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The contractibility number (also known as the Hadwiger aamber) of a connected graph G, 
Z(G), is defined as the maximum order ol a connected graph onto which G is contractible. An 
elementary proof is given of a theorem of Ore about this invariant. Also, the extremal problem 
of finding the maximu!n Z(G) over all graphs G of .a given order and regularity degree is 
solved. 

1. Introduction 

Let G be a finite graph as in [3]. An devtentary contraction of 6 is the 
identification oi ?ZJ adjacent points of G to a point z. Alternatively, it may be 
viewed as a function of graphs f : G + G’ where for some pair of adjacent 
points u, REV, we have V(G’) -(V(G)-{u,v})U{z}, and E(G’)= 
E(G-(uv}) U{zx: nu c E(G) or xv E E(G)} with loops and multiple edges of G’ 
suppressed. The graph G’ will be denoted by C?<U = v). A contraction of G is or 
sequence of elementary contractions starting from G. If there exists a contraction 
f : G+ N, we say G is contractible to He Strictly speaking, the order in which the 
elementary contractions are performed is not relevant. In practice, however, the 
contraction f will be ofLen most easily described and understood when a specific 
order is used. An example of a contraction f : :3-, I& is illustrated in Fig. 1. 

Let G be a cdnnected graph. We define Z(G), the contractibility number of G, 
to be the maximum order of a complete graph cnlto which G is contractible. If G 
is disconnected, let Z(G) = max{Z( G’): G’ a c~/. mected component of G}. 

Some well-known theorems a.nd conjectures in the literature of graph theory 
can be stated in terms of the contractibility number, For example, Hsdwiger’s 
conjecrure says that every n-chromatic graphi G satisfies Z(G) 2 n. Wagner [5] 
has shown that a graph G is planar if and only tf it has no subgraph contractible to 
K(3,3) and .Z(G)~4. Hadwiger’s conjecture: for n = 5 thus implies the four co 
theorem, while the converse was also agner [6]. 
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G cc = G(a = b) .& 
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5 P1 = &XJy? 

Fig. 1. A compsitiorr of two element&y contractions thitt yields:&e mtractim G-* K4. 

sets Vi are identical with the setr f”(u) (UE W). If H Is a oosxplete graph, then for 
each pair of distinct integers i 1, 1 c i 6 is IHIs there exists an edge xy of G with 
x JS Vi and 9 E Vi- ,In &is case, we will refer to the partitiair -above as a complete 
IHI partition of V(G). 

Any graph theoretie notation astJ terminology not defined here can be found in 

[3]. In particular, all graphs are $8) ite with no joops or ma&file edges. 

In his book [4] Ore proves, uriing an elaborate method, that if the minimum 
degree of .G satisfiies 6(G) 3 3 with the possible exception of oue point of degree 
2, then Z(G) 3 4. Under .the modSed hypothesis 6(G)* 3, an elementary procf 
of this theorem is now given. 

Theorem 2.i (0~). If a( 3, then Z(C) 24. 

B%uI& We proceed by induction on p(G), the order of G. The smallest possible 
order for a graph satisfying the hypothesis is 4, in whiclh case G = K4 and the 
theorem is trivalfy trxe. Let G be a graph of order p ;z 5 with 8(G)> 3, and 
assume thz theorem true for all graphs of order p - 1 or less. 

Observe that it suffices to prove the theorem when 6(G) = 3. For if this known, 
then in an arbitrary gaph H with 6(H)> 4, we may choose a point h of degree 
(5(M) and remove all but 3 edges incident with it, thereby getting c:, graph If”’ with 
a point of degree ‘3, We then know that Z(H) 2 4, and since H 3 H’, we get 
Z(M) 2 Z(H’) 2 4. 

For e\*zry v E k’(G), let N(v) refix to the set of all points of G adjacent to v, 
Z!ZsCi @3lle e ~~~ghb~rhoo 
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First we reduce to the case where for every ZJ E V(G), there exists s E M(u) with 
d(s) = 3. Suppose to the contrary that there exists USE V(G) such that d(t) 3 4 for 
all t E N(Q). Then G - u. satisfies the hypothesis, so Z(G - u,> 2 4 by induction. 

