G)}$, we get the required contraction $G^{\prime} \rightarrow K_{Z(G)}$. Finally, it remains to show that $\beta_{0}\left(G^{\prime}\right) \geqslant \beta_{0}(G)$. Let S be an independent set in G, and suppose without loss of generality that $S \cap\left\{v^{i}\right\}_{j=1}^{k / 2}=\left\{v^{i}\right\}_{j=1}^{n}$. Then the set $\boldsymbol{S}^{\prime}=\left(\boldsymbol{S} \cap\left(\boldsymbol{G}-\left\{v^{i}\right\}_{j=1}^{k / 2}\right)\right) \cup\left\{v_{1}^{i}\right\}_{1}^{n}$ is independent in \boldsymbol{G}^{\prime} and satisfies $\left|\boldsymbol{S}^{\prime}\right|=|\boldsymbol{S}|$. Hence $\beta_{0}\left(G^{\prime}\right) \geqslant \beta_{0}(G)$.

For k odd, we proceed similarly. Certain changes in the construction above will be necessary, however.
Suppos $_$, then, that we are given a k-regular graph G satisfying the hypothesis of the lemma with k odd. We begin by slightly altering the definition of splitting. If $v \in V(G)$, we take a partition of $N(v), N(v)=N_{1}(v) \cup N_{2}(v)$ such that $N_{1}(v)=$ $\left[\frac{1}{2} k\right]$ and $N_{2}(v)=\left\{\frac{1}{2} k\right\}$. We then define the splitting $H\left(G ; N_{1}, N_{2}\right)$, the set $S^{1}(G ; v)$, and the iterated sets $S^{n}\left(G ;\left\{v^{j}\right\}_{j=1}^{n}\right)$ as before.

Let us examine a typical graph $G^{0} \in S^{n}\left(G ;\left\{v^{j}\right\}_{j=1}^{n}\right)$. Each v^{j} is replaced by two points, v_{1}^{j} and v_{2}^{j} say, where without loss of generality we take $d\left(v_{1}^{j}, G^{9}\right)=\left\{\frac{1}{2} k\right\}+1$ and $d\left(v_{2}^{j}, G^{0}\right)=\left[\frac{1}{2} k\right]+1$ for $1 \leqslant j \leqslant n$. If we let $X_{1}\left(G^{0}\right)=\left\{v_{1}^{i}\right\}_{j=1}^{n}$ and $X_{2}\left(G^{0}\right)=$ $\left\{v_{2}^{j}\right\}_{j=1}^{n}$, then $V\left(G^{0}\right)$ may be partitioned inc the three sets $X_{1}\left(G^{0}\right), X_{2}\left(G^{0}\right)$, and $\left(V\left(G^{0}\right)-\left(X_{1} \cup X_{2}\right)\right.$), having the properties
(i) $v \in X_{1}\left(G^{0}\right) \Rightarrow d\left(v, \widetilde{\sigma}^{0}\right)=\left\{\frac{1}{2} k\right\}+1$
(ii) $v \in \mathbf{X}_{2}\left(G^{0}\right) \Rightarrow d\left(v, G^{0}\right)=\left[\frac{1}{2} k\right]+1$
(iii) $v \in V-\left(X_{1} \cup X_{2}\right) \Longrightarrow d\left(v, G^{0}\right)=k$.

We now proceed to construct the graph G^{\prime} of the lemma. This will be done according to the cases $k=1(\bmod 4)$ and $k=3(\bmod 4)$.

If $k=1(\bmod 4)$, we find $\left[\frac{1}{2} k\right]$ independent points $\left\{v^{1}\right\}_{1-1}^{[k / 2]}$ and form a graph $G^{0} \in S^{[k / 2]}\left(G ;\left\{v^{1}\right\}^{[122}\right)$, Now define the graph G^{\prime} by $V\left(G^{\prime}\right)=V\left(G^{0}\right)$, and

$$
\left.E(G)=E\left(G^{0}\right)\right\rangle\left\{v_{2}^{1} v_{2}^{i+1}, i \text { odd, } 1 \leq i \leqslant\left[\frac{1}{2} k\right]-1\right\} \cup\left\{v_{2}^{1} v_{1} \mid: l \neq j\right\} .
$$

