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The contractlblhty mlmber (also known as the Hadwiger namber) of a connected graph G,
Z(G), is defined as the maximum oxder of a connected graph onto which G is contractible. An
elementary proof is given of a theorem of QOre about this invariant. Aiso, the extremal problem
of finding the maximvm Z(G) over all graphs G of a given order and regularity degree is
solved.

1. !mtrodnctmn

Let G be a ﬁmte graph as in [3]. An clenentary contraction of G is the
identification oi t~0 adjacent points of G to a pcint z. Alternatively, it may be
viewed as a function of graphs f:G— G' where for some pair of adjacent
points u, veV(G), we have V(G) =(V(G)—{u,v})U{z}, and E(G')=
E(G—{uv) U{zx: xu < E(G) or xv € E(G)} with loops and multiple edges of G’
suppressed. The graph G’ will be denoted by CG:iu=v). A contraction of G is a
sequence of elementary contractions starting from G. If there exists a contraction
f:G— H, we say G is contractible to H. Strictly speaking, the order in which the
elementary contractions are performed is not relevant. In practice, however, the
contraction f will be ofien most casily described and understood when a specific
order is used. An example of a contraction f::5—> K, is illustrated in Fig. 1.

Let G be a connected graph. We define Z(G), the contractibility number of G,
to be the maximum order of a complete graph cato which G is contractible. If G
is disconnected, let Z(G) =max{Z(G'): G’ a c..nected component of G}.

Som.e well-known theorems and conjectures in the literature of graph theory
can be stated in terms of the contractibility number. For example, Hadwiger’s
conjecwre says that every n-chromatic graph; G satisfies Z(G)= n. Wagner [5]
has shown that a graph G is planar if and only f it has no subgraph contractible to
K(3,3) and Z(G)=<4. Hadwiger’s conjecturc for n=>5 thus implies the four color
theoren, while the converse was also prove< by Wagner [6].

In &« contraction f:G—>H, the inverse image of a point in H must be a
connected subgraph of G. Hence f defines a natural partition of G, V(G)=

. V. such that (V,) is a connected subgraph of G for 1<i<|H|. Indeed, the

*The work presented here is part of a thesis to be presented in partial fulfillment of the
requiremerts for a doctral degree at the University of Michigan.
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"Fig. 1. -A composition of two elementary contractions that yfeld&fiiie :6ntxacﬁon G—K,.

sets V; are identical with the sets f~(v) (ve H). If H is a com plete graph, then for
each pair of distinct integers i j, 1<ii<j<|H| |, there exists an edge xy of G with
xé¢Vyand ye v, 1In this case, we will refer to the pamtxon above as a complete
|H| pattition of V(G)

Any graph theoretlc notatlon and termmology not deﬂned here can be found in
[3]. In pamcular, all. graphs are in ite with no ioops or muluple edges

2. Ore’s theorem

In his book [4] Ore proves, using an efaborate method, that if the minimum
degree of G satisfies 8(G)=3 with the possible exception of one point of degree
2, then Z(G)=>4. Under the modified hypothesis §(G)=3, an elementary procf
of this theorem is now given.

Tl!edrem 2.1 (Ore). If 8(G)=3, then Z(G)=4.

Proof: We proceed by induction on p(G), the order of G. The smallest possiblc
order for a graph satisfying the hypothesis is 4, in which case G =K, and the
theorem is trivally trie. Let G be a graph of order p=5 with 8(G)=3, and
assume the theorem tiue for all graphs of order p—1 or less.

Observe that it suffices to prove the theorem when 8(G) = 3. For if this known,
then in an arbitrary graph H with §(H)= 4, we may choose a point h of degree
3(H) and remove all but 3 edges incident with it, thereby getting o graph H’ with
a point of degree Y. We then know that Z(H")=4, and since H>H’, we get
Z{H)y=Z(H)=4.

For every ve V(G), let N(v) refer to the set of all points of G adjacent to v,
alsu called the neighborhood of
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First we reduce to the case where for every v € V(G), there exists s € N(v) with
d(s)= 3. Suppose to the contrary that there exists v,e V(G) such that d(t) >4 for
all 1e N(vp). Then G — v, satisfies the hypothesis, so Z(G — v,)=4 by induction.
Hence Z(G)=4.