Ichllitse Z(G) a 4. 
n’arr;t we reduce to the case where (N(u))=& for all points u of degree 

d(tl)=3. If N(v)d& then (N(v)U{v})=K,, so that Z(G)a4. I-Ience we may 
assume N(v) g KS. To finish the reduction, we need only consider the possibility 
that (N(v)) contains a,: isolated point y. Then the contraction ,1 : G-, G(y = u) 
yields a graph G(y = tj) of order p- 1 a-Id minimal degree at least 3. Hence by 

induction Z(G( y = v)) 3 Li, so tha:r, Z(G) a 4. 
We may therefore now assume that (N(v)) = P3 for all psints u of degree 3, and 

that for each such ** there exists s E N(v) with d(sj = 3. It will now be shown that 
under these conditions the theorem is true. 

Let v be a point of degree 3, and let s E N(v) satisfy d(s) == 3. We show that s 
may be taken to be an endpoint of (N(u))= P3- For If it cannot, then both 
endpoints have degree 4 at least. Consider the contraction A : G+ G(u = x) ,sYhere 
x E N(v) and d(x, N(v)) = 2. Either the graph G(u = X) satisfies 6 3 3 or another 
elementary contraction (identifying the image of v and x with a neighbor) yields 
such a graph G’. By induction, we have Z(G(v - x)) 3 4 
Z(G)>4. 

or Z(G’) 2 4. and hr:r,ce 

We are now able to construct the contraction of G onto a graph with 
contractibility number at least 4. Let u E N(s) be such that uti N(U) and u # U. 
Such a point exists sin::: IN(s)1 = 3 and N(u) $ KS. Since N(s) = P3, we must have 
XWE E(G) where d(x, B(U)) = 2 as above. But then the contraction A : G- 

G(s = U) has image graph satisfying Z( IG (s = u j) 2 4 by induction, so tlat Z(G) 2 
4. 

It has been pointed out by A. l?!~ss th.at a slight modification of the above proof 

actually yields Ore’s theorel z as originally stated (that is, with the possible point 

of degree 2). This modificalion ks been omitted, however, for reasons of space. 

VNe now turn OUi aiterrtic jn k . .n extremal problem involving the contractibility 

number. 

3. An extremd problem 

All graphs discussed in this section are assumed to be connected. 

We will investigate the problem of kding, given k and p, the maximum 

contractibility number among the class of all k regukr graphs of order p. 

We begin with a Lemma which will be used later in the construction of an 

infinite class of extremal regular graphs. ‘vhen x is a real number, {x} will be the 

least integer greater tha or equal to X. 



The operation of transforming G t&k giaph in the ;CIass $‘(G; V’) will be called a 
+titt@g of ‘G at D’ l . A; graph 

‘\ 

&&in in Fig 2 
^ 3 and” two d&r&t sphttings of it at a point are 

We ;1ow iterate this procetlgre by defining sets Sl(C; I?, u2, . . . , vi). Let {v:)j=, 

be a bet of i indepenaqnt fioiuts, of G. Having peiformed suc&essive splittings of G 
at the points {o’)i=f resulting id a graph ML’ of the set SiL1(G; u’, v2,. . . , d-l), , 
we perfoti B s$&tin~ qf H’“’ at ZJ’ to get a graph I?. The set of all such graphs 
Ht ‘will be denoted by S’(G; {u’}j_J. More precisely, we let S’(G; {vi}ii,)= 
u S’(H’-’ , I!‘) swkiere the union is over all graphs Hi-* of the set S’-l( G ; { vj)jT:). 
A graph in S3(Kg;{~i}&I) is shown in Fig. 3. 

The reqyired graph G’ may now be constru$ed. We find a set of & indepen- 
dent pointi( ju19_ and let GO e S.u2(G; {u’~~,). The construction of GO produces 
a sel of k points it,rJf=lrI, the “splittings” of the points- (t~~}!?~ of G. &et the 
two subsets X,(6’) and X2(@‘) of V(G’) be defiried as ri,(G’) = { v#$, X2 = 
{u#%$. Each point in the Xi(G’) has degree (&)+ 1 by construction. Define the 
graph G’ by V(C) = V(G*) and E(G)= E(@)U{&‘;: if j}. Thus Go is a 

Fig. 2. Two diffferm splittings of G at v 
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“5 H 

Fig. 3. A graph HE S3(K,; ul, u2, 03). 

spanning subgraph of G’ containing all edges of G’ except those joining points of 
X1 with points of X2. 