If $k=3(\bmod 4)$, we begin, with $\left\{\frac{1}{2} k\right\}$ independent points and form a graph $G^{0} \in S^{(k 27}\left(G,\{v\}_{j=1}^{k / 2)}\right)$. The graph G^{\prime} is now defined by $V\left(G^{\prime}\right)=V\left(G^{0}\right)$ and

$$
E(G)=E\left(G^{0}\right) \cup\left\{i_{2}^{i} u_{2}^{i+2}, \operatorname{lodd}, \quad 1 \leqslant i \leq\{1 k\}-1\right\} \cup\left\{r_{2}^{\prime} v_{2}^{\prime}: j \neq i, i+1\right\}
$$

where i and j are read $\bmod \left\{\frac{1}{2} k\right\}$.
These constructions dearly yield k-regular graphs G. The proof that these graphs have the properties requred in the lemma is almost identical to the proof given in the case k even.

In order to state and prove the main result, we introduce some relevant terminology. Let G be a graph, and $X \in V(G)$, We let λX denote the set of all vertices in X adjacent to ver es in $V(G)-X$. We now eefine the external degree of X by exd $(X)=\mid \partial(V(G)-X \mid$ Given positive lutegers p and k which are not both odd, we let $M(p, k)=\max \{Z(G):|G|=p, G$ is k regular $\}$, and $Q(p, k)=$ $\left.\operatorname{rax} \mid \lambda \in \mathbf{Z}^{+}: \lambda\{(\lambda-3) /(k-2)\} \leqslant p\right\}$.

Theorem 3.2. The integers $M(p, k)$ and $Q(p, k)$ are related as follows.
(i) $M(p, k) \leqslant Q(p, k)$.
(ii) For each $k \geqslant 3, M(p, k)=Q(p, k)$ for all but finitely many p.
(iii) $M(p, 4)=Q(p, 4)$ for $p \neq 6$, and $M(p, 3)=Q(p, 3)$ for all even p.

Proof. We begin by proving (i). Let G have the penperties of being k-regular, having p points, and satisfying $Z(G)=M(i, k)$. Set $M=M(p, k)$. In a complete M-partition of $V(G)$, let C be a class of min mum cardiluality r. Since $\langle C\rangle$ contains at least $r-1$ edges, we have exd $(C) \leqslant r k-2(r-1)=r(k-2)+2$. As the re are $M-1$ classes besides C, we have $M-1 \leqslant t \times x(C) \leqslant r(k-2)+2$, and herce $r \geqslant$ $\{(M-3) /(k-2)\}$. Since C has minimam cardinality, $M r \leqslant p$. Combining w th the previous inequality we get $\left.\left.M_{(}(M-3) / k-2\right)\right\} \leqslant p$, as required.

To establish (ii), we begir by coastructirg for each $k \geqslant 3$ an infinite set $S^{(k)}=\left\{G^{(k)}(\lambda)\right\}_{\lambda=k+1}^{\infty}$ of regutar graphs. Each graph $G^{(k)}(\lambda)$ will have order $p^{(k)}(\lambda)=\lambda\{(\lambda-3) /(k-2)\}$ and contractibility number λ. Thus by definition of $O(p, k)$ we will have $\lambda=Q\left(p^{(k)}(\lambda), k\right)$. This will serve to show that for each $k \geqslant 3$, the equality $M(p, k)=Q(p, \kappa)$ holds $f(r$ infinitely many p, namely, the subset of tiie integers $P(k)=\left\{p^{(k)}(\lambda)\right\}_{\lambda=k+1}^{\infty}$. For by the definitions of λ and the inequality
(i), we have $Q\left(p^{(k)}(\lambda), k\right)=\lambda=Z\left(G^{(k)}(\lambda)\right) \leqslant M\left(p^{(k)}(\lambda), k\right) \leqslant Q\left(p^{(k)}(\lambda), k\right)$. It follows that $M\left(p^{(k)}(\lambda), k\right)=Q\left(p^{(k)}(\lambda), k\right)$ for the set $P(k)$.

Once we have established (ii) for $\boldsymbol{P}(k)$ (given k), we will establish it for all but finitely many of the remaining integers $\mathbf{Z}^{+}-P(k)$ by mear: of a method of subdivisions (soon to be defined) and the lemma.
Fix $k \geqslant 3$. The graph $G^{(k)}(\lambda)$ is constructed as follows. Suppose first $\{(\lambda-$ $3) /(k-2)\}=(\lambda-3) /(k-2)$, so that $p^{(k)}(\lambda)=\lambda(\lambda-3) /(k-2)$.