‘Next we reduce to the case where (N(v))=P; for all points v of degree
d(v)=3. If N(v)=K,, then {N(v)U{v})=K,, so that Z(G)=4. Hence we may
assume N(v)# K. To finish the reduction, we need only consider the possibility
that (N(v)) contains a. isolated point y. Then the contraction A :G— G(y = v)
yields a graph G(y =) of order p—1 a>d minimal degree at least 3. Hence by
induction Z(G(y = v)) =4, so that Z(G)=4.

We may therefore now assume that (N(v))= P, for all psints v of degree 3, and
that for each such - there exists s € N(v) with d(s)= 3. It will now be shown that
under these conditions the theorem is true.

Let v be a point of degree 3, and let s € N(v) satisfy d(s)==3. We show that s
may be taken to be an endpoint of (N(v))=P;. For if it cannot, then both
endpoints have degree 4 at least. Consider the contraction A : G— G(v = x) where
x€ N(v) and d(x, N(v))=2. Either the graph G(v = x) satisfies § =3 or another
elementary contraction (identifying the image of v and x with a neighoor) yields
such a graph G’. By induction, we have Z(G(v=x))=4 or Z(G')=4 and hence
Z(G)=4.

We are now able to construct the contraction of G onto a graph with
contractibility number at least 4. Let u € N(s) be such that ug N(v) and u# v.
Such a point exists sinzz |[N(s)| = 3 and N(v)# K. Since N(s)= P;, we must have
xue E(G) where d(x, N(v))=2 as above. But then the contraction A:G—
G(s = v) has image graph satisfying Z(G(s = v)) =4 by induction, so tiat Z(G)=
4,

It has been pointed out by A. Rlass that a slight modification of the above proof
actually yields Ore’s theoren as originally stated (that is, with the possible point
of degrec 2). This modifica'ion ‘izs been omitted, however, for reasons of space.

We now turn oui attention t© in extremal problem involving the contractibility
number.

3. An extremal problem

All graphs discussed in this section are assumad o be connected.

We will investigate the problem of finding, given k and p, the maximum
contractibility number among the class of all k regular graphs of order p.

We begin with a lemma which will te used latcr in the construction of an
infinite class of extremal regular graphs. ‘Vhen x is a real number. {x} will be the
least integer greater than or equal to x.



v‘)u:{uz, }, and E(H) E(G v‘)U{v x:
x€ N,(v‘)}u{vz‘v yeNz(v‘)}U{vlvz} Now define the set of ‘graphs S*(G;v')
by

 SG; )= (H(G; Ny, Ny Nm = NUN; [N =[Ny, N 1N, =

The operanon of transt'otmmg Gto jgraph m the class S‘(G V‘) w:ll be called a
Sr 7l¢ttmg of G at v'. A graph ¥ and two dnﬁerent sphttmgs of it at a point are
shown in Flg 2.

We now iterate this procedure by deﬁnmg sets §' (G v',0%..., v'). Let {v'}_,
bea set of i 1miependent pomts of G. Havmg performed successwe sphttmgs of G
at the pomts {v'}i2} resulting in a graph H'™* of the set STHG; vh v, 'Y,
we perform a sphttmg of H"" at v' to get a graph H'. The set of all such graphs
H' will be denoted by S'(G;{v'}..;). More precxsely, we let S'(G;{v'}i. 1)—
US'(H", ¢') whiere the union is over all graphs H'~! of the set S™(G; {o'}iZ}

A graph in $*(K;;{v'},.,) is shown in Fig. 3.

The required graph G’ may now be constructed. We find a set of 3k indepen-
dent points {v’},"i’,, and let G"e S"""(G {of 2. The construction of G° produces
a sei of k points i3z ! =, the “spllttmgs” of the pomts {v‘} 2 of G. Let the
two subsets X,(G°) and X,{G") of V(G®) be defined as XI(GC) {vi}) f‘i’}, X,=
{vz}"’z Each point in the X,(G°) has degree G k)+ 1 by construction. Define the
graph G’ by V(G')=V(G® and E(G)=E(G°)U{vivi:i#j}. Thus G° is a

OO

Fig. 2. Two differem splittings of G at v.
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K H
Fig. 3. A g-aph He S*(Ks; vy, vy, 15).

spanning subgraph of G’ containing all edges of G’ except those joining points of
X, with points of X,