It is now shown that G’ has the required properties. Obviously IG’[ = 1 GoI = 

ICI +$k. TO see that G’ is k-regular, observe that the points of G - { I_+}~~*~ are 

rraturally present in G’ as the points of G’-(X1 U X2). As such, they have the 
same degree in G’ as they do in G. Thus all points of G’- (X, U X2) have degree 
k in G’. As for points x E X1 U dXz, we have d(x, G’) = d(X, Go)+ ($k)- 1 = k. 
Hence G’ is k-regular. We now show that Z(P) 3 Z(G). If we contract each of 
the edges {uiui}, 1 i c sik, of G’, we arrive at a graph F having G as a 
(non-induced) subgraph. That is, F is just G with some extra cadges, those joining 
vi and vj. This graph can be contracted to KztG) because G can. Composing the 
contractions G’+ F and F-, KZtGj, we get the required contraction G’-+ KzlG). 
Finally, it remains to show that &(G’) 2 P,(G). Let S be an independent set in G, 
and suppose without loss of generality tha.t S n {~j}i”i,“~ = {d};= 1. Then the set 
S’ = (S n (G - {U’)ikL2J) U {vi}” l 1 is independent iri G’ and y\atisfies IS’1 = ISI. Hence 

P,(G’) 3 P,(G)= 
For k odd, we proceed similarly. Certain changes in the construction above will 

be necessary, however. 
Suppose, then, that we are given a k-regular graph G satisfying the hypothesis 

of the lemma with k odd. We begin by slightly altering the definition of splitting. 
If 2, E V(G), we take a partition of N(u), N(u) = N,(u) U N2(u) such that N,(u) = 
[$k] and N*(U) = {ik}. !A% then define the splitting H(G; N,, AJ,), the set !5’(G; u), 
and the iterated sets S”(G;{U~}~=~) as before. 

Let us examine a typical graph Go E S”(G; {~j}y+). Each ui is replaced by two 
points, ~1 and U$ say, where without loss of generality we take d(u\, G’) = {$k} + 1 
and d’(& 6”) = [$k]+ 1 for lsjs n. If we let X,(G”)=(V()~~~ and X,i@) = 
{u&}i”_ 17 theu V(G’) may be partitioned in: o the three sets X1( Go), X,(G”), and 
( V(Gt3) - (X, U X2)), having the properties 

(i) u E X1(GO)+ d(z,, (3’) = (Sk}+ 1 1 

(ii) 2, E X2(G0)=3 424 43’) = [$I+ 1 1 



(0 Mp, k) 6 Q(p, 0 
(ii) F& each k >-3, M(p,k) = Q(p, k) for all But @$tely many p.’ 

(iii M(p, 4) = -&p5 4) fcv ~$6, and M(p, 3) 1 &-p7’iJ f$‘aiZ. even p. 

” : , _. . 
P!rd., We begia b,’ pm&g- (i). k&t G %we -t&x pm@Prties of ,b‘eing. kegtilar, 
having p points, aad s&sfying Z(@=‘&& ,,k), Set ” n;ll F M(p, k). In a complete 
M-partition of V(G), let c be :a class of mln inum cardindaliq I: Since (C) contains 
at least t- 1 edges, we have exd (C)G rk - 2(t- 1) = r(k - 2)+ 2. As thg re are 
A4’- 1 classes besides C, we have A4 b 11 G cxd ((C) S r( k - 2) f 2, and heE.ce ta 
((M -- 3)/( k - 2)). Since -C has minimuan car&nIaKty, I\%r e)p. Gkbitiing w* th the 
previous inequality we get’ M$M - 3)/k - 2)j 6 5 ,as required. 

To establish (ii), we begin. by ccrastrudir.g for each k 2 3 an infinite set 
s(k) I ((34@(h))” A+_l, of k regupc p;raphs. j Bach .graph G@)(A) wjll, hay9 okder 
p<“‘(h) = hf(& 3)/(J+ 2)) and ~o~tracti&litj~ titimbi 1 4. Thus by definition of 
Q(p, k) we will have h = Q(rd(k)(h), k). This Gil serve to show that fop each k 2 3, 
the equality M(p, k) = Q(p, K) holds fc r infinitely many p, namely, the subset of 
tkmc integers P(k) = {pYh)}~,k+l. For by the definitions of A and the inequality 
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(i), we have. Q@(“)(A), k) = A = Z(G(k)(A)) s M@(k)(A), k) s Q(JJ(~)(A), k). It fol- 
lows that M(ptk’(A), k) = Q(ptk’(A), k) for the set P(k). 