We will begin with a cycle having $p^{(k)}(\lambda)$ points. In going once around the cycle, number the points in order of their traversal $x_{1}, x_{2}, \ldots, x_{\lambda(\lambda-3) /(k-2)}$. Now partition them into λ subsets $\left\{V_{i}\right\}_{i=1}^{\lambda}$ where $V_{i}=\left\{x_{n}:(i-1)(\lambda-3) /(k-2)\right.$ $+1 \leqslant n \leqslant i(\lambda-3) /(k-2)\}$. For late: use, we will relabel our points with double indices according to the rule $x(i, j)-x_{n}$ if and only if $x \in V_{i}$ and j is the congruence class of n mode $(\lambda-3) /(k-2)$. Our hamiltonian cycle H therefore consists of the edges

$$
\begin{aligned}
& \{\{x(i, j) x(i, j+1)\} \cup\{x(i,(\lambda-3) /(k-2)) x(i+1,1)\}: \\
& \qquad 1 \leqslant j \leqslant(\lambda-3) /(k-2)-1,1 \leqslant i \leqslant \lambda\}
\end{aligned}
$$

with $x(1,1) \equiv x(\lambda+1,1)$.
The edges of $G^{(k)}(\lambda)$ not in H will now be defined ecursively. First, form the edges $\{x(1,1) x(i,(\lambda-3) /(k-2)): 3 \leqslant i \leqslant k\}$. The point $x(1,1)$ now has degree k and no more edges incident with it will be formed. To describe the other edges, we will define a total ordering of the points of $G^{(k)}(\lambda)$. For points $x(i, j), x(i, l)$ in the same class V_{i}, w let $x(i, j)<x(i, l)$ if and only if $j<l$. If $x(i, j), x(l, m)$ are points in distinct classes V_{i}, V_{j}, then let $x(i, j)<x(l, m)$ if and only if $i<l$. According to this ordering, then, $x<y$ if and only if x coniss before y in the orginal traversal $x_{1}, x_{2}, \ldots, x_{\lambda(\lambda-3) /(k-2)}$ of the cycle $i H$. Now suppose that a graph $G(i, j)$ has been constructed in which $d(x, G(i, j))=k$ for all $x<x(i, j)$ and $d(x(i, j), G(i, j))=t<k$. In each class $V_{n}, n \geqslant i+2$, having a point of degree less than k in $G(i, j)$, let $x(n) \in V_{n}$ be the point with this property that is maximal with respect to the ordering. Also, let $X=\{x(n): n \geqslant i+2\}$. The remaining edges incident with $x(i, j)$ will now be defined according to whether $j=1$ or $j>1$. If $j=1$, join $x(i, j)$ to the first $k-t$ points of X (with respect to the ordering induced on X). If $j>1$, let n_{0} be the maximum index such that $x(i, j-1)$ is adjacent in $\dot{U}(i, j)$ to some point of $V_{n_{0}}$. Then join $x(i, j)$ to the first $k-t$ points of the subset $X\left(n_{0}\right)=\left\{x(n): n \geqslant n_{0}+1\right\}$ of X. In either cass, let us call the resulting graph $\boldsymbol{G}(i, j)^{\prime}$. There are now two possibilities, eithe: $G(i, j)^{\prime}$ is k-regular or it is not. If it is not, let

$$
\begin{aligned}
G(i, j)^{\prime} & =G(i, j+1) & & \text { if } j \leqslant(\lambda-3) /(k-2)-1 \\
& =G(i+1,1) & & \text { if } j=(\lambda-3) /(k-2),
\end{aligned}
$$

and repeat the above procedure. A k-reguiar graph $G\left(i_{0}, j_{0}\right)^{\prime}$ must eventually be reached, and we let $G^{(k)}(\lambda)=G\left(i_{0}, j_{0}\right)^{\prime}$. Thus $V\left(G^{(k)}(\lambda)\right)$ is composed of λ classes
${ }^{1}$

$S D\left(C_{4} ;\left\{e_{1}, e_{2}\right\}\right)$

Fig. 4. The graphs C_{4} and $\mathrm{SD}\left(C_{4} ;\left\{e_{1}, e_{2}\right)\right.$.
$\left\{V_{i}\right\}_{i=1}$, each class induciry the path $P_{(\alpha-3) /(k-2)}$. These classes are then positioned in increasing order on the hamiltonian cycle H. The 4 -reguht s,raph $G^{(4)}(7)$ of order $p^{(4)}(7)=14$ and contractibility number 7 is shown in Fig. $5 a$. In this example we have $G^{4}(7)=C(4 ; 2)^{\prime}$.