It is now shown that G’ has the required properties. Obviously |G'|=|G°| =
|G|+3k. To see that G’ is k-regular, observe that the points of G —{v k2 are
naturally present in G’ as the points of G'—(X,U X;). As such, they have the
same degree in G’ as they do in G. Thus all points of G’'— (X, U X,) have degree
k in G'. As for points xe X, UX,, we have d(x, G)=d(X, GO +(3k)-1=k.
Hence G' is k-regular. We now show that Z(G')= Z(G). If we contract each of
the edges {vivs}, 1<i=<ik, of G’, we arrive at a graph F having G as a
(non-induced) subgraph. That is, F is just G with some extra zdges, those joining
v’ and v'. This graph can be contracted to K, s, because G can. Composing the
contractions G'— F and F— K, we get the required contraction G'— K.
Finally, it remains to show that Bo(G') = Bo(G). Let S be an independent set in G,
and suppose without loss of generality thai SN{v/}}”% ={v/}_,. Then the set
§'=(SN(G - {v'}}2)) U{vi}; is independent i G’ and <atisfies |S'| = |S|. Hence
Bo(G') = Bo(G).

For k odd, we proceed similarly. Certain changes in the construction above will
be necessary, however.

Suppos., then, that we are given a k-regular graph G satisfying the hypothesis
of the lemma with k odd. We begin by slightly altering the definition of splitting.
If ve V(G), we take a partition of N(v), N(v)= N;(v) U N,(v) such that N;(v) =
[3k]1and Ny(v) ={3k}. We then define the splitting H(G; N;, N,), the set $'(G; v),
and the iterated sets S$"(G;{v'}-,) as before.

Let us examine a typical graph G°e S"(G;{v'}/-,). Each v’ is replaced by two
points, v} and v}, say, where without loss of generality we take d(v}, G°) = {3k} + 1
and d(vh, G°)=[3k]+1 for 1<jsn. If we let X,(G®)={vi}}_, and X,(G")=
{vi}- ., then V(G°®) may be partitioned in:c the three scts X;(G), X,(G"), and
(V(G®)—(X,U X,)), having the properties

(i) ve X, (G d(v, G%=k}+1
(ii) ve X,(GY>Dd(v, G%) =[3k]+1
(iii) ve V—-(X,UX,)=d(v, G°) = k.



€ lemma" Th:s 'Wt,;v be done

ﬂemem 3.2 The mtegers M(p, k) and Q(p, k) are related as fallows
(y M(p, k)< Q(p, k).
(ii) For each k>3 M(p,k) Q(p, k) for all bzst?ﬁnltely many p
(m) M(p, 4)= Q(p, 4) fur p¢6 and M(p, 3)— Q(p, 3) jor all even p.

l'mof. We begm by pmvmg (1) Let G ha*fe the‘ mpemes of bemg k~1egular
having p points, and satisfying Z(G)= Mz k). Set.M = M(p, k). In a complete
M-partition of V(G), et C bea class of min mum cardiuality r. Smce {C) contains
at least r—1 edges, we have exd (C)<rk - _2(r~1)-¢_1(u 2)+2. As there are
M~1 classes besides C, we have M=1<uxd (C)<r(k-2)+2, and herce r=>
{(M~3)/(k~2)}. Since C has minimum cardinality, Mr<p. Combmmg w'th the
previous inequality we get M{(M~3)/% —2)}<p, as rrquired. :

To establish (i), we begxr by coustruc»txrg for each. k>3 an .infinite set
S""'~{G“‘"()‘)}J‘=.H1 of k reguiar graphs. B "h-;,graph G""()\) will have order

p®) = XA =3)/(k=2)} and“contxacub ity number A, Thus by definition of
Q(p, k) we will have A = Q(;*(1), k). This will serve to show that for each k=3,
the equality M(p, k)= Q(p, k) holds fcr infinitely many p, namely, the subset of
tue integers P{k)={p®™(A)}7_,.,. For by the definitions of A and the inequality
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(i), we have Q(p™(A), k)=A=Z(G®(A)<M(p™®(r), k)< Q(p*()), k). It fol-
lows that M(p™(A), k)= Q(p*'(A), k) for the set P(k).

- Once we have established (ii) for P(k} (given k), we will establish it for all but
‘ﬁmtely many of the remaining integers Z*—P(k) by mecar of a method of
subdwxsmns (soon to be defined) and the lemma.

Fix k=3. The graph G*(A) is constructed as follows. Suppose first {(A —
3)/(k —2)}=(x - 3)/(k —2), so that p®(A)= A(A—3)/(k—2).