@ux we have established (ii) for P(k) (given k), we will establish it for all but 
finitely many of the remaining integers Z+ - P(k) by near, of a method of 
&bdivisions (soon to be defined) and the lemma. 

Fix k 2 3. The graph Gtk)(A) is constructed as follows. Suppose first {(A - 
3)/(k - 2)) = (A - 3)/( k - 2), so that P(~)(A) = A(A - 3)/( k - 2). 

We will begin with a cycle having pCk)(A) points. In going once around the cycle, 
number the points in order of their traversal x1, x2,. . . , xA(A-3)/(k_2). Now 
partition them into A subsets {Vi):= 1 where Vi = (x,: (i - l)(h - 3)/(k - 2) 
+ 1 s n G i(A - 3)/(k - 2)). For lateI* use, we will relabel our points ‘with double 
indices according to the rule x( i, j) -: x, if and only if x E Vi and j is the 
congruence class of n mode (A - 3)/( k - 2). Our hamiltonidn cycle H therefore 
consists of the edges 

{{x(i, j)x(i, j+l)}U{x(i,(A-3)/(k-2))x(i-t 1, 1)): 

lSj+h--3)/(k-2)-l, HiSA} 

with x(1, l)=x(A + 1,l). 
The edges of Gtk)(A) not in H will now be defined Lecursively. First, form the 

edges (x(1, l)x(i, (A -3)/(k - 2)): 3~ is k}. The point x(1, 1) now has degree k 
and no more edges incident with it will be formed. Tc, describe the other edges, 
we will define a total ordering of the points of Gtk)(A). For points x(i, j), x(i, I) in 
the same class Vi, wt let x(i, j)< x(i, I) if and only if j< 1. If x(i, j), x(1, m) are 
points in distinct classes Vi, Vi, then let x( i, j) < x(l, m) if and only if i =C I. 
According to this ordering, then, x< y if and only if x conl;s before y in the 

orginal traversal x1, :y2, . . . , xh~h_3~,~k_-2~ of ihe cycle S. Now suppose that a 

graph G( i, j) has been constructed in which d(x, Gli, j)) - k for all x < x (i, j) and 
d(x(i, j); G(i, j)) = t < k. In each class V,, n 2 i +2, having a point of degree less 
than k in G( i, j), let x(n) E V,, be the point with this property that is maximal with 
respect to the ordering. Also, let X = {x(n): n 3 i + 2). The remaining edges 
incident with x(i, j) will now be defined according to whether j = 1 or j > 1. If 

j = 1, join x( i, j) to the first k - t points of X (with respect to the ordering induced 
on X). If j> 1, let no be the maximum index such that x(i, j- 1) is adjacent in 
ti(i, j) to some point of V%. Then join x( i, j) to the first k - t points of the subset 
X( no) = (x(n): n 2 no+ 1) of X. In either casr=, let us ca!! the resulting graph 
G(i, j)‘. There are now two possibilities, eithe; G( i, j)’ i: k-regular or it is not. If it 
is not, let 

G(i, j)‘= G(i, j+ 1) if jS(A -3)/(k-2)-! 

=G(i+l, 1) if j=(A-3)/(k-2), 

and repeat the above procedure:. A k-reguar graph G(i,, jJ must eventually be 

reached, and we let Gtk)(h) - G(io, jo)‘. Thus V(G ‘k)fA)) is composed of A classes t 
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all p E$% satisfying p 3 ~(~‘(h,). That is, M(p, k) = Q(p, k) holds for p a 
A,{(A,-3)/(k--2)}> k(k2-3k+5). 