The wo.kability of the algorithm given above, and hence the formation of the k-regular graph $G\left(i_{0}, j\right)^{\prime}=G^{(k)}(\lambda)$, depends upon the existence of at least $k-t$ points in the set X of the graph $G(i, j)$. This condition is in turn equivalent to having at least $k-\left\{\right.$ classes $V_{n}, n \geqslant i+2$, each containing a point of degree less than k in $G(i, j)$. The verification that this holds requires a careful count of the number of edges $e=(a, b)$ in $G(i, j)$ with the property $a<x(i, j)$ and $b \geqslant$ $x(i+2,1)$. This count will here be mitted as it is straightforward and lengthy.

The construction above has the puperty that for each pair of distinct classes, V_{i}, V_{i}, there exists a unique sidge xy with $x \in V_{i}$ and $y \in V_{i}$. Hence $G^{(k)}(\lambda)$ has the complete λ-partition $V\left(G^{(k)}(\lambda)\right)=\bigcup_{i=1}^{\lambda} V_{i}(\lambda)$, so that $\lambda \leqslant Z\left(G^{(k)}(\lambda)\right)$. On the other hand, we have $\lambda=O\left(p^{(k)}(\lambda), k\right) \geqslant M\left(p^{(k)}(\lambda), k\right) \geqslant Z^{\prime}\left(G^{(k)}(\lambda)\right)$. The equality $Q\left(p^{(k)}(\lambda), k\right)=\lambda=Z\left(G^{(k)}(\lambda)\right)$ follows. Note also that the uniqueness of the edge $x y$ is the beginning of the proof that the $G^{(k)}(\lambda)$ are Z-critical. That is, the removal of any edge of $G^{(k)}(\lambda)$ results in a graph with smaller contractibiity number.
The construction of the graphs $G^{(k)}(\lambda)$ for which $\{(\lambda-3) /(k-2)\} \neq$ $(\lambda-3) /(k-2)$ is similar, and the details are omitted tere. An example, $G^{(4)}(6)$ is shown in Fig. 5b.

We have constructed the graphs $\left\{G^{(k)}(\lambda)\right\}_{\lambda=1}^{\infty}$, and thus the equality (ii) is proved for the subset of the integers $P(k)$. To finish the pronf, it remains to show $M(p, k)=Q(p, k)$ for all but finitely many of the integers in the set $\Omega=\mathbf{Z}^{+}-P(k)$. As in the proof for $P(k)$, the inequality (i) reduces our p oblem to the construction of a k-regular graph of order p and contractibility nainber $Q(p, k)$ for all but finitely many $p \in \Omega$. This will only be dore for k even jelow, as the construc ion for k odd is similar.

Let λ_{0} be the least integer λ satisfying the inequality

$$
\begin{equation*}
\{(\lambda-3) /(k-2)\} \geqslant k . \tag{1}
\end{equation*}
$$

We will show that the construction of the reçuired graph of order p is possible for
all $p \in \Omega$ satisfying $p \geqslant p^{(k)}\left(\lambda_{0}\right)$. That is, $M(p, k)=Q(p, k)$ holds for $p \geqslant$ $\lambda_{0}\left\{\left(\lambda_{0}-3\right) /(k-2)\right\}>k\left(k^{2}-3 k+5\right)$.