We will begin with a cycle having p*)(\) points. In going once around the cycle,
number the points in order of their iraversal xy, X5, ..., Xxa-3yk-2. Now
partition them into A subsets {V}.; where V,={x,: (i-1)(A—3)/(k-2)
+1=n<i(A—3)/(k—2)}. For late. use, we will rzlabel our points with double
indices according to the rule x(i,j)—x, if and only if x € V; and j is the
congruence class of n mode (A —3)/(k—2). Our hamiltonian cycle H therefore
consists of the edges

{x (i, j)xG, j+ DIU{x (G, (A = 3)/(k —2)x(i+1, 1)):
1sjsiaA-3)/(k—-2)-1,1<i<)A}

with x(1, )=x(A+1,1).

The edges of G*(A) not in H will now be defined .ecursively. First, form the
edges {x(1, 1)x(i, (A —3)/(k- 2)): 2<i=<k}. The point x(1,1) now has degree k
and no more edges inciden: with it will be formed. Tc describe the other edges,
we will define a total ordering of the points of G*’()). For points x(i, j), x(i, ) in
the same class V;, we let x(i, j)<x(i, l) if and only if j<L If x(i, j), x({, m) are
points in distinct classes V;, V, then let x(i, j)<x(l, m) if and only if i<l
According to this ordering, then, x<y if and only if x con.:s before y in the
orginal traversal X, X,,...,X\a-3yk-2 Of the cycle H. Now suppose that a
graph G(i, j) has been constructed in which d(x, G(i, j))= k for all x<x(i, j) and
d(x(i, j), G(i, j))=t<k. In each class V,, n=i+2, having « point of degree less
than k in G(i, j), let x(n) € V,, be the point with this property that is maximal with
respect to the ordering. Also, let X={x(n):n=i+2}. The remaining edges
incident with x(i, j) will now be defined according to whether j=1 or j>1. If
j=1, join x(i, j) to the first k — ¢ points of X (with respect to the ordering induced
on X). If j>1, let ny be the maximum index such that x(i, j—1) is adjacent in
U(i, j) to some point of V, . Then join x(i, j) to the first k —t points of the subset
X(ng) = {x(n): n,>»n0:!- 1} of X. In either casz, let us call the resulting graph
G(i, j)'. There are now two possibilities, eithe; G(i, j)' i¢ k-regular or it is not. If it
is not, Jet

GG, j) =G, j+1) ifjs(A-3)/(k-2)-"
=G(i+1,1) ifj=(A-3)/(k-2),

and repeat the above procedure. A k-regu:ar graph G(io, jo) must eventually be
reached, and we let G®(A) = G(iy, jo)'. Thus V(G*(})) is composed of A classes



order p“’(7)y~—, an
we have G4(7)~—

n "1sf“m tum eqmvalent to
‘ng a pmnt of degree less

=AY for: each pait of 1stmct classes,
'y with xe'V; and y e V,-._Heﬁca.(}"‘)(z\) has the
:U.,l V(A ;so that A<Z(G‘*’(A)) On the

complete A-par ON
other hand, we: have 4\_ Q(p"
Q(p™().), k)= = Z(G""(A)) iellows Note also that the umqueness of the edge
xy is the beginning of the proof that the G™(A) are Z-critical. That is, the
removal of any edge of G*AA) resmlts in a graph with smallér contractlbmty
number. . '

The construction of the graphs G""(A) for: whlch O —~3)/(k 2)}#
{A—3)/(k —2) is similar, and the details are omitted Lere. An example, G“"(ﬁ)
is shown in Fig. 5b.

We have constructed the graphs {G“"()‘)}PI, and 'hus the equahty {ii) is
proved for the subset of the integers P(k). To finish the proof, it remains to show
M(p, k) = Q(p, k) for all but finitely many of the integers in the set O =2Z* ~ P(k).
As in the proof for P(k), the inequality (i) reduces our P oblem to the construc-
tion of a k-regular graph of order p and coutr actxbxhty munber Q(p, k) for all but
finitely many pe(). Thxs will only be dore for k even delow, as the construc’ion
for k odd zs snm!ar -
l2ast integer A satlstymg the mequaht "

{(A 3>/<k ~M=k o)

We wiil show that the construction of the required graph of orde-r pis possxble for
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all peQ) satisfying p=p™(A,). That is, Mip, k)=Q(p, k) holds for p=
Aof(Ao—3)W(k—2)} > k(k*—- 3k +3).