Fix k, and write p(A) for P(~)(A). Let us begin by observing that it suffices to 
construct, for each A satisfying (I), a sequence {G,(A): 16 is p(A f- 1)-p(h)- 1) 
~f”k-it@da~ graphs which satisfy IGi(A lG’k’(h)l+ i and Z(Gi(A)) = Z(Gck’(A)). 
Fck by de&&ion, Q(p, k) = Q@(A), k) holds fcr p(~)s p c ~(h + 1). Hence we 
have Z(G,(A))= Z(CPk’(A), k)= M@(A), k) = Q@(A), k)= Q(p(A)+ i, k). AS the 
inequalities Z( G,(A)) 6 M(P(A) + i, k) S Q(P(A) + i, k) hold by definition and by 
(I), we get M(p(A) + i, k) = Q(p(A) + i, k) for 1~ is p(A i- 1) - p(A.) - 1. This being 
true for each A satisfying (l), it follows that (ii) is proved fcr all p E fl with 

P a P(A0). 
For the constructions to follow, we need the following definitions. Let F = 

{ei}rsl be a set of independent edges of G, with ei = aiibi. Define the F subdioision 
graph of G, SD((G; F) as follows. Let V(SD(G; F)) = V(G)U {z}, and 
E(SD(G; F)) = (E(G)- F) U {zai}~=~ U {Zbi}F=l. An F subdivision graph of C, is 
shown in Fig. 4. 

We now construct the first $k of the graphs G,(A), using the graph Gck’(A) as 
our beginning. Rec;dll the complete A -partition of Gck)(A) given by V( Gtk’(A )) = 
U F= 1 V’. By assunlption (l), we have 1 Vi I= {(A - 3)/( k - 2)) > k, and by construc- 
tion of G(“)(A) each (Vi) is a path. In particular, (V,) is a path of order greater 
than k >$(k - 2). Hence there exists an edge e E E(( VI)) and a set B* = 
{ei = g,hi : 1 s f s$(:Tc - 2)) of $( k -2) independent edges of Gck’(A) with the prop- 
erties 

(a) hi E VI, gig v,; 

(b) no edge of B1 is incident on e. 

Since A > k, we may actually choose these edges so that the points gi are among 
the sets V,,, n ~$k + 1. Let F1 = B1 u(e). We then define G,(h) as the F’- 
subdivision graph SD(G(“)(A); F1). Clearly G,(A) is k regular and I&@)( = 
p(A)+ 1. Write 1e =J for the point z in the definition of F-subdivision. Then with z’ 
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(a) Gt4)(7, 

Fig. 5. The graphs j4(7) 

1 

(b) G4 (6) 

and G4(6). 
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.Raving defined G,(h), form Gi+,(A) by letting 
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V(G,+,(A)) = V(Gi(A)) w {z(i+l)l, 2(i+‘)2}, 

I., $i’laL ^# - (_ . ” 
.’ ’ 

‘, 
“‘ _ 
:_,‘. X?(C,+&))= E(Gi(hj)-{X(A,(A -3)tt.k: -2))2”, X(2,1)2 ‘“}U(X(A,(A -31 

““L ” , 

i 

(k _ 2)) z(i-~lIl, Z(i+l)tiZ, x(2, l)z(i+lP, zG+l)24 i2, 2(i+1)lZ(i+1)2)B 

so En short, the graphs G,(h) (for k = 3) are formed by successively “inserting” a 
point of degree 2 in each of two edges, and then joining these two points of 

/ degree 2 by an edge. 
1 For- k = 4, we carry out the F-sub&ivisions (with IF] = 2) unencumbered by the 
requirement (1). The exception occurs with the unique quartic graph of order 6, 
K(2<, 2,2). We have Q(6,3) = 5, but Z(K(2,2,2)) = 4. Hence in the case k = 4, we 
begin the inductive construction with a q:- Ttic graph of order 7 and contractibility 
number’ Q(7,4) = 5. 

Thecubic graphs G3(4), G,(4), G,(4) are shown in Fig. 6a. A quartic graph of 
order 7 land contractibility number 5 is shown in Fig. 6b. It may be used as the 
kst graph in the inductive construction of the graphs {Gi(,5): 2~ is p(6)- p(S)- 

11. 

Co~okU’y 3.3. The maxinqum of Z(G) ovea all cubic graphs of order p is given by 
M(p, 3) = E(3 + JK@]. 

1 2 1 1 2 1 1 12 
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1 

1 

4 3 4 3 
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(a) The graphs G3(4J, G,(4), G,E4) 

(b) A qucrtic graph of order 7 and contractibility number 5 

Fig. 6. Extremal cubic 2nd qu; rtic grap 
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