Fix k, and write $p(\lambda)$ for $p^{(k)}(\lambda)$. Let us begin by observing that it suffices to construct, for each λ satisfying (1), a sequence $\left\{G_{i}(\lambda): 1 \leqslant i \leqslant p(\lambda+1)-p(\lambda)-1\right\}$ of k-re gular graphs which satisfy $\left|G_{i}(\lambda)\right|=\left|G^{(k)}(\lambda)\right|+i$ and $Z\left(G_{i}(\lambda)\right)=Z\left(G^{(k)}(\lambda)\right)$. For by definition, $Q(p, k)=Q(p(\lambda), k)$ holds for $p(\lambda) \leqslant p<p(\lambda+1)$. Hence we have $Z\left(G_{i}(\lambda)\right)=Z\left(G^{(k)}(\lambda), k\right)=M(p(\lambda), k)=Q(p(\lambda), k)=Q(p(\lambda)+i, k)$. As the inequalities $Z\left(G_{i}(\lambda)\right) \leqslant M(p(\lambda)+i, k) \leqslant Q(p(\lambda)+i, k)$ hold by definition and by (i), we get $M(p(\lambda)+i, k)=Q(p(\lambda)+i, k)$ for $1 \leqslant i \leqslant p(\lambda+1)-p(\lambda)-1$. This being true for each λ satisfying (1), it follows that (ii) is proved fcr all $p \in \Omega$ with $p \geqslant p\left(\lambda_{0}\right)$.

For the constructions to follow, we need the following definitions. Let $F=$ $\left\{e_{i}\right\}_{i=1}^{n}$ be a set of independent edges of G, with $e_{i}=a_{i} b_{i}$. Define the F subdivision graph of $G, \mathrm{SD}((G ; F)$ as follows. Let $V(\mathrm{SD}(G ; F))=V(G) \cup\{z\}$, and $E(\mathrm{SD}(G ; F))=(E(\mathcal{G})-F) \cup\left\{z a_{i}\right\}_{i=1}^{n} \cup\left\{z b_{i}\right\}_{i=1}^{n}$. An F subdivision graph of C_{4} is shown in Fig. 4.
We now constrict the first $\frac{1}{2} k$ of the graphs $G_{i}(\lambda)$, using the graph $G^{(k)}(\lambda)$ as our beginning. Recall the complete λ-partition of $G^{(k)}(\lambda)$ given by $V\left(G^{(k)}(\lambda)\right)=$ $\bigcup_{i=1}^{\lambda} V_{i}$. By assumption (1), we have $\left|V_{i}\right|=\{(\lambda-3) /(k-2)\}>k$, and by construction of $G^{(k)}(\lambda)$ each $\left\langle V_{i}\right\rangle$ is a path. In particular, $\left\langle V_{1}\right\rangle$ is a path of order greater than $k>\frac{1}{2}(k-2)$. Hence there exists an edge $e \in E\left(\left\langle V_{1}\right\rangle\right)$ and a set $B^{1}=$ $\left\{e_{i}=g_{i} h_{i}: 1 \leqslant i \leqslant \frac{1}{2}(k-2)\right\}$ of $\frac{1}{2}(k-2)$ independent edges of $G^{(k)}(\lambda)$ with the properties
(a) $h_{i} \in V_{1}, g_{i} \notin V_{1}$;
(b) no edge of B^{1} is incident on e.

Since $\lambda>k$, we may actually choose these edges so that the points g_{i} are among the sets $V_{n}, n \geqslant \frac{1}{2} k+1$. Let $F^{1}=B^{1} \cup\{e\}$. We then define $G_{1}(\lambda)$ as the F^{1} subdivision graph $\operatorname{SD}\left(G^{(k)}(\lambda) ; F^{1}\right)$. Clearly $G_{1}(\lambda)$ is k regular and $\left|G_{1}(\lambda)\right|=$ $p(\lambda)+1$. Write z^{1} for the point z in the definition of F-subdivision. Then with z^{1}

Fig. 5. The graphs $;^{4}(7)$ anci $G^{4}(6)$.
adjoined to V_{i}, it follows that $Z\left(G(\lambda)=Z\left(G^{(k)}(\lambda)\right)=\lambda\right.$ with complete λ partition

$$
V\left(G_{1}(\lambda)\right)=\left(V_{1} \cup\left\{z^{2}\right) \cup\left(U_{j}^{\lambda}=2 V_{i}\right)\right.
$$

We wil now repeat this procedure $\left(\frac{1}{2} k\right)-1$ times. That is, having constructed $G_{i}(i), i \leqslant \frac{1}{2} k$, we carry out the same construction as above with the class V_{i+1} playing the role of V. Thus we let $x \in E\left(\left\langle V_{i+1}\right\rangle\right)$ and let $B^{i+1}=\left\{h_{i} g_{j}\right\}_{i=1}^{(k-2) / 2}$ be a set of $\frac{1}{2}(k-2)$ independent edges with the property
(a) $h_{j} \in V_{l+1} g_{j} \in V_{i+1}\left(1 \leqslant j \leqslant \frac{1}{2}(k-2)\right)$;
(b) no edge of B^{i+1} is incirent on x.

Let $F^{i+1}=B^{i+1} U\{x\rangle$. We the 1 define $G_{i+1}(\lambda)$ to be the F^{i+1} subdivision graph $\mathrm{SD}\left(G_{i}(1) ; F^{i+1}\right)$. Again we ubserve that the points g_{i} of the edges in F^{i+1} can be taken to be amiong the sets $V_{n}, n \geqslant(k / 2)+1$. This convention on the g_{i} 's insures that the needed independent edges exist at each step. For in each graph $G_{i}(\lambda), i \leqslant$ $\frac{1}{2} 1$, 10 point of the set V_{i+1} has playcd the role of some point g_{j} in any of the previcus subdivision, Hence all edges with a point in V_{i+1} that were independent in the original graph $G^{(k)}(\lambda)$ are still independent in $G(\lambda)$. Since there were at reast k such edges in $G^{(k)}(\lambda)$, th ere are certainly $\frac{1}{2}(k-2)$ of them in $G_{i}(\lambda)$.

The graph $G_{i+1}(\Lambda)$ is easil seen to have the required properties. Clearly $\left|G_{i+1}(\lambda)\right|=\left|G_{i}(\lambda)\right|+1=p(\lambda)+i+$. holds. Letting z^{i+1} be the point z in the definition of $\operatorname{SD}\left(G_{i}(\lambda), F^{i+1}\right)$, the complete λ-partition of $G_{i+1}(\lambda)$ is gotten by adjoining z^{i+1} to V_{i+1} and using the partition

$$
V\left(G_{i+1}(\lambda)\right)=\bigcup_{i=1}^{i+1}\left(V_{i}(\lambda) \cup\left\{z^{i}\right\}\right) \cup\left(\bigcup_{j=i+2}^{\lambda} V_{i}(\lambda)\right)
$$

In this way, we construct the first $\frac{1}{2} k$ graphs $\left\{G_{i}(\lambda), 1 \leqslant i \leqslant \frac{1}{2}\right\}$.
Observe that the set of points $\{x(1, j): 1$ even $2 \leqslant i \leqslant k\}$ is an independent set in $G_{k / 2}(\lambda)$. Thus $\beta_{0}\left(G_{k / 2}^{(\lambda)}\right)>\frac{1}{2} k$ holds and we may form the remaining graphs $\left\{G_{i}(\lambda):(k / 2)+1 \leqslant i \leqslant p(\lambda+1)-p(\lambda)-1\right\}$ by appealing to the lemma.

For (iii), we specialize the general construction.
When $k=3$, we must construct the cubic graphs $\left\{G_{i}(\lambda): 1 \leqslant i \leqslant\right.$ $\left.\frac{1}{2}(p(\lambda+1)-p(\lambda))-1\right\}$ such that $\left|G_{i}(\lambda)\right|=\left|G^{3}(\lambda)\right|+2 i$, and $Z\left(G_{i}(\lambda)\right)=p(\lambda)$. Define $G_{1}(\lambda)$ by

$$
V\left(G_{1}(\lambda)\right)=V\left(G^{3}(\lambda)\right) \cup\left\{z^{11}, z^{12}\right\}
$$

and

$$
\begin{aligned}
& E\left(G_{1}(\lambda)\right)= E\left(G^{3}(\lambda)\right) \\
&-\{x(\lambda,(\lambda-3) /(k-2)) x(1,1), x(1,(\lambda-3) /(k-2)) x(2,1)\} \\
& \cup\left\{z^{11} x(\lambda,(\lambda-3) /(k-2)), z^{11} x(1,1), z^{12} x(1,(\lambda-3))\right. \\
&\left.(k-2)), z^{12} x(2,1), z^{11} z^{12}\right\}
\end{aligned}
$$

Having defined $G_{i}(\lambda)$, form $G_{i+1}(\lambda)$ by letting

$$
V\left(G_{i+1}(\lambda)\right)=V\left(G_{i}(\lambda)\right) \cup\left\{z^{(i+1) 1}, z^{(i+1) 2}\right\},
$$

and

$$
\begin{aligned}
E\left(G_{i+1}(\lambda)\right)= & E\left(G_{i}(\lambda)\right)-\left\{x(\lambda,(\lambda-3) /(k-2)) z^{11}, x(2,1) z^{12}\right\} \cup\{x(\lambda,(\lambda-3) / \\
& \left.(k-2)) z^{(i+1) 1}, z^{(i+1)} z^{i 1}, x(2,1) z^{(i+1) 2}, z^{(i+1) 2,}{ }^{i 2}, z^{(i+1) 1} z^{(i+1) 2}\right\} .
\end{aligned}
$$

In short, the graphs $G_{i}(\lambda)$ (for $k=3$) are formed by successively "inserting" a point of degree 2 in each of two edges, and then joining these two points of degree 2 by an edge.
For $k=4$, we carry out the F-subüivisions (with $|F|=2$) unencumbered by the requirement (1). The exception occurs with the unique quartic graph of order 6 , $K(2,2,2)$. We have $Q(6,3)=5$, but $Z(K(2,2,2))=4$. Hence in the case $k=4$, we begin the inductive construction with a q - tic graph of order 7 and contractibility number $Q(7,4)=5$.

The cubic graphs $G^{3}(4), G_{1}(4), G_{2}(4)$ are shown in Fig. 6a. A quartic graph of order 7 and contractibility number 5 is shown in Fig. 6b. It may be used as the frst graph in the inductive construction of the graphs $\left\{G_{i}(5): 2 \leqslant i \leqslant p(6)-p(5)-\right.$ $1\}$.

Corollary 3.3. The maxin um of $\mathbf{Z}(G)$ over all cubic graphs of order p is given by $M(p, 3)=\left[\frac{1}{2}(3+\sqrt{9+4 p})\right]$.

(a) The graphs $G^{3}(4), G_{1}(4), G_{?}(4)$
(b) A quertic graph of order 7 and contractibility number 5 .

Fig. 6. Extremal cubic s ad quartic graphs.
4. Owen problems
(i) Let $q(G)$ be the number of edges in a graph G, and let $f(n, p)=$ $\max \{q(G) \cdot|G|=p, Z(G)=n\}$. We conjecture that $f(n, p)=\binom{n}{2}+(p-n)(n-1)$. The graphs $K_{n-1}+K_{p-n+1}$ show that $f(n, p) \geqslant(2)+(p-n)(n-1)$.
(ii) The behavior of $Z(G)$ under operations on graphis remains undetermined. Some observations can be niade, however.
(i) Let G_{1} and G_{2} be conrected. By the theorem of Wagner [5] quoted earlier, the foll. wing are equivalent.
(i) $G_{1} \times G_{2}$ is not contractible to $K(3,3)$ and satisfies $Z\left(G_{1} \times G_{2}\right) \leqslant 4$.
(II) $G_{1} \times G_{\text {is }}$ is planar.
(II) is in turn equivalent to both G_{i} being paths, or one bong a path and the other a cycle [, problem 9.4].
(b) We have shown that $Z\left(C_{n} \times K_{2}\right)=4(n \geqslant 3)$, and tiat $Z\left(T \times K_{n}\right)=n+1$ for all trees T.

Acknowiledgement

My thanks go to Professors Friak Harary and Andreas Blass for their help un the preparation of this paper.

References

[1] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs (Allyn and Bacon, Boston. MA, 1972).
[2] D.P. Geller, Coding graphs by contractions Networks 6 (1976) 23-33.
[3] F. Harary, Grapt Theory (Addison Wesley, Reading, MA, 1969).
[4] O. Ore, The Four Color Problem (Academic Press, New York, 1967).
[5] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570-590.
[6] K. Wagner, Beweis einer Abschwächung der Hadwiget-Vermutung, Math. Ann. 153 (1964) 139-141.
[7] B. Zelinka, On some graph theoretical probieins of V.G. Vizing, Časopis Pěst. Mat. 98 (1973) 56-66.
[8] B. Zelinka, On the Fradwiger number of a graph, Casopis Pěst. Mat. 99 (1974) 394-399.
[9] B. Zelinka, Hadwiger numbers of finite graphs, Math. Stav. 26 (1) (1976) 23-30.

[^0]: * Tie work presented here is part of a thesis to be presented in partial fuliillment of the requiremerts for a doctral degree at the University of Michigan