Fix k, and write p(A) for p*)(A). Let us begin by observing that it suffices to
construct, for each A satisfying (1), a sequence {G;(A): 1<i<p(A+1)-p(A)—-1}
~of k-regular graphs which satisfy |G;(A)|=|G*(A)|+i and Z(G,(A)) = Z(G¥(1)).
~For by definition, Q(p, k)= Q(p(A), k) holds fcr p(A)<p<p{\+1). Hence we
have Z(G,(A))=Z(G™(), k)= M(p(r), k)= Q(p(A), k)= Q(p(A)+i, k). As the
inequalities Z(G;(A))<M({p(A)+i, k)< Q(p(A)+1i, k) hold by definition and by
(1), we get M(p(A)+i, k)= Q(p(A)+i, k) for 1<i<p(k+1)—p(A)—1. This being
true for each A satisfying (1), it follows that (ii) is proved fcr all pe ) with
p = p(Ag).

For the constructions to follow, we need the following definitions. Let F=
{e;}i-1 be a set of independent edges of G, with ¢; = a;b,. Define the F subdivision
graph of G, SD((G;F) as follows. Let V(SD(G; F))=V(G)U{z}, and
E(SD(G; F)) = (E{G)— F)U{za;}}’-;U{zb}_,. An F subdivision graph of C, is
shown in Fig. 4.

We now constriict the first 3k of the graphs G;(A), using the graph G*(A) as
our beginning. Recall the complete A-partition of G*®(A) given by V(G*®'(A)) =
UL, V. By assumption (1), we have |V;| ={(A —3)/(k —2)}> k, and by construc-
tion of G®)(A) each (V,) is a path. In particular, (V) is a path of order greater
than k>3(k—2). Hence there exists an edge ec E((V,)) and a set B'=
{e,=gh; :1<i<¥k—2)} of {(k—2) independent edges of G*(A) with the prop-
erties

(@) h,e Vy, g2 Vi3

(b) no edge of B' is incident on e.

Since A >k, we may actually choose these edges so that the points g; are among
the sets V,, n=3k+1. Let F'=B'U{e}. We then define G,(A) as the F'-
subdivision graph SD(G™*(A); F'). Clearly G;(A) is k reguiar and |G,(A)|=
p(A)+1. Write z' for the point z in the definition of F-subdivision. Then with z'

(2 &' 1)
Fig. 5. The graphs i*(7) and G*(6).



Uz (= 3)(k-2)), 221, 1), 225(LA=3)
(k=2)), 2"x(2, 1), z"12*%},
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v ng deﬁned Gi()), form G;,;(A) by letting

V(Gm()\)) V(Cr()t))U{Z"“’l 24712,

()= B(GA) ~{x(A, (A ~ 30k ~ D)z, 5(2, 1)2 U (=1, (-3
: : (k 2))20 ri}l’ z(¢+1)znl x(2 1)z(u+1)2 z(:+l)2 i2 Z(z+1)1z(;+1)z}

h01t the graphs G(,\) (for k =3) are formed by successively “inserting” a

To ,,,f-of degree 2 in_each of two edges, and then joining these two points of

»' degree 2 by an edge.

-~ For k= w,,v,(:arry out the F-subdivisions (with |F|=2) unencumbered by the

5 f'krequlrement (1). The exception occurs with the unique quartic graph of order 6,

- K(2,2,2). ‘We have Q(6,3) =5, but Z(K(2, 2, 2)) = 4. Hence in the case k =4, we
begm the inductive construction with a qu - rtic graph of order 7 and contractibility

nber Q(7,4) =S5.

ibic graphs G*(4), G,(4), G(4) are shown in Fig. 6a. A quartic graph of

order:?and contractibility number 5 is shown in Fig. 6b. It- may be used as the

: .‘,rst(graph in the inductive construction of the graphs {G;(5): 2<i<p(6)~p(5)—

1

| Corbllary 3.3. The maxin-um of Z(G) over all cubic graphs of order p is given by
M(p,3)=[33+v9+4p)].

1
1
1
4 3 4 3 4 3

(a) The graphs G3(4), G,(4), G,/4)

(b) A quertic graph of order 7 and contractibility number 5.

Fig. 6. Extremal cubic 7 ad quirtic graphs.



:mxmber‘ of edges in a graph G and let f(n, '}) =

My thanks g0 to Professors FT: ak Harary and Andreas Blass for their help in the
perafatum of this papcr
